Сколько кислорода содержится в воздухе атмосферы. Холодный период года. Почему становится плохо в душном помещении

Атмосферный воздух , который вдыхает человек, находясь вне помещения (или в хорошо вентилируемых помещениях), содержит 20,94% кислорода, 0,03% углекислого газа, 79,03% азота. В закрытых помещениях, заполненных людьми, процентное содержание углекислого газа в воздухе может быть несколько выше.

Выдыхаемый воздух содержит в среднем 16,3% кислорода, 4% углекислого газа, 79,7% азота (эти цифры приведены в перерасчете на сухой воздух, т. е. за вычетом паров воды, которыми всегда насыщен выдыхаемый воздух).

Состав выдыхаемого воздуха весьма непостоянен; он зависит от интенсивности обмена веществ организма и от объема легочной вентиляции. Стоит сделать несколько глубоких дыхательных движений или, напротив, задержать дыхание, чтобы состав выдыхаемого воздуха изменился.

Азот в газообмене не участвует, однако процентное содержание азота в видимом воздухе на несколько десятых долей процента выше, чем во вдыхаемом. Дело в том, что объем выдыхаемого воздуха несколько меньше, чем объем вдыхаемого, а потому то же самое количество азота, распределяясь в меньшем объеме, дает больший процент. Меньший объем выдыхаемого воздуха по сравнению с объемом вдыхаемого объясняется тем, что углекислого газа выделяется несколько меньше, чем поглощается кислорода (часть поглощаемого кислорода используется в организме на обращение соединений, которые выделяются из организма с мочой и потом).

Альвеолярный воздух отличается от выдыхаемого большим процентом некислоты и меньшим процентом кислорода. В среднем состав альвеолярного воздуха таков: кислорода 14,2-14,0%, углекислого газа 5,5- 5,7%, азота около 80%.

Определение состава альвеолярного воздуха важно для понимания механизма газообмена в легких. Холден предложил простой метод для определения состава альвеолярного воздуха. После нормального вдоха исследуемый делает возможно более глубокий выдох через трубку длиной 1-1,2 м и диаметром 25 мм. Первые порции выдыхаемого воздуха,уходящие через трубку, содержат воздух вредного пространства; последние же порции, остающиеся в трубке, содержат альвеолярный воздух. Для анализа в газоприемник берут воздуха из той части трубки, которая находится ближе всего ко рту.

Состав альвеолярного воздуха несколько различается в зависимости от того, произведён ли забор пробы воздуха для анализа на высоте вдоха или выдоха. Если сделать быстрый, короткий и неполный выдох в конце нормального вдоха, то проба воздуха отразит состав альвеолярного воздуха после наполнения легких дыхательным воздухом, т. е. во время вдоха. Если же сделать глубокий выдох после нормального выдоха, то проба отразит состав альвеолярного воздуха во время выдоха. Понятно, что в первом случае процент углекислого газа будет несколько меньше, а процент кислорода несколько больше, чем во втором. Это видно из результатов опытов Холдена, который установил, что процент углекислого газа в альвеолярном воздухе в конце вдоха составляет в среднем 5,54, а в конце выдоха - 5,72.

Таким оораэом, имеется сравнительно небольшое различие в содержании углекислого газа в альвеолярном воздухе на вдохе и на выдохе: всего на 0,2-0,3%. Это в большой степени объясняется тем, что при нормальном дыхании, как сказано выше, ется всего, обновляется всего 1/7 объема воздуха в легочных альвеолах. Относительное постоянство состава альвеолярного воздуха имеет большое физиологическое значение, что выяснено ниже.

ВОЗДУХ – смесь газов, образующая атмосферу, оболочку вокруг земного шара, обусловливающую возможность жизни на Земле животных и растительных организмов.

Воздух состоит в основном из смеси азота (78,09% по объему) и кислорода (20,95% по объему); на долю всех остальных газов приходится около 1%. Важнейшей составной частью воздуха является кислород, играющий основную роль в поддержании жизни на Земле. В процессе жизнедеятельности животные организмы непрерывно потребляют кислород. Пополнение запасов кислорода В. происходит за счет продуцирования его растениями, зеленые части которых в процессе фотосинтеза поглощают на свету углекислый газ и используют его углерод для образования органических веществ, выделяя при этом в воздух свободный кислород. Таким образом, в природе происходит кругооборот кислорода, в процессе которого одновременно с большим расходом кислорода происходит полное восстановление его количества.

Человек вдыхает за сутки 20-30 м куб. воздуха. Потребность человека в кислороде зависит от интенсивности трудовой деятельности; в покое эта потребность составляет 25 л в час. Снижение содержания кислорода в воздухе до 16-18% не оказывает заметного влияния на организм человека; снижение до 14% уже сопровождается явлениями кислородной недостаточности, а снижение до 9% опасно для жизни. Однако основное биологическое значение имеет не процентное содержание кислорода в воздухе, а его парциальное (частичное) давление, то есть та часть общего атмосферного давления, которая приходится на его долю, так как переход кислорода из воздуха, содержащегося в альвеолах легких, в кровь и ткани основан на разнице его парциального давления. Наиболее полно этот переход осуществляется при парциальном давлении кислорода в атмосферном воздухе, равном 150- 159 мм, которое обычно имеет место при атмосферном давлении 760 мм. Парциальное давление кислорода в альвеолярном воздухе ниже, чем в атмосферном воздухе: при парциальном давлении кислорода в атмосферном воздухе, равном 159 мм, в альвеолярном воздухе оно составляет только 105 мм. Понижение парциального давления кислорода воздуха влечет за собой нарушение дыхательного процесса, снижение легочного и тканевого газообмена, обеднение крови и тканей кислородом. При понижении парциального давления кислорода в атмосферном воздухе до 130-140 мм (в альвеолярном воздухе соответственно до 80-85 мм) уже может возникать ряд нарушений – одышка, учащение и увеличение глубины дыхания, учащение сердце биений, ускорение тока крови и другие, которые носят компенсаторный характер. При дальнейшем снижении парциального давления кислорода до 110 мм (в альвеолярном воздухе – около 62 мм) компенсаторные возможности организма оказываются уже недостаточными и возникают явления кислородной недостаточности (так называемая гипоксемия, гипоксия). Дальнейшее снижение парциального давления кислорода до 50-60 мм (в альвеолярном воздухе до 20-25 мм) может привести к смерти. Дефицит кислорода можно компенсировать употребляя кислородный коктейль. Приготовление кислородного коктейля производят с помощью различных аппаратов, в том числе концентратор кислорода , кислородные миксеры, ароматические станции, пенообразователи и многие другие.

Понижение парциального давления кислорода отмечается с подъемом на высоту. Поэтому при подъемах на горы или на самолете с негерметизированной кабиной у малотренированных и неакклиматизированных людей может развиться так называемая высотная болезнь. Значительно легче организм переносит повышение содержания кислорода во вдыхаемом воздухе. Экспериментальные животные переносят содержание кислорода в воздухе 40-60% в течение длительного срока без каких-либо заметных проявлений и нарушений в состоянии организма. При водолазных работах дыхание воздухом, содержащим до 50% кислорода, также переносится без вредных последствий.

При высоком парциальном давлении кислорода (около 1 атм) и длительном вдыхании его развивается отек и воспаление легких.

Второй важной составной частью воздуха является азот. Он относится к инертным газам и не способен поддерживать дыхание и горение. Однако азот играет важную роль как разбавитель кислорода в атмосферном воздухе, обеспечивая благоприятную для поддержания нормального дыхания животных и человека концентрацию кислорода в воздухе. Наилучшие условия для жизни создаются при содержании в воздухе азота 78,09% (по объему) и кислорода 20,95%. При увеличении содержания азота в воздухе до 83% отмечаются первые признаки недостаточности кислорода. Азот при повышенном парциальном его давлении во вдыхаемом воздухе обладает наркотическим действием (при парциальном давлении азота 30-40 атм наступает полный наркоз). Изучение токсического действия азота у водолазов при глубоководных спусках показало, что при дыхании обыкновенным воздухом под давлением 9 атм и более отмечается ряд расстройств. Азот растворяется в крови и тканях организма в количествах, пропорциональных его парциальному давлению. При быстром переходе человека от повышенного давления к низкому избыток азота выделяется из тканей и крови в виде пузырьков газа, что является причиной так называемой кессонной болезни.

Постоянной составной частью воздуха является углекислый газ (CO2). Углекислый газ участвует в круговороте углерода; он поглощается в большом количестве растениями. Однако количество его в воздухе остается постоянным за счет поступления из почвы, в составе промышленных газов и дыма, за счет дыхания людей и животных. Человек в покое за 1 час выдыхает 22,6 л CO2. Наибольшее количество CO2 содержится в воздухе крупных промышленных городов. Наименьшее количество - над водной поверхностью океанов и морей. Регулирующее влияние на содержание СO2 в атмосферном воздухе оказывает вода морей и океанов, которая в зависимости от величины парциального давления кислорода воздуха и температуры отдает или поглощает СO2 из атмосферного воздуха. Физиологическое значение углекислого газа заключается в его возбуждающем действии на дыхательный центр. Так как в процессе жизнедеятельности в организме образуется углекислый газ в количестве, достаточном для создания в крови необходимого парциального давления СO2, обеспечивающего нормальное течение дыхательного процесса, то понижение содержания углекислого газа в атмосферном воздухе не имеет существенного значения. Повышение же концентрации СO2 в воздухе сказывается на состоянии организма: при содержании в воздухе 3-4% СO2 дыхание ускоряется и углубляется, появляется головная боль, шум в ушах, замедление пульса, повышение кровяного давления и другое, при повышении концентрации СO2 в воздухе до 10% может наступить потеря сознания и смерть. Механизм действия высоких концентраций СO2 аналогичен действию кислородной недостаточности. Гигиенической нормой содержания СO2 в воздухе жилых и общественных помещениях принято считать 0,1%. Углекислый газ принято рассматривать как показатель загрязнения воздуха в помещениях.

Из других газов воздуха необходимо отметить озон (O3), который относится к активным газам, оказывающим влияние на здоровье человека. Однако естественное содержание озона у поверхности земли ничтожно и не представляет какой-либо опасности для здоровья. Наибольшие количества озона сосредоточиваются в атмосфере на высоте 25-30 км. Озон играет важную роль в защите от вредного действия коротких волн солнечной радиации, а также обладает способностью задерживать тепло, исходящее от земли и, таким образом, в некоторой степени препятствует охлаждению земной поверхности.

В воздухе могут находиться в виде примесей и другие газы, в том числе и вредные (сероводород, сернистый газ, аммиак, окись углерода и другие), что чаще всего имеет место вблизи промышленных предприятий. Среди примесей, загрязняющих воздух, первое место принадлежит пыли . Мероприятия по санитарной охране воздуха направлены к всемерному снижению содержания в воздухе этих вредных примесей.
Помимо состава воздуха, существенное значение для нормальной жизнедеятельности человека имеют также физические свойства воздуха: температура, влажность, подвижность, которые оказывают комбинированное действие на организм, увеличивая или уменьшая его теплоотдачу. Наиболее благоприятная для человека температура воздуха 18-20°. Чем тяжелей выполняемая человеком работа, тем ниже должна быть температура воздуха. Человек легко переносит колебания температуры, вследствие свойственной ему способности к .

Большое значение для нормального самочувствия человека имеет влажность воздуха. Наиболее благоприятна для человека относительная влажность воздуха 40-60%. Сухой воздух переносится человеком хорошо, высокая влажность действует крайне неблагоприятно: при высокой температуре воздуха она способствует перегреву организма, так как затрудняет испарение пота, а при низких температурах способствует его переохлаждению, так как влажный воздух отличается высокой теплопроводностью. Человек очень чувствителен к движению воздуха, вызывающему усиление теплоотдачи организма. При низких температурах ветер способствует быстрому переохлаждению тела. При высокой температуре или интенсивном солнце ветер предохраняет от перегрева, улучшает самочувствие.

В воздухе могут содержаться микроорганизмы, в том числе и болезнетворные. Загрязненный ими воздух может способствовать распространению некоторых заразных болезней, особенно так называемых капельных инфекций (грипп, дифтерия, корь, скарлатина, коклюш и другие), возбудители которых больной человек выделяет с капельками слюны и слизи при кашле, чихании, разговоре.

Необходимо всегда следить за чистотой воздуха в помещении: систематически мыть полы, проветривать комнаты путем устройства сквозняков, тщательно выколачивать пыль из мягкой мебели, ковров, портьер, постельных принадлежностей и одежды не реже одного раза в неделю.

Воздух – смесь газов, необходимых для существования и поддержания жизни на планете. Каковы его особенности, и какие вещества входят в состав воздуха?

Воздух необходим для дыхания всем живым организмам. Он состоит из азота, кислорода, аргона, углекислого газа и ряда примесей. Состав атмосферного воздуха может меняться в зависимости от условий и местности. Так в городской среде уровень углекислого газа в воздухе по сравнению с лесной полосой повышается из-за обилия транспортных средств. В высокогорье концентрация кислорода снижается, так как молекулы азота легче, чем молекулы кислорода. Поэтому концентрация кислорода уменьшается быстрее.

Шотландский физик и химик Джозеф Блэк в 1754 году опытным путем доказал, что воздух – это не просто вещество, а именно газовая смесь

Рис. 1. Джозеф Блэк.

Если говорить о составе воздуха в процентах, то основным его компонентом является азот. Азот занимает 78% от всего объема воздуха. Процентное соотношение кислорода в молекуле воздухе составляет 20,9%. Азот и кислород – 2 основные элемента воздуха. Содержание остальных веществ значительно меньше и не превышает 1%. Так, аргон занимает объем 0,9%, а углекислый газ – 0,03%. Также воздух имеет такие примеси, как неон, криптон, метан, гелий, водород и ксенон.

Рис. 2. Состав воздуха.

В производственных помещениях большое значение предают аэроионному составу воздуха. Имеющиеся в воздухе отрицательно заряженные ионы благоприятно влияют на организм человека, заряжают его энергией, повышают настроение.

Азот

Азот – главная составляющая воздуха. Перевод названия элемента – «безжизненный» – может относится к азоту как простому веществу, но азот в связанном состоянии является одним из главных элементов жизни, входит в состав белков, нуклеиновых кислот, витаминов и т. д.

Азот – элемент второго периода, не имеет возбужденных состояний, так как атом не имеет свободных орбиталей. Однако азот способен проявлять в основном состоянии валентность не только III, но и IV за счет образования ковалентной связи по донорно-акцепторному механизму с участием неподеленной электронной пары азота. Степень окисления, которую может проявлять азот, изменяется в широких пределах: от -3 до +5.

В природе азот встречается в виде простого вещества – газа N2 и в связанном состоянии. В молекуле азота атомы связаны прочной тройной связью (энергия связи 940 кДж/моль). При обычной температуре азот может взаимодействовать только с литием. После предварительной активизации молекул путем нагревания, облучения или действием катализаторов азот вступает в реакции с металлами и неметаллами.

Кислород

Кислород – самый распространенный элемент на Земле: массовая доля в земной коре 47,3%, а объемная доля в атмосфере – 20,95%, массовая доля в живых организмах – около 65%.

Практически во всех соединениях (кроме соединений с фтором и пероксидов) кислород проявляет постоянную валентность II и степень окисления – 2. Атом кислорода не имеет возбужденных состояний, так как на втором внешнем уровне нет свободных орбиталей. В качестве простого вещества кислород существует в виде двух аллотропных видоизменений – газов кислорода О2 и озона О3. Самое важное соединение кислорода – это вода. Около 71% земной поверхности занимает водная оболочка, без воды невозможна жизнь.

Озон в природе образуется из кислорода воздуха во время грозовых разрядов, а в лаборатории – пропусканием электрического разряда через кислород.

Рис. 3. Озон.

Озон – еще более сильный окислитель, чем кислород. В частности? он окисляет золото и платину

Кислород в промышленности обычно получают сжижением воздуха с последующим отделением азота за счет его испарения (имеется разница в температурах кипения: – -183 градуса для жидкого кислорода и -196 градусов для жидкого азота.). Всего получено оценок: 260.

Газовый состав атмосферного воздуха

Газовый состав воздуха, которым мы дышим, выглядит так: 78% составляет азот, 21 % - кислород и 1% приходится на другие газы. Но в атмосфере крупных промышленных городов это соотношение часто нарушено. Значительную долю составляют вредные примеси, обусловленные выбросами предприятий и автотранспорта. Автотранспорт привносит в атмосферу многие примеси: углеводороды неизвестного состава, бенз(а)пирен, углекислый газ, соединения серы и азота, свинец, угарный газ.

Атмосфера состоит из смеси ряда газов - воздуха, в котором взвешены коллоидные примеси - пыль, капельки, кристаллы и пр. С высотой состав атмосферного воздуха меняется мало. Однако начиная с высоты около 100 км, наряду с молекулярным кислородом и азотом появляется и атомарный в результате диссоциации молекул, и начинается гравитационное разделение газов. Выше 300 км в атмосфере преобладает атомарный кислород, выше 1000 км - гелий и затем атомарный водород. Давление и плотность атмосферы убывают с высотой; около половины всей массы атмосферы сосредоточено в нижних 5 км, 9/10 - в нижних 20 км и 99,5% - в нижних 80 км. На высотах около 750 км плотность воздуха падает до 10-10 г/м3 (тогда как у земной поверхности она порядка 103 г/м3), но и такая малая плотность еще достаточна для возникновения полярных сияний. Резкой верхней границы атмосфера не имеет; плотность составляющих ее газов

В состав атмосферного воздуха, которым дышит каждый из нас, входят несколько газов, основными из которых являются: азот(78.09%), кислород(20.95%), водород(0.01%) двуокись углерода (углекислый газ)(0.03%) и инертные газы(0.93%). Кроме того, в воздухе всегда находится некоторое кол-во водяных паров, кол-во которых всегда изменяется с переменой температуры: чем выше температура, тем содержание пара больше и наоборот. Вследствие колебания кол-ва водяных паров в воздухе процентное содержание в нем газов также непостоянно. Все газы, входящие в состав воздуха, бесцветны и не имеют запаха. Вес воздуха изменяется в зависимости не только от температуры, но и от содержания в нем водяных паров. При одинаковой температуре вес сухого воздуха больше, чем влажного, т.к. водяные пары значительно легче паров воздуха.

В таблице приведен газовый состав атмосферы в объемном массовом отношении, а также время жизни основных компонентов:

Компонент % объемные % массовые
N 2 78,09 75,50
O 2 20,95 23,15
Ar 0,933 1,292
CO 2 0,03 0,046
Ne 1,8 10 -3 1,4 10 -3
He 4,6 10 -4 6,4 10 -5
CH 4 1,52 10 -4 8,4 10 -5
Kr 1,14 10 -4 3 10 -4
H 2 5 10 -5 8 10 -5
N 2 O 5 10 -5 8 10 -5
Xe 8,6 10 -6 4 10 -5
O 3 3 10 -7 - 3 10 -6 5 10 -7 - 5 10 -6
Rn 6 10 -18 4,5 10 -17

Свойства газов, входящих в состав атмосферного воздуха под давлением меняются.

К примеру: кислород под давлением более 2-х атмосфер оказывает ядовитое действие на организм.

Азот под давлением свыше 5 атмосфер оказывает наркотическое действие (азотное опьянение). Быстрый подъем из глубины вызывает кессонную болезнь из-за бурного выделения пузырьков азота из крови, как бы вспенивая ее.

Повышение углекислого газа более 3% в дыхательной смеси вызывает смерть.

Каждый компонент, входящий в состав воздуха, с повышением давления до определенных границ становится ядом, способным отравить организм.

Исследования газового состава атмосферы. Атмосферная химия

Для истории бурного развития сравнительно молодой отрасли науки, именуемой атмосферной химией, более всего подходит термин “спурт” (бросок), применяемый в высокоскоростных видах спорта. Выстрелом же из стартового пистолета, пожалуй, послужили две статьи, опубликованные в начале 1970-х годов. Речь в них шла о возможном разрушении стратосферного озона оксидами азота - NO и NO 2 . Первая принадлежала будущему нобелевскому лауреату, а тогда сотруднику Стокгольмского университета П. Крутцену, который посчитал вероятным источником оксидов азота в стратосфере распадающуюся под действием солнечного света закись азота N 2 O естественного происхождения. Автор второй статьи, химик из Калифорнийского университета в Беркли Г.Джонстон предположил, что оксиды азота появляются в стратосфере в результате человеческой деятельности, а именно - при выбросах продуктов сгорания реактивных двигателей высотных самолетов.

Конечно, вышеупомянутые гипотезы возникли не на пустом месте. Соотношение по крайней мере основных компонент в атмосферном воздухе - молекул азота, кислорода, водяного пара и др. - было известно намного раньше. Уже во второй половине XIX в. в Европе производились измерения концентрации озона в приземном воздухе. В 1930-е годы английский ученый С.Чепмен открыл механизм формирования озона в чисто кислородной атмосфере, указав набор взаимодействий атомов и молекул кислорода, а также озона в отсутствие каких-либо других составляющих воздуха. Однако в конце 50-х годов измерения с помощью метеорологических ракет показали, что озона в стратосфере гораздо меньше, чем его должно быть согласно циклу реакций Чепмена. Хотя этот механизм и по сей день остается основополагающим, стало ясно, что существуют какие-то иные процессы, также активно участвующие в формировании атмосферного озона.

Нелишне упомянуть, что знания в области атмосферной химии к началу 70-х годов в основном были получены благодаря усилиям отдельных ученых, чьи исследования не были объединены какой-либо общественно значимой концепцией и носили чаще всего чисто академический характер. Иное дело - работа Джонстона: согласно его расчетам, 500 самолетов, летая по 7 ч в день, могли сократить количество стратосферного озона не меньше чем на 10%! И если бы эти оценки были справедливы, то проблема сразу становилась социально-экономической, так как в этом случае все программы развития сверхзвуковой транспортной авиации и сопутствующей инфраструктуры должны были подвергнуться существенной корректировке, а может быть, и закрытию. К тому же тогда впервые реально встал вопрос о том, что антропогенная деятельность может стать причиной не локального, но глобального катаклизма. Естественно, в сложившейся ситуации теория нуждалась в очень жесткой и в то же время оперативной проверке.

Напомним, что суть вышеупомянутой гипотезы состояла в том, что оксид азота вступает в реакцию с озоном NO + O 3 ® ® NO 2 + O 2 , затем образовавшийся в этой реакции диоксид азота реагирует с атомом кислорода NO 2 + O ® NO + O 2 , тем самым восстанавливая присутствие NO в атмосфере, в то время как молекула озона утрачивается безвозвратно. При этом такая пара реакций, составляющая азотный каталитический цикл разрушения озона, повторяется до тех пор, пока какие-либо химические или физические процессы не приведут к удалению оксидов азота из атмосферы. Так, например, NO 2 окисляется до азотной кислоты HNO 3 , хорошо растворимой в воде, и потому удаляется из атмосферы облаками и осадками. Азотный каталитический цикл весьма эффективен: одна молекула NO за время своего пребывания в атмосфере успевает уничтожить десятки тысяч молекул озона.

Но, как известно, беда не приходит одна. Вскоре специалисты из университетов США - Мичигана (Р.Столярски и Р.Цицероне) и Гарварда (С.Вофси и М. Макэлрой) - обнаружили, что у озона может быть еще более беспощадный враг - соединения хлора. Хлорный каталитический цикл разрушения озона (реакции Cl + O 3 ® ClO + O 2 и ClO + O ® Cl + O 2), по их оценкам, был в несколько раз эффективнее азотного. Сдержанный оптимизм вызывало лишь то, что количество хлора естественного происхождения в атмосфере сравнительно невелико, а значит, суммарный эффект его воздействия на озон может оказаться не слишком сильным. Однако ситуация кардинально изменилась, когда в 1974 г. сотрудники Калифорнийского университета в Ирвине Ш. Роуленд и М. Молина установили, что источником хлора в стратосфере являются хлорфторуглеводородные соединения (ХФУ), массово используемые в холодильных установках, аэрозольных упаковках и т.д. Будучи негорючими, нетоксичными и химически пассивными, эти вещества медленно переносятся восходящими воздушными потоками от земной поверхности в стратосферу, где их молекулы разрушаются солнечным светом, в результате чего выделяются свободные атомы хлора. Промышленное производство ХФУ, начавшееся в 30-е годы, и их выбросы в атмосферу постоянно наращивались во все последующие годы, особенно в 70-е и 80-е. Таким образом, в течение очень короткого промежутка времени теоретики обозначили две проблемы атмосферной химии, обусловленные интенсивным антропогенным загрязнением.

Однако чтобы проверить состоятельность выдвинутых гипотез, необходимо было выполнить немало задач.

Во-первых, расширить лабораторные исследования, в ходе которых можно было бы определить или уточнить скорости протекания фотохимических реакций между различными компонентами атмосферного воздуха. Надо сказать, что существовавшие в то время весьма скудные данные об этих скоростях к тому же имели изрядную (до нескольких сот процентов) погрешность. Кроме того, условия, в которых производились измерения, как правило, мало соответствовали реалиям атмосферы, что серьезно усугубляло ошибку, поскольку интенсивность большинства реакций зависела от температуры, а иногда от давления или плотности атмосферного воздуха.

Во-вторых, усиленно изучать радиационно-оптические свойства ряда малых газов атмосферы в лабораторных условиях. Молекулы значительного числа составляющих атмосферного воздуха разрушаются ультрафиолетовым излучением Солнца (в реакциях фотолиза), среди них не только упомянутые выше ХФУ, но также молекулярный кислород, озон, оксиды азота и многие другие. Поэтому оценки параметров каждой реакции фотолиза были столь же необходимы и важны для правильного воспроизведения атмосферных химических процессов, как и скорости реакций между различными молекулами.

Как свеж для вдоха зимний воздух. Как же легко и приятно дышать полной грудью в лесу, возле моря или в горах. Именно в таких местах мы стремимся провести свои выходные или очередной отпуск. А ведь процентное содержание воздуха в райских уголках нашей планеты такой же, как и в городах, где мы с вами живем. Так в чем же дело? Почему мы не ощущаем такую же чистоту воздуха у себя дома, вдалеке от мечтаемых лесов, гор и морей? Поговорим о составе воздуха в процентном соотношении и о его качестве.

21% кислорода (O2), 0,03% углекислого газа (CO2), все остальное – это 79% азота (N2) и незначительное количество примесей.

Как говорил один из моих школьных учителей: «Собака зарыта в примесях». Дело в том, что за последние 150 лет в атмосферу попало просто громаднейшее количество мышьяка, кобальта, кремния, окислов серы, азота, углерода и других, вредных для здоровья примесей.

Очевидно, что концентрация этих примесей в воздухе сельской местности намного ниже, чем в больших и малых городах. А все, в первую очередь, из-за автотранспорта, который своими выхлопами затуманивает все вокруг. Степень загрязнения драгоценного воздуха определяется в основном географическими условиями.

Такой вот состав воздуха в процентах, друзья. Очевидно, что человек должен задуматься о его качестве и не загрязнять атмосферу. Далее обсудим некоторые интересные факты.

Почему становится плохо в душном помещении?

Человек вдыхает воздух, а выдыхает углекислый газ и что-то там еще в виде газообразных веществ – так нас учили в школе. Там же мы изучали и состав воздуха. Вспомните случай, когда вам, ни с того ни с сего, становилось плохо в закрытом помещении (если таков случай был). Как думаете, из-за чего? Вы будете правы, если предположите, что это помещение давно не проветривалось.

Вам стало нехорошо из-за высокой концентрации все тех же газообразных веществ, которые вы же, вместе с окружающими вас людьми, и надышали. В составе смеси, выдыхаемой человеком, не более 16-18 процентов кислорода и 4-6 процентов углекислого газа. А это в 130-200 раз больше, чем во вдыхаемом вами воздухе.

Также там присутствуют и другие нехорошие соединения. Так что совет регулярно проветривать свои жилища и офисы не должен показаться неуместным. Здоровее будете. Раз уж , то он в ответе за их чистоту и порядок.

Природная очистка воздуха

Летом мы подметаем и обдаем водой асфальт улиц для того, чтобы не дышать мелкодисперсными пылинками. А вот зимой состав воздуха чище хотя бы потому, что эта самая пыль и грязь зависает под сугробами снегопадов.

Деревья, так интенсивно высаживаемые в населенных пунктах, выступают в роли фильтров, очищая атмосферу от избыточного углекислого газа. Так они меняют состав воздуха нам во благо. Зеленые растения поглощают его и насыщают городской воздух кислородом. Все в тех же школах нас учили, что процесс этот называется фотосинтезом.

5 тысяч кубометров воздуха очищается одним деревом, и от 200 тонн пыли нас освобождает небольшой парк. То есть, чем больше будет посажено зелени на Земле, тем качественнее будет вдыхаемый нами воздух. Не зря же растения называют легкими этой планеты.

А про ионизацию когда-нибудь слыхали? Так вот, высокая концентрация в воздухе негативно заряженных частичек (ионов) благотворно влияет на наши с вами организмы. Высокоионизированным воздухом славятся горные приморские курорты и сосновые леса.

Также, если вам посчастливилось жить вблизи водопада или быстротечной горной реки, то воздушные ионы подарят вам крепкое здоровье.

Целебный климат таких мест делает свое дело. Поэтому люди, живущие в этих районах или неподалеку от них, реже болеют и славятся своим долголетием. И да, чуть не забыл, до необходимого уровня. Особенно в зимнюю пору. Дышите вкусно, друзья!

Я тут недавно начал изучать английский язык и наткнулся на один классный сервис. Зарегистрируйтесь на LinguaLeo , если хотите без проблем общаться на английском. Очень интересный и нестандартный подход к обучению.

Делитесь статьей в соц.сетях и подпишитесь на рассылку моего блога.

С вами был Денис Стаценко. Увидимся