Вычисление производных с помощью логарифмической производной. Логарифмическая производная. Дифференцирование показательно степенной функции Дифференциация показательной и логарифмической функции


При дифференцировании показательно степенной функции или громоздких дробных выражений удобно пользоваться логарифмической производной. В этой статье мы рассмотрим примеры ее применения с подробными решениями.

Дальнейшее изложение подразумевает умение пользоваться таблицей производных , правилами дифференцирования и знание формулы производной сложной функции .


Вывод формулы логарифмической производной.

Сначала производим логарифмирование по основанию e , упрощаем вид функции, используя свойства логарифма, и далее находим производную неявно заданной функции:

Для примера найдем производную показательно степенной функции x в степени x .

Логарифмирование дает . По свойствам логарифма . Дифференцирование обеих частей равенства приводит к результату:

Ответ: .

Этот же пример можно решить и без использования логарифмической производной. Можно провести некоторые преобразования и перейти от дифференцирования показательно степенной функции к нахождению производной сложной функции:

Пример.

Найти производную функции .

Решение.

В этом примере функция представляет собой дробь и ее производную можно искать с использованием правил дифференцирования. Но в силу громоздкости выражения это потребует множества преобразований. В таких случаях разумнее использовать формулу логарифмической производной . Почему? Вы сейчас поймете.

Найдем сначала . В преобразованиях будем использовать свойства логарифма (логарифм дроби равен разности логарифмов, а логарифм произведения равен сумме логарифмов, и еще степень у выражения под знаком логарифма можно вынести как коэффициент перед логарифмом):

Эти преобразования привели нас к достаточно простому выражению, производная которого легко находится:

Подставляем полученный результат в формулу логарифмической производной и получаем ответ:

Для закрепления материала приведем еще пару примеров без подробных объяснений.


Пример.

Найдите производную показательно степенной функции

Алгебра и начала математического анализа

Дифференцирование показательной и логарифмической функции

Составитель:

учитель математики МОУ СОШ №203 ХЭЦ

г. Новосибирск

Видутова Т. В.


Число е. Функция y = e x , её свойства, график, дифференцирование


1. Построим для различных оснований а графики: 1. y = 2 x 3. y = 10 x 2. y = 3 x (2 вариант) (1 вариант) " width="640"

Рассмотрим показательную функцию y = а x , где а 1.

Построим для различных оснований а графики:

1. y = 2 x

3. y = 10 x

2. y = 3 x

(2 вариант)

(1 вариант)


1)Все графики проходят через точку (0 ; 1);

2) Все графики имеют горизонтальную асимптоту у = 0

при х  ∞;

3) Все они обращены выпуклостью вниз;

4) Все они имеют касательные во всех своих точках.


Проведем касательную к графику функции y = 2 x в точке х = 0 и измерим угол, который образует касательная с осью х



С помощью точных построений касательных к графикам можно заметить, что если основание а показательной функции y = а x постепенно увеличивается основание от 2 до 10, то угол между касательной к графику функции в точке х = 0 и осью абсцисс постепенно увеличивается от 35’ до 66,5’.

Следовательно существует основание а , для которого соответствующий угол равен 45’. И это значение а заключено между 2 и 3, т.к. при а = 2 угол равен 35’, при а = 3 он равен 48’.

В курсе математического анализа доказано, что данное основание существует, его принято обозначать буквой е.

Установлено, что е – иррациональное число, т. е. представляет собой бесконечную непериодическую десятичную дробь:

е = 2, 7182818284590… ;

На практике обычно полагают, что е 2,7.



График и свойства функции y = е x :

1) D (f) = (- ∞; + ∞);

3) возрастает;

4) не ограничена сверху, ограничена снизу

5) не имеет ни наибольшего, ни наименьшего

значения;

6) непрерывна;

7) E (f) = (0; + ∞);

8) выпукла вниз;

9) дифференцируема.

Функцию y = е x называют экспонентой .


В курсе математического анализа доказано, что функция y = е x имеет производную в любой точке х :

(e x ) = e x

)" = 5е

х-3 )" = е х-3

-4х+1 )" = -4е -4х-1


Пример 1 . Провести касательную к графику функции в точке x=1.

2) f()=f(1)=e

4) y=e+e(x-1); y = ex

Ответ:


Пример 2 .

x = 3.


Пример 3 .

Исследовать на экстремум функцию

х=0 и х=-2


х = -2 – точка максимума

х = 0 – точка минимума



Если основанием логарифма служит число е , то говорят, что задан натуральный логарифм . Для натуральных логарифмов введено специальное обозначение ln (l – логарифм, n – натуральный).


График и свойства функции y = ln x

Свойства функции y = ln x:

1) D (f) = (0; + ∞);

2) не является ни четной, ни нечетной;

3) возрастает на (0; + ∞);

4) не ограничена;

5) не имеет ни наибольшего, ни наименьшего значений;

6) непрерывна;

7) Е (f) = (- ∞; + ∞);

8) выпукла верх;

9) дифференцируема.


0 справедлива формула дифференцирования " width="640"

В курсе математического анализа доказано, что для любого значения х0 справедлива формула дифференцирования


Пример 4:

Вычислить значение производной функции в точке x = -1.


Например:




Интернет-ресурсы:

  • http://egemaximum.ru/pokazatelnaya-funktsiya/
  • http://or-gr2005.narod.ru/grafik/sod/gr-3.html
  • http://ru.wikipedia.org/wiki/
  • http://900igr.net/prezentatsii
  • http://ppt4web.ru/algebra/proizvodnaja-pokazatelnojj-funkcii.html

Готовые работы

ДИПЛОМНЫЕ РАБОТЫ

Многое уже позади и теперь ты - выпускник, если, конечно, вовремя напишешь дипломную работу. Но жизнь - такая штука, что только сейчас тебе становится понятно, что, перестав быть студентом, ты потеряешь все студенческие радости, многие из которых, ты так и не попробовал, всё откладывая и откладывая на потом. И теперь, вместо того, чтобы навёрстывать упущенное, ты корпишь над дипломной работой? Есть отличный выход: скачать нужную тебе дипломную работу с нашего сайта - и у тебя мигом появится масса свободного времени!
Дипломные работы успешно защищены в ведущих Университетах РК.
Стоимость работы от 20 000 тенге

КУРСОВЫЕ РАБОТЫ

Курсовой проект - это первая серьезная практическая работа. Именно с написания курсовой начинается подготовка к разработке дипломных проектов. Если студент научиться правильно излагать содержание темы в курсовом проекте и грамотно его оформлять, то в последующем у него не возникнет проблем ни с написанием отчетов, ни с составлением дипломных работ, ни с выполнением других практических заданий. Чтобы оказать помощь студентам в написании этого типа студенческой работы и разъяснить возникающие по ходу ее составления вопросы, собственно говоря, и был создан данный информационный раздел.
Стоимость работы от 2 500 тенге

МАГИСТЕРСКИЕ ДИССЕРТАЦИИ

В настоящее время в высших учебных заведениях Казахстана и стран СНГ очень распространена ступень высшего профессионального образования, которая следует после бакалавриата - магистратура. В магистратуре обучаются с целью получения диплома магистра, признаваемого в большинстве стран мира больше, чем диплом бакалавра, а также признаётся зарубежными работодателями. Итогом обучения в магистратуре является защита магистерской диссертации.
Мы предоставим Вам актуальный аналитический и текстовый материал, в стоимость включены 2 научные статьи и автореферат.
Стоимость работы от 35 000 тенге

ОТЧЕТЫ ПО ПРАКТИКЕ

После прохождения любого типа студенческой практики (учебной, производственной, преддипломной) требуется составить отчёт. Этот документ будет подтверждением практической работы студента и основой формирования оценки за практику. Обычно, чтобы составить отчёт по практике, требуется собрать и проанализировать информацию о предприятии, рассмотреть структуру и распорядок работы организации, в которой проходится практика, составить календарный план и описать свою практическую деятельность.
Мы поможет написать отчёт о прохождении практики с учетом специфики деятельности конкретного предприятия.

Пусть
(1)
есть дифференцируемая функция от переменной x . В начале мы рассмотрим ее на множестве значений x , для которых y принимает положительные значения: . В дальнейшем мы покажем, что все полученные результаты применимы и для отрицательных значений .

В некоторых случаях, чтобы найти производную функции (1), ее удобно предварительно прологарифмировать
,
а затем вычислить производную. Тогда по правилу дифференцирования сложной функции ,
.
Отсюда
(2) .

Производная от логарифма функции называется логарифмической производной:
.

Логарифмическая производная функции y = f(x) - это производная натурального логарифма этой функции: (ln f(x))′ .

Случай отрицательных значений y

Теперь рассмотрим случай, когда переменная может принимать как положительные, так и отрицательные значения. В этом случае возьмем логарифм от модуля и найдем его производную:
.
Отсюда
(3) .
То есть, в общем случае, нужно найти производную от логарифма модуля функции .

Сравнивая (2) и (3) мы имеем:
.
То есть формальный результат вычисления логарифмической производной не зависит от того, взяли мы по модулю или нет. Поэтому, при вычислении логарифмической производной, мы можем не беспокоится о том, какой знак имеет функция .

Прояснить такую ситуацию можно с помощью комплексных чисел. Пусть, при некоторых значениях x , отрицательна: . Если мы рассматриваем только действительные числа, то функция не определена. Однако, если ввести в рассмотрение комплексные числа, то получим следующее:
.
То есть функции и отличаются на комплексную постоянную :
.
Поскольку производная от постоянной равна нулю, то
.

Свойство логарифмической производной

Из подобного рассмотрения следует, что логарифмическая производная не изменится, если умножить функцию на произвольную постоянную :
.
Действительно, применяя свойства логарифма , формулы производной суммы и производной постоянной , имеем:

.

Применение логарифмической производной

Применять логарифмическую производную удобно в тех случаях, когда исходная функция состоит из произведения степенных или показательных функций. В этом случае операция логарифмирования превращает произведение функций в их сумму. Это упрощает вычисление производной.

Пример 1

Найти производную функции:
.

Решение

Логарифмируем исходную функцию:
.

Дифференцируем по переменной x .
В таблице производных находим:
.
Применяем правило дифференцирования сложной функции .
;
;
;
;
(П1.1) .
Умножим на :

.

Итак, мы нашли логарифмическую производную:
.
Отсюда находим производную исходной функции:
.

Примечание

Если мы хотим использовать только действительные числа, то следует брать логарифм от модуля исходной функции:
.
Тогда
;
.
И мы получили формулу (П1.1). Поэтому результат не изменился.

Ответ

Пример 2

С помощью логарифмической производной, найдите производную функции
.

Решение

Логарифмируем:
(П2.1) .
Дифференцируем по переменной x :
;
;

;
;
;
.

Умножим на :
.
Отсюда мы получаем логарифмическую производную:
.

Производная исходной функции:
.

Примечание

Здесь исходная функция неотрицательная: . Она определена при . Если не предполагать, что логарифм может быть определен для отрицательных значений аргумента, то формулу (П2.1) следует записать так:
.
Поскольку

и
,
то это не повлияет на окончательный результат.

Ответ

Пример 3

Найдите производную
.

Решение

Дифференцирование выполняем с помощью логарифмической производной. Логарифмируем, учитывая что :
(П3.1) .

Дифференцируя, получаем логарифмическую производную.
;
;
;
(П3.2) .

Поскольку , то

.

Примечание

Проделаем вычисления без предположения, что логарифм может быть определен для отрицательных значений аргумента. Для этого возьмем логарифм от модуля исходной функции:
.
Тогда вместо (П3.1) имеем:
;

.
Сравнивая с (П3.2) мы видим, что результат не изменился.