Какие группы катионов входят в состав силикатов. Силикаты природные. Силикаты. общая характеристика

В виде (OH) − или H 2 O и другие.

Общее количество минеральных видов силикатов около 800. По распространённости на их долю приходится более 90 % минералов литосферы. Силикаты и алюмосиликаты являются породообразующими минералами. Из них сложена основная масса горных пород: полевые шпаты , кварц , слюды , роговые обманки , пироксены , оливин и другие. Самыми распространёнными являются минералы группы полевых шпатов и затем кварц , на долю которого приходится около 12 % от всех минералов.

Структурные типы силикатов

В основе структурного строения всех силикатов лежит тесная связь кремния и кислорода; эта связь исходит из кристаллохимического принципа, а именно из отношения радиусов ионов Si (0.39Å) и O (1.32Å). Каждый атом кремния окружён тетраэдрически расположенными вокруг него атомами кислорода. Таким образом, в основе всех силикатов находятся кислородные тетраэдры или группы 3 , которые различно сочетаются друг с другом. В зависимости от того, как сочетаются между собой кремнекислородные тетраэдры, различают следующие структурные типы силикатов.

  1. Островные силикаты , то есть силикаты с изолированными тетраэдрами 4− и изолированными группами тетраэдров:
    • а) силикаты с изолированными кремнекислородными тетраэдрами (См. схему, а). Их радикал 4− , так как каждый их четырёх кислородов имеет одну валентность. Между собой эти тетраэдры непосредственно не связаны, связь происходит через катионы;
    • б) Островные силикаты с добавочными анионами О 2− , ОН − , F − и другие.
    • в) Силикаты со сдвоенными тетраэдрами . Отличаются обособленными парами кремнекислородных тетраэдров 6− . Один из атомов кислорода у них общий (см. Схему, б), остальные связаны с катионами.
    • г) Кольцевые силикаты . Характеризуются обособлением трёх, четырёх или шести групп кремнекислородных тетраэдров, образующих кроме простых колец (см. Схему в, г), также и «двухэтажные». Радикалы их 6− , 8− , 2− , 24 − . Представители : оливины , гранаты , циркон , титанит , топаз , дистен , андалузит , ставролит , везувиан , каламин , эпидот , цоизит , ортит , родонит , берилл , кордиерит , турмалин и другие.
  2. Цепочечные (Цепочные) силикаты , силикаты с непрерывными цепочками из кремнекислородных тетраэдров (см. Схему, д, е). Тетраэдры сочленяются в виде непрерывных обособленных цепочек. Их радикалы 4− и 6− . Представители : пироксены ромбические (энстатит , гиперстен) и моноклинные (диопсид , салит , геденбергит , авгит , эгирин , сподумен , волластонит , силлиманит). Цепочечные силикаты характеризуются средними плотностью и твердостью и совершенной спайностью по граням призмы. Встречаются в магматических и метаморфических горных породах.
  3. Поясные (Ленточные) силикаты , это силикаты с непрерывными обособленными лентами или поясами из кремнекислородных тетраэдров (см. Схему, ж). Они имеют вид сдвоенных, не связанных друг с другом цепочек, лент или поясов. Радикал структуры 6− . Представители : тремолит , актинолит , жадеит , роговая обманка .
  4. Листовые силикаты , это силикаты с непрерывными слоями кремнекислородных тетраэдров. (см. Схему, з). Радикал структуры 2− . Слои кремнекислородных тетраэдров обособлены друг от друга и связаны катионами. Представители : тальк , серпентин , хризотил-асбест , ревдинскит , палыгорскит , слюды (мусковит , флогопит , биотит), гидрослюды (вермикулит , глауконит), хлориты (пеннит , клинохлор и др), минералы глин (каолинит , хризоколла , гарниерит и др.), мурманит .
  5. Силикаты с непрерывными трёхмерными каркасами, или каркасные силикаты (см. Схему, и). В этом случае все атомы кислорода общие. Такой каркас нейтрален. Радикал 0 . Именно такой каркас отвечает структуре кварца . На этом основании его относят не к окислам , а к силикатам. Разнообразие каркасных силикатов объясняется тем, что в них присутствуют алюмокислородные тетраэдры. Замена четырёхвалентного кремния на трехвалентный алюминий вызывает появление одной свободной валентности , что в свою очередь влечет за собой вхождение других катионов (например калия и натрия). Обычно отношение Al к Si равно 1:3 или 1:1.

Зависимость облика и свойств от структуры

Силикаты, структура которых представлена обособленными кремнекислородными тетраэдрами, имеют изометрический облик (гранаты), гексагональный берилл имеет обособленные шестерные кольца кремнекислородных тетраэдров, силикаты цепочечной и поясной структур обычно вытянуты (амфиболы, пироксены). Особенно наглядны в этом отношении листовые силикаты (слюды, тальк, хлориты). Слои кремнекислородных тетраэдров являются очень прочными, а их связи друг с другом через катионы менее прочная. Расщепить их легко вдоль слоёв. Этим вызывается их спайность и листоватый облик.

Полезные ископаемые

Происхождение (генезис)

Эндогенное, главным образом магматическое (пироксены, полевые шпаты), они также характерны для пегматитов (слюды, турмалин, берилл и др.) и скарнов (гранаты, волластонит). Широко распространены в метаморфических породах - сланцах и гнейсах (гранаты, дистен, хлорит). Силикаты экзогенного происхождения представляют собой продукты выветривания или изменения первичных (эндогенных) минералов (каолинит, глауконит, хризоколла)

Напишите отзыв о статье "Силикаты (минералы)"

Литература

  • Миловский А.В. Минералогия и петрография. - М .: Государственное научно-техническое издательство литературы по геологии и охране недр, 1958. - С. 83-88.
  • Химическая энциклопедия / Редкол.: Кнунянц И.Л. и др.. - М .: Советская энциклопедия, 1995. - Т. 4 (Пол-Три). - 639 с. - ISBN 5-82270-092-4.

Отрывок, характеризующий Силикаты (минералы)

Я повторила слова малышки, и тут же ужаснулась выражению лица её несчастного отца – казалось, только что ему прямо в сердце нанесли глубокий ножевой удар…
Я пыталась с ним говорить, пыталась как-то успокоить, но он был невменяем и ничего не слышал.
– Пожалуйста, войди внутрь! – прошептала малышка.
Кое-как протиснувшись мимо него в дверной проём, я вошла... В квартире стоял удушливый запах алкоголя и чего-то ещё, что я никак не могла определить.
Когда-то давно это видимо была очень приятная и уютная квартира, одна из тех, которые мы называли счастливыми. Но теперь это был настоящий «ночной кошмар», из которого её владелец, видимо, не в состоянии был выбраться сам...
Какие-то разбитые фарфоровые кусочки валялись на полу, перемешавшись с порванными фотографиями, одеждой, и бог знает ещё с чем. Окна были завешаны занавесками, от чего в квартире стоял полумрак. Конечно же, такое «бытиё» могло по-настоящему навеять только смертельную тоску, иногда сопровождающуюся самоубийством...
Видимо у Кристины появились схожие мысли, потому что она вдруг в первый раз меня попросила:
– Пожалуйста, сделай что-нибудь!
Я ей тут же ответила: «Конечно!» А про себя подумала: «Если б я только знала – что!!!»… Но надо было действовать, и я решила, что буду пробовать до тех пор, пока чего-то да не добьюсь – или он меня наконец-то услышит, или (в худшем случае) опять выставит за дверь.
– Так вы будете говорить или нет? – намеренно зло спросила я. – У меня нет времени на вас, и я здесь только потому, что со мной этот чудный человечек – ваша дочь!
Мужчина вдруг плюхнулся в близ стоявшее кресло и, обхватив голову руками, зарыдал... Это продолжалось довольно долго, и видно было, что он, как большинство мужчин, совершенно не умел плакать. Его слёзы были скупыми и тяжёлыми, и давались они ему, видимо, очень и очень нелегко. Тут только я первый раз по-настоящему поняла, что означает выражение «мужские слёзы»…
Я присела на краешек какой-то тумбочки и растерянно наблюдала этот поток чужих слёз, совершенно не представляя, что же делать дальше?..
– Мама, мамочка, а почему здесь такие страшилища гуляют? – тихо спросил испуганный голосок.
И только тут я заметила очень странных существ, которые буквально «кучами» вились вокруг пьяного Артура...
У меня зашевелились волосы – это были самые настоящие «монстры» из детских сказок, только здесь они почему-то казались даже очень и очень реальными… Они были похожи на выпущенных из кувшина злых духов, которые каким-то образом сумели «прикрепиться» прямо к груди бедного человека, и, вися на нём гроздьями, с превеликим наслаждением «пожирали» его, почти что уже иссякшую, жизненную силу…
Я чувствовала, что Вэста испугана до щенячьего визга, но изо всех сил пытается этого не показать. Бедняжка в ужасе наблюдала, как эти жуткие «монстры» с удовольствием и безжалостно «кушали» её любимого папу прямо у неё на глазах… Я никак не могла сообразить, что же делать, но знала, что надо действовать быстро. Наскоро осмотревшись вокруг и не найдя ничего лучше, я схватила кипу грязных тарелок и изо всех сил швырнула на пол… Артур от неожиданности подпрыгнул в кресле и уставился на меня полоумными глазами.
– Нечего раскисать! – закричала я, – посмотрите, каких «друзей» вы привели к себе в дом!
Я не была уверенна, увидит ли он то же самое, что видели мы, но это была моя единственная надежда как-то его «очухать» и таким образом заставить хоть самую малость протрезветь.
По тому, как его глаза вдруг полезли на лоб, оказалось – увидел… В ужасе шарахнувшись в угол, он не мог отвезти взгляд от своих «симпатичных» гостей и, не в состоянии вымолвить ни слова, только показывал на них дрожащей рукой. Его мелко трясло, и я поняла, что если ничего не сделать, у бедного человека начнётся настоящий нервный припадок.
Я попробовала мысленно обратиться к этим странными монстроподобными существам, но ничего путного из этого не получилось; они лишь зловеще «рычали», отмахиваясь от меня своими когтистыми лапами, и не оборачиваясь, послали мне прямо в грудь очень болезненный энергетический удар. И тут же, один из них «отклеился» от Артура и, присмотрев, как он думал, самую лёгкую добычу, прыгнул прямо на Вэсту… Девчушка от неожиданности дико завизжала, но – надо отдать должное её храбрости – тут же начала отбиваться, что было сил. Они оба, и он и она, были такими же бестелесными сущностями, поэтому прекрасно друг друга «понимали» и могли свободно наносить друг другу энергетические удары. И надо было видеть, с каким азартом эта бесстрашная малышка кинулась в бой!.. От бедного съёжившегося «монстра» только искры сыпались от её бурных ударов, а мы, трое наблюдавших, к своему стыду так остолбенели, что не сразу среагировали, чтобы хотя бы как-то ей помочь. И как раз в тот же момент, Вэста стала похожа на полностью выжатый золотистый комок и, став совершенно прозрачной, куда-то исчезла. Я поняла, что она отдала все свои детские силёнки, пытаясь защититься, и вот теперь ей не хватило их, чтобы просто выдерживать с нами контакт… Кристина растерянно озиралась вокруг – видимо её дочь не имела привычки так просто исчезать, оставляя её одну. Я тоже осмотрелась вокруг и тут… увидела самое потрясённое лицо, которое когда-либо видела в своей жизни и тогда, и все последующие долгие годы... Артур стоял в настоящем шоке и смотрел прямо на свою жену!.. Видимо слишком большая доза алкоголя, огромный стресс, и все последующие эмоции, на какое-то мгновение открыли «дверь» между нашими разными мирами и он увидел свою умершую Кристину, такую же красивую и такую же «настоящую», какой он знал её всегда… Никакими словами невозможно было бы описать выражения их глаз!.. Они не говорили, хотя, как я поняла, Артур вероятнее всего мог её слышать. Думаю, в тот момент он просто не мог говорить, но в его глазах было всё – и дикая, душившая его столько времени боль; и оглушившее его своей неожиданностью, безграничное счастье; и мольба, и ещё столько всего, что не нашлось бы никаких слов, чтобы попытаться всё это рассказать!..
Он протянул к ней руки, ещё не понимая, что уже никогда не сможет её больше в этом мире обнять, да и вряд ли он в тот момент понимал что-то вообще... Он просто опять её видел, что само по себе уже было совершенно невероятно!.. А всё остальное не имело сейчас для него никакого значения... Но тут появилась Вэста. Она удивлённо уставилась на отца и, вдруг всё поняв, душераздирающе закричала:
– Папа! Папулечка… Папочка!!! – и бросилась ему на шею… Вернее – попыталась броситься… Потому что она, так же, как и её мать, уже не могла физически соприкасаться с ним в этом мире больше никогда.
– Лисёнок… малышка моя… радость моя… – повторял, всё ещё хватая пустоту, отец. – Не уходи, только пожалуйста не уходи!...

Клинопироксеновые базальты, в никелисто-железистых каменных метеоритах-оливины, пироксены, плагиоклазы, и др.

Известны кристаллич. структуры островных силикатов со сдвоенными, конденсированными "двухэтажными" трех-, четырех-и шестизвенными кольцевыми . Напр., в эканите ThK(Ca, Na) 2 Si 8 O 20 реализуется сдвоенный четы-рехзвенный кольцевой . Аналогичный кремнекислородный обнаружен в силикатах с комплексными катионными группировками, напр. тетраметиламмониевыми в соед. 8 Si 8 O 20 . Сдвоенное "двухэтажное" шестизвенное кольцо обнаружено, в родственном бериллу силикате миларите K(Be 2 Al)Ca 2 Si 12 O 30 . В "двухэтажных" циклич. кремнекислородных группировках число мостиковых связей на каждый тетраэдр повышается соотв. до трех. Для мн. сложных по составу островных силикатов характерно сочетание в анионном остове одновременно неск. разл. кремнекислородных группировок, чаще всего орто- и диортогрупп.

Класс полимерных, или конденсированных, силикатов подразделяют на 4 подкласса. 1) Цепочечные силикаты с бесконечными цепочками из одиночных кремнекислородных тетраэдров, каждый из к-рых с соседними имеет по две мостиковые связи. Данный структурный тип метасиликатов охватывает большую группу породообразующих и их синте-тич. аналогов, моноклинных и ромбич. пироксенов и пиро-ксеноидов широкого диапазона составов: энстатит (MgFe) 2 (Si 2 O 6) , , диопсид CaMg(Si 2 O 6) , , сподумен LiAl(Si 2 O 6) , , волластонит b -Са 3 (Si 3 O 9) , , родонит CaMn 4 (Si 5 Oi5) , и мн. др. представители пироксен-пироксеноидных силикатов (рис. 4) с периодом повторяемости из 2, 3, 5 кремнекислородных тетраэдров и более вдоль оси цепочки.



Рис. 3. Простейшие типы островных кремнекислородных анионных группировок: а-SiO 4 , б-Si 2 O 7 , в-Si 3 O 9 , г-Si 4 О 12 , д-Si 6 O 18 .


Рис. 4. Важнейшие типы кремнекислородных цепочечных анионных группировок (по Белову): а-метагерманатная, б - пироксеновая, в - батиситовая, г-вол-ластонитовая, д-власовитовая, е-мелилитовая, ж-родонитовая, з-пирокс-мангитовая, и-метафосфатная, к-фторобериллатная, л - барилитовая.


Рис. 5. пироксеновых кремнекислородных в ленточные двухрядные амфиболовые (а), трехрядные амфиболоподобные (б), слоистые тальковые и близкие им (в).


Рис. 6. Структурно-гомологический ряд кремнекислородных анионных группировок ксонотлита (а) и тоберморита (б); волластонит-см. рис. 4, г.

2) Силикаты с ленточными кремнекислородными из двух-, трех- и n-рядных цепочек, сконденсированных между собой по боковым связям перпендикулярно цепочке (рис. 5). В природе наиб. распространены в данном подклассе в-в амфиболовые и амфиболоподобные асбесты - волокнистые силикаты с двухрядными ленточными , важнейшие представители - тремолит Ca 2 Mg 5 (Si 8 O 22 XOH) 2 и роговые обманки (Na,Ca) 2 (MgAl) 5 (Al,Si) 8 O 22 (OH) 2 . Ленточный ного ксонотлита Ca 6 (Si 6 O 17)(OH) 2 (рис. 6, а)-продукта волластонитовых цепочек (рис. 2,б или 4, г)-состоит из восьмичленных колец, в отличие от шестизвенных гексагон. колец амфиболовых лент (рис. 5, а, 6,7).

3) силикаты с двухмерными слоистыми или листовыми характеризуются широким разнообразием возможных сочленений кремнекислородных тетраэдров в правильные или же в низкосимметричные шести-, четырех- и восьмичленные кольца с тетрагон. и ромбич. слоя, восьми-, шести- и четырехчленные кольца, воедино связанные в слоистом , и т. д. (рис. 5, в, 6, б).


Рис. 7. Важнейшие типы ленточных кремнекислородных группировок (по Белову): а - силлиманитовая, амфиболовая-см. рис. 5, а, ксонотлитовая-см. рис. 6,а; б-эпидидимитовая; в-ортоклазовая; г-нарсарсукитовая; д-фенаки-товая призматическая; е-эвклазовая инкрустированная.

В прир. слоистых силикатах группы (мусковит , биотит , пирофиллит и др.), гли нистых [каолинита Al 4 (Si 4 O 10)(OH) 8 и др.] кремнекислородные сетчатые образованы правильными шестичленными кольцами из тетраэдров SiO 4 . Эти сетки являются продуктом пироксеновых или же амфиболовых лент (рис. 5). Строение слоистых силикатов предопределяет их отчетливую спайность по базальной плоскости (параллельно слоям), наиб. отчетливо проявляющуюся в (рис. 8). При в плоскости волластонитовых цепочек (Si 3 О 9) , (рис. 2,б или 4, г) или же ксонотлитовых лент (Si 6 O 17) , (рис. 6, а) образуются тетрагон, тоберморитовые сетки Ca 5 (Si 6 O 16)(OH) 2 ·4H 2 0 (рис. 6, б).

4) К силикатам каркасного строения относятся многочисл. группы (в меньшей степени - боросиликаты), вязаный каркас к-рых образован четырьмя мостиковыми связями и имеет общую ф-лу (Al m Si n _ m O 2n) m- . Избыточный отрицат. заряд анионного остова из (Аl,Si)-теграэдров электростатически компенсируется щелочными и щел.-зсм. , располагающимися в полостях каркасной структуры. Среди каркасных более всего в природе распространены щелочные полевошпатовые силикаты: твердые р-ры альбита NaAlSi 3 O 8 и ортоклаза KAlSi 3 O 8 , а также альбита и анортита CaAl 2 Si 2 O 8 , известные под назв. плагиоклазов. Каркасные силикаты характеризуются большими внутр. полостями и входными окнами, в к-рых могут абсорбироваться крупные диаметром 0,3-0,5 нм и более (рис. 9).

Рис. 8. Фрагмент (элементарный пакет) слоистой кристаллич. структуры мусковита KAl 2 (AlSi 3 O 10 XOH) 2 , иллюстрирующий переслаивание алюмокремне-кислородных сеток с полиэдрич. слоями крупных Аl и К.


Рис. 9. Проекция фрагмента пористой кристаллич. структуры фошазита (фожазита) с широкими входными каналами эллиптич. сечения.

Силикаты-драгоценные и поделочные камни. Природные силикаты и многие их искусств. аналоги применяют в ювелирном деле. Наиб. дорогими ювелирными камнями являются сложные по составу и строению силикаты и среди них

Основные типы связи кремнекислородных радикалов: 1 - изолированные тетраэдры 4- с октаэдрами Mg, Fe, Ca; 2 - группы 6- из двух тетраэдов; 3 - шестерные кольца 6- ; 4 - цепочки 2- ; 5 - ленты 6- ; 6 - слои из шестерных колец 4- .


Силикаты природные (от лат. silex - кремень), - класс наиболее распространённых минералов; природные химические соединения с комплексным кремнекислородным радикалом. Силикаты слагают более 75% земной коры (а вместе с кварцем около 87%) и более 95% изверженных горных пород. С. включают более 500 минеральных видов , в том числе важнейшие породообразующие - полевые шпаты , пироксены , амфиболы , слюды и др.

Современная классификация

Структура силикатов

По характеру сочетания кремнекислородных тетраэдров выделяется 5 подклассов силикатов: островные, кольцевые, цепочечные, слоистые, каркасные.
Островные силикаты . Сюда относятся С. с изолированными тетраэдрами -4 - ортосиликаты, связанные посредством расположенных между ними октаэдрических катионов, или с изолированными парами тетраэдров 6- - диортосиликаты, которые возникли в результате соединения двух кремнекислородных тетраэдров.
К ортосиликатам относятся группы оливина (MgFe) 2 , циркона Zr , гранатов , фенакита Be 2 и др. (без воды и добавочных анионов), топаза Al 2 F 2 , андалузита Al 2 O, титанита CaTi O и др. (с добавочными анионами F - , O 2- , OH -); к диортосиликатам - группы бертрандита Be 4 O (OH) и др.; к ортодиортосиликатам относятся группы везувиана Ca 19 Mg 3 Al 10 4 × 10 O 2 (OH) 6 , эпидота Са, Ce, Fe 3+ , Fe 2+ , Al 2 × O× (OH) и др.
Кольцевые силикаты . характеризуются кольцевой структурой, в которой группы 4- не изолированы, а соединяются общими ионами кислорода в кольца. При этом различают кольца двух типов - простые и двойные («двухэтажные»). К первым относятся кольца типа 6- - группа волластонита Ca 3 , типа 8- - группа тарамеллита Ba 2 Fe 2 (OH) 2 , типа 12- - группы берилла Be 3 Al 2 , кордиерита Mg 2 Al 3 и др.; типа 12- - группа мьюкрита Ba 10 CaMnTi 2 × (Cl, OH, O) 12 × 4H 2 O. Ко вторым относятся кольца типа 12- - группа эканита Ca 2 Th , и типа 12- - группа миларита KCa 2 Be 2 AI .
Цепочечные силикаты. Простейшие и наиболее распространённые из них представлены непрерывными цепочками кремнекислородных тетраэдров, соединённых вершинами, типа 2- или сдвоенными цепочками-лентами типа 6- . К ним принадлежат группы пироксенов , амфиболов , рамзаита Na 2 O 3 и др.
Слоистые силикаты характеризуются непрерывными в двух направлениях слоями кремнекислородных тетраэдров, образующими бесконечные двухмерные радикалы, которые в зависимости от пространственного положения кремнекислородных тетраэдров в слое имеют различную формулу; для слоя, состоящего из шестерных колец, характерен радикал типа 4- ; при этом в шестерном кольце тетраэдров слоя каждый из шести атомов кремния принадлежит трём таким кольцам, т. е. по два кремния на каждое кольцо. К этому подклассу относятся слюды группы мусковита и биотита K (Mg, Fe 2- 3)× (OH, F) 2 , группы пирофиллита Al 2 (OH) 2 и талька Mg 3 × (OH) 2 , каолинита Al 4 (OH) 8 и серпентина Mg 6 (OH) 8 , галлуазита Al 4 (H 2 O) 4 (OH) 8 , хлоритов ; к слоистым относится гадолинит FeY 2 × ; к титаносиликатам - астрофиллит (К, Na) 3 (Mn, Fe) 7 2 × 3H 2 O и др.
Каркасные силикаты . характеризуются трёхмерным бесконечным каркасом кремнекислородных тетраэдров типа 4- , соединённых всеми четырьмя вершинами друг с другом так, что каждый атом кислорода одновременно принадлежит только двум таким тетраэдрам; общая формула m- . К ним относятся минералы группы полевых шпатов Na - K - Ca , нефелина KNa 3 , петалита Li , данбурита Ca 3 Cl, гельвина Mn 4 3 S (см. Содалита группа ) и др.

В структурах С. установлено значительное число различных типов цепочек, лент, сеток и каркасов из тетраэдров.

Катионы , входящие в состав С., разделяются прежде всего на 2 группы: малые катионы - Mg 2+ , Al 3+ , Fe 2+ , Mn 2+ и др., частично Ca 2+ , имеющие обычно октаэдрическую координацию (содержащие их соединения составляют первую главу кристаллохимии С., по Н. В. Белову, 1961), и крупные катионы - К + , Na + , Ca 2+ , Ba 2+ , Sr 2+ , редкоземельных элементов , образующие соответственно более крупные координационные полиэдры: 8-, 9-, 12-вершинники, ребра которых соизмеримы уже с размерами не одиночных 4- тетраэдров, а групп 6- (с этими соединениями связана вторая глава кристаллохимии С.).

Для С. характерен изоморфизм , проявляющийся особенно широко среди катионов; вследствие этого в С. распространены ряды твёрдых растворов (непрерывные или со значительными пределами замещений), а также изоморфные примеси . Поэтому даже развёрнутые формулы С., учитывающие основные изоморфные замещения, всё же являются неполными вследствие большой сложности состава реальных С. Распределение изоморфных катионов в структуре С. зависит от температуры и устанавливается рентгенографически или по мёссбауэровским и инфракрасным спектрам. Это свойство позволяет использовать С. в качестве геотермометра.

В составе С. отмечается разнообразие форм вхождения в их структуру водорода - в виде гидроксильных групп , кристаллизационной и цеолитной воды, межслоевой адсорбированной воды и др., изучаемых с помощью ядерного магнитного резонанса (ЯМР), термического анализа, инфракрасной спектроскопии. Во всех подклассах С. выделяются группы с добавочными анионами (O 2- , F - , CI - , OH - , S 2-) и радикалами (SO 4 2- , CO 3 2- и др.).

Дальнейшие усложнения в строении С. связаны с явлениями упорядочения (особенно Al - Si в алюмосиликатах и Mg - Fe в оливинах, пироксенах, амфиболах), политипии и смешаннослойных прорастаний (в слоистых С.), полиморфных превращений (например, андалузит - дистен - силлиманит), распада твёрдых растворов, образования электронно-дырочных центров (см. Дефекты в кристаллах ).

Большинство С. в связи с их сложным строением имеет низкую симметрию : около 45% кристаллизуется в моноклинной, 20% имеют ромбическую симметрию, 9% - триклинную, 7% - тетрагональную, 10% - тригональную и гексагональную и 9% - кубическую.

Весьма характерно двойникование (двойники роста, механических и фазовых превращений).

Общие свойства

Свойства силикатов определяются прежде всего типом кремнекислородного тетраэдра: спайность (несовершенная в островных и кольцевых С., совершенная и зависящая от ориентировки кремнекислородных группировок в цепочечных, слоистых, каркасных С.); твёрдость обычно 5,5-7, кроме слоистых С., в которых она понижается до 2-1; плотность около 2500-3500 кг/м 3 . Цвет большинства С. определяется ионами железа (Fe 2+ - зелёный, Fe 3+ - бурый, красный, жёлтый, Fe 2+ и Fe 3+ - синий и др.), в отдельных группах - ионами Ti 3+ , V 4+ , Cr 3+ , Mn 2+ , Co 2+ , Ni 2+ , Cu 2+ и их сочетаниями с ионами железа и др.; в некоторых минералах - электронно-дырочными центрами. В ряде случаев окраска связана с микровключениями окрашенных минералов.

Большое значение для точной диагностики С. имеют их оптические свойства - преломление, оптическая ориентировка и др., измеряемые с помощью столика Федорова , иммерсионного метода и др.
) с учётом данных детально изученных диаграмм состояний силикатных систем. При выветривании происходит разрушение большинства С. с образованием осадочных горных пород, с выщелачиванием основных соединений, освобождением кремнезёма , возникновением за счёт алюмосиликатов водных силикатов алюминия, образованием глинистых минералов, нонтронита, гарниерита и др., а также окислов железа, карбонатов и др.
Силикаты (плагиоклазы, оливин, пироксены и др.) являются также главными минералами лунных пород, входят в состав метеоритов . Полагают, что оливин и плотная модификация шпинели составляют почти полностью мантию Земли.
Применение С. определяется тем, что многие из них являются важнейшими среди полезных ископаемых. Существенное значение имеют силикатные минералы, составляющие литиевые, бериллиевые руды, руды рассеянных элементов, силикатные никелевые руды. Месторождения нефелина поставляют комплексное сырьё для получения алюминия, поташа, соды. Большую долю составляют С. в нерудных полезных ископаемых (полевые шпаты, слюды, асбест, тальк, цеолиты, гранаты, бентонитовые и огнеупорные глины), в драгоценных и поделочных камнях (изумруд, аквамарин, топаз, хризолит, турмалин и др.).
Исследование С. как главнейших минералов Земли и Луны , содержащих многие ценные элементы в качестве основных компонентов или примесей, составляет важное направление современной минералогии, тесно связанное с геохимией, литологией, геофизикой и исследованием вещественного состава месторождений полезных ископаемых.

Литература

  • Белов Н. В., Кристаллохимия силикатов с крупными катионами, М., 1961
  • Дир У.А., Хауи Р.А., 3усман Дж. Породообразующие минералы (пер. с англ.), т. 1-4, М., 1965, с.66
  • Минералы. Справочник, т. 3, в. 1, М., 1972
  • Поваренных А. С. Кристаллохимическая классификация минеральных видов. К., 1966
  • Пущаровский Д.Ю. Структурная минералогия силикатов и их синтетических аналогов. М., 1986
  • Смолеговский А.М. Развитие представлений о структуре силикатов. М., 1979
  • Соболев B. С. Введение в минералогию силикатов, Львов, 1949
  • Коржинский Д. С. Теоретические основы анализа парагенезисов минералов. М., 1973
  • Марфунин А. С. Введение в физику минералов. М., 1974
  • Эйтель В. Физическая химия силикатов, (пер. с англ.), М., 1962

Силикаты и алюмосиликаты объединяют около 800 минералов, многим из которых принадлежит огромное породообразующее значение, ведь представители этого класса составляют до 80 % массы земной коры. Если же к числу силикатов относить и кварц, являющийся типичным силикатом по строению кристаллической решетки (но не по химическому составу), то доля превысит 90 %. Происхождение минералов данного класса разное. Основу кристаллической решетки в минералах составляет кремний-кислородный тетраэдр. В зависимости от сочетаний этих тетраэдров, все силикаты разделяются на большое количество групп.

Островные силикаты сложены изолированными тетраэдрами. Самый распространенный представитель, имеющий огромное породообразующее значение – магматического происхождения оливин (MgFe) 2 .

Цепочечные силикаты объединяют минералы группы пироксенов , в которых тетраэдры соединены в непрерывные цепочки. Наиболее распространен породообразующий алюмосиликат авгит
(Ca, Na) (Mg, Fe 2+ , Al, Fe 3+) [(Si, Al) 2 O 6 ].

Кольцевые силикаты обладают соединенными в замкнутые кольца тетраэдрами. Представитель – берилл Be 3 Al 2 .

Ленточные силикаты содержат соединенные в обособленные ленты тетраэдры. Здесь выделяется группа амфиболов – минералов с непостоянным химическим составом, среди которых наиболее распространен породообразующий минерал роговая обманка .

Листовые (слоевые) силикаты представлены минералами, в которых тетраэдры объединены в ленты, образующие единый непрерывный слой. Наибольшим распространением среди них пользуются такие породообразующие минералы, как слюды : бесцветный мусковит.

KAl 2 (OH) 2 и его мелкочешуйчатая разновидность серицит , черный биотит K(Mg, Fe) 3 (OH, F) 2 . Кроме них часто встречаются метаморфического происхождения серпентин (змеевик) Mg 6 (OH) 8 , тальк Mg 3 (OH) 2 и непостоянного состава хлориты . Эти минералы возникают при воздействии на ультраосновные породы горячих растворов и газов. Другая часть листовых силикатов образуется в результате гипергенеза – выветривания содержащих полевые шпаты и слюды магматических и метаморфических пород. Так возникают глинистые минералы каолин Al 4 (OH) 8 , монтмориллонит (Mg 3 , Al 2) (OH) 2 x nH 2 O, бейделлит Al 2 (OH) 2 x nH 2 O, нонтронит (Fe, Al 2) (OH) 2 x nH 2 O, а также гидрослюды – минералы непостоянного состава. Среди листовых силикатов выделяется также глауконит – водный алюмосиликат K, Fe, Al, образующийся в шельфовой зоне на глубинах 200 – 300 м.

Каркасные силикаты представлены группами полевых шпатов и нефелина. Важнейшей из них является группа полевых шпатов , доля которых в массе земной коре достигает 50 %. Каркас полевых шпатов создан тетраэдрами, сцепленными всеми четырьмя вершинами. Группа подразделяется на калиево -натриевые и кальциево -натриевые полевые шпаты. Первые представлены ортоклазом K. Вторые – разновидностями плагиоклазов , в которых наблюдается последовательное уменьшение содержания SiO 2 . В соответствии с этим плагиоклазы включают ряд минералов: от натриевого (кислого по составу) альбита Na – его сокращенная запись Ab, до кальциевого (основного) анортита Ca – его сокращенная запись An. Промежуточное расположение занимает кальциево-натриевый (средний по составу) лабрадор Ab 50 An 50 – иризирующий плагиоклаз. Помимо полевых шпатов, в числе каркасных силикатов выделяют группу нефелина Na 3 K 4 – породообразующего алюмосиликата магматического и пегматитового происхождения.



15. Минералы, применяемые в строительстве. Их свойства.

В строительстве: кальцит, доломит, гипс

Свойства кальцита: Название кальцит произошло от греческого слова, означающего «известь». Другие названия минерала и его разновидностей: каменный цветок, каменная роза, бумажный шпат, сталактит, сталагмит, небесный камень, папиршпат, антраконит.

Физические свойства :
а) цвет: белый, желтый, розовый, зеленоватый,
б) твердость: 3,
в) плотность: 2,6 - 2,8 г/см3,
г) степень прозрачности: прозрачный (исландский шпат), просвечивающий, непрозрачный,
д) черта - белая, светло-серая,
е) блеск - стеклянный, матовый,
ж) излом - ступенчатый,
з) сингония - тригональная, дитригонально-скаленоэдрический вид симметрии,
и) спайность-совершенная по (1011).

Основные месторождения . Дальнегорское месторождение в Приморье, Эвенкия.

Свойства доломита:

Доломит является природным карбонатом магния и кальция. Своему названию этот минерал обязан французскому минералогу и химику Д. Доломье (1750-1801), которым он и был открыт в 1791 году во время путешествия по Альпам. Доломит образует ромбоэдрические кристаллы имеющие белый, сероватый или блекло-желтый цвет. Грани его часто искривлены. Доломит внешне очень напоминает известняк и чтобы совершенно быть уверенным, что этот минерал именно доломит, нужно подвергнуть его химическому анализу. Это тем более необходимо еще и по той причине, что в природе известняк так же часто встречается как и доломит.

О происхождении доломита у геологов существует несколько версий, но к единственно верному мнению они пока что не пришли. Горную породу доломит широко используют в строительстве. Из доломита изготовляют огнеупорные кирпичи, удобрения. Известные залежи этого минерала находятся в Канаде, США, Испании, Швейцарии и Мексике.

Свойства гипс:

Строительным гипсом называют воздушное вяжущее вещество, представляющее собой продукт, состоящий преимущественно из полуводного гипса. Получают его термической обработкой гипсового камня и помолом до или после этой обработки. Известны и другие продукты, состоящие из полуводного гипса, например формовочный гипс, технический (высокопрочный) и медицинский гипс.

Основным процессом при термической обработке двуводного гипса является его дегидратация.

Для превращения 1 кг двуводного гипса в полуводный теоретически требуется затратить 582 кДж.

При повышении температуры обжига до 2200C гипс постепенно переходит в безводный, образуя растворимый ангидрит, который при вылеживании на воздухе поглощает влагу и превращается в полугидрат. При дальнейшем повышении температуры растворимый ангидрит переходит в нерастворимый. Учитывая необходимость ускорения процесса, обжиг строительного гипса на заводах ведут обычно при температуре 140-1900C Это - температура обжигаемого материала, а не печного пространства; температура печного пространства может быть значительно выше.

Строительный гипс может содержать наряду с полуводным и некоторое количество растворимого ангидрита, а в отдельных случаях также примеси нерастворимого ангидрита и исходного двуводного гипса. Присутствие двуводного гипса ускоряет схватывание из-за того, что он создает центры кристаллизации при затворении строительного гипса водой.

Как строительный, так и высокопрочный гипс маркируются по прочности образцов, изготовленных из раствора пластичной консистенции без песка (1:0). Начало схватывания строительного гипса должно наступать не ранее 4 мин, а конец схватывания - не ранее 6 мин и не позднее 30 мин после начала затворения гипсового теста.

Приведенные данные показывают, что полуводный гипс всех видов быстро твердеет, достигая в сравнительно короткий срок конечной прочности. Тонкость помела рассматриваемых гипсовых вяжущих сравнительно невелика, а сроки схватывания весьма коротки. Учитывая, что затворенные водой вяжущие необходимо использовать до начала схватывания, в полуводный гипс вводят различные замедлители схватывания, как-то: кератиновый (продукт обработки копыт и несортовых рогов щелочным раствором), известково-клеевой замедлитель, сульфитно-спиртовую барду и некоторые другие вещества. Быстрые сроки схватывания необходимы при заводском изготовлении из строительного гипса различных строительных изделий. В этом случае приходится даже добавлять ускорители схватывания в виде двуводного гипса, поваренной соли, сульфата натрия и некоторых других веществ.

Для превращения в процессе твердения полуводного гипса в двугидрат теоретически необходимо только 18,6% воды. Практически же для получения из строительного и формовочного гипса теста нормальной густоты требуется 60-80% воды, а из высокопрочного - 35-45% воды. Избыточное количество воды остается в порах затвердевшего материала и в дальнейшем постепенно испаряется, вызывая характерную для гипсовых изделий пористость.

В высокопрочном гипсе более крупные, чем у обычного гипса, кристаллы неволокнистого строения, поэтому водопотребность его меньше. Уменьшение водопотребности и вызываемое этим повышение прочности гипса имеют значение только для литых изделий, когда же применяют массу жесткой консистенции, как, например, при вибрировании, для получения материала нужной консистенции из обычного и высокопрочного гипса требуется примерно равное количество воды, вследствие чего изделия из гипса обоих видов имеют приблизительно одинаковую прочность.

Строительный гипс применяют главным образом для производства гипсовых строительных деталей (перегородочных плит и панелей, сухой штукатурки, стеновых гипсобетонный камней и ряда других), а также для изготовления известково-гипсовых растворов для штукатурных работ. Гипс можно применять и в чистом виде без заполнителей, так как при его твердении не образуется трещин. В известково-гипсовых растворах известь замедляет схватывание и увеличивает пластичность раствора. Для того чтобы уменьшить расход вяжущего и избежать вызываемого известью растрескивания, к известково-гипсовым растворам добавляют песок или другой заполнитель.

Технический и медицинский гипс отличаются от строительного более тонким помолом, иными сроками схватывания и большей прочностью.


16. Определение горной породы. Какие признаки лежат в основе классификации горных пород?

Горные породы - главный источник получения строительных материалов. Горные породы используют в промышленности строительных материалов как сырье для изготовления керамики, стекла, теплоизоляционных и других изделий, а также для производства неорганических вяжущих веществ - цементов, извести и гипсовых.

И др.).

Химический состав и структура. В основе кристаллической структуры силикатов природных — солей кремниевой кислоты — лежат одиночные изолированные тетраэдрические радикалы SiО 4 4- ; солей изо- и гетерополикремниевых кислот — полимерные радикалы, в которых мостиковые атомы О связывают 2 атома Si смежных SiО 4 -тетраэдров (в изополикремниевых радикалах) или атомы Т (Т — Si, Al, В, Be, Fe 3+ и др.) в TО 4 -тетраэдрах (в гетерополикремниевых радикалах). В зависимости от атома Т последние получили название алюмо-, боро-, берилло-, ферри- и т.д. силикатов.

Роль катионов в силикатов природных играют преимущественно элементы 2-го, 3-го и 4-го периодов периодической системы Менделеева , среди которых Na, Mg, Al, Fe, К, Ca, Mn наиболее распространены в земной коре и составляют вместе с О и Si до 99% её объёма. Достаточно обычны также силикаты природные Ti, Zn, TR. Менее распространены силикаты V, Ni, Nb, Th, U, Sr, Cs, Ba. Особое место занимают немногочисленные силикаты природные, в которых катионами выступают халькофильные элементы: Cu, Zn, Sn, Pb, As, Sb и Bi.

Большая часть силикатов природных — основные, значительно меньшее их число — кислые и кисло-основные соли; среди силикатов много кристаллогидратов; некоторые силикаты природные (например, слюды) содержат ионы Н3О + . Известны также смешанные соли, содержащие наряду с силикатными радикалами анионы более сильных кислот (СО 3 2- , PО 4 3 SО 4 2- , Cl - , F- и др.).

Важнейшая кристаллоструктурная характеристика силикатов природных — строение их анионов, исходя из которого различаются силикаты с островными, цепочечными, ленточными, сеточными и каркасными радикалами. Главнейшие островные кремнекислородные радикалы имеют следующее строение; единичный SiО 4 -тетраэдр — ортогруппа (например, форстерит); группа из 2 связанных общей вершиной тетраэдров Si 2 О 7 6- — диортогруппа (гемиморфит); триортогруппа Si 3 О 10 8- (розенханит); тройное кольцо Si 3 О 9 6- (рис. 1, а; бенитоит); четверное кольцо Si 4 О 12 8- (рис. 1, б; баотит); шестерное кольцо Si 6 О 18 12- (рис. 1, в; диоптаз); сдвоенное четверное кольцо Si 8 О 20 8- (эканит); сдвоенное шестерное кольцо Si 12 О 3 0 12- (рис. 1, г; согдианит).

Важнейшие типы цепочечных радикалов в силикатах природных сводятся к следующим: пироксеновая цепочка из параллельно ориентированных диортогрупп с периодом повторяемости в 2 SiО 4 4- -тетраэдра (рис. 2, а); волластонитовая цепочка из чередующихся диортогрупп и одиночных SiО 4 4- -тетраэдров, повёрнутых в другую сторону, с периодом повторяемости в 3 SiО 4 4- -тетраэдра (рис. 2, б); родонитовая цепочка, в которой через 5 SiО 4 4- -тетраэдров происходит сдвиг в сторону (рис. 2, в); стокезитовая цепочка из разноориентированных диортогрупп, связанных SiО 4 4- -тетраэдрами иной ориентации (рис. 2, г); батиситовая зигзагообразная цепочка из вертикальных диортогрупп, поочерёдно смещённых относительно друг друга, с периодом повторяемости в 4 SiО 4 4- -тетраэдра (рис. 2, д); астрофиллитовая зигзагообразная цепочка из горизонтальных диортогрупп (рис. 2, е).

Важнейшие ленточные радикалы: лента силлиманитового типа (рис. 3, а); амфиболовая лента из сдвоенных пироксеновых цепочек (рис. 3, б); джимтомпсонитовая лента из 3 пироксеновых цепочек (рис. 3, в); власовитовая ступенчатая лента из четверных "налезающих" колец SiО 4 4- -тетраэдров (рис. 3, г); ксонотлитовая лента из сдвоенных волластонитоподобных цепочек (рис. 3, д); нарсарсукитовая трубчатая лента из вертикальных диортогрупп с квадратным поперечным сечением (рис. 3, е).

Цепочки и ленты SiО 4 4- -тетраэдров поликонденсируются в сетки (слои), которые могут быть полярными (рис. 4, а), или двусторонними (рис. 4, б-д).

Предельной степенью поликонденсации является соединение TО 4 4- -тетраэдров всеми своими вершинами друг с другом, при котором возникает каркасная структура.

Координационные числа (КЧ) катионов в силикатов природных с ионной связью меняются от 4 (Be, Al, Li, Fe 3+ , Cr 3+ , Mg) до 9-12 (К, Rb, Sr, Ca, Ba). Ковалентной связью характеризуется меньшее число катионов (Cu, Zn, Pb, As, Sb, Bi и др.), для них КЧ определяется типом гибридизации. В структурах силикатов, содержащих катионы с КЧ-6, выделяются различные мотивы катионных полиэдров от островных октаэдрических групп через цепочки, ленты до стенок (рис. 5, а-г).

Соответствие силы определённой кремниевой кислоты силе катиона заключается в соразмерности величины катиона расстояниям между концевыми атомами О 2 - в Тт,On-радикале. Поэтому небольшие катионные тетраэдры, образуемые ионами Be, Al, соединяясь с SiО 4 4- -тетраэдрами, образуют с последними единый структурный мотив берилло- и алюмосиликатов . Небольшие октаэдрического полиэдры (типичные для Mg, Fe 2+ и т.п. катионов) сопрягаются с концевыми атомами О 2 - одиночных SiО 4 4- -тетраэдров (рис. 6, а), полимерных кремнекислородных (рис. 6, б), алюмо-кремнекислородных и т.п. радикалов.

Увеличение размера катионных октаэдров вызывает необходимость поликонденсации SiО 4 4- -тетраэдров в цепочки (рис. 6, в, г) и более сложные кремнекислородные радикалы — ленты, сетки (слои), каркасы. Полимерные кольцевые, цепочечные, ленточные и сеточные радикалы имеют дополнительные возможности приспособления к различным катионным полиэдрам за счёт изменения угла сопряжения SiО 4 4- тетраэдров между собой.

Систематика. В зависимости от силовых характеристик (CX) катионов (In/ropбn+ или In/ri, где In — n-й потенциал ионизации; ropбn+ — орбитальный радиус иона с валентностью n; ri — эффективный ионный радиус катиона в ионном кристалле) класс силикатов природных в химико-структурной систематике делится на 3 подкласса: I — силикаты, содержащие катионы с низкими CX (К, Na, Li, Mg, Fe 2+ , Fe 3+ и др.); II — со средними CX (Ti, Zn и др.) — титано- и цирконосиликаты; III — силикаты халькофильных элементов .

По типу гетерополианионного радикала в каждом из подклассов выделяют сектора (бериллосиликаты, алюмосиликаты, боросиликаты, собственно силикаты).

В зависимости от степени поликонденсации TО 4 -тетраэдров в анионных радикалах различают 9 надотделов: тетрасиликаты (ортосиликаты) с радикалом SiО 4 4- (например, оливины); тетратрисиликаты (ортодиортосиликаты), содержащие одновременно, например, SiО 4 4- - и Si 2 О 7 6- -радикалы (); трисиликаты (диортосиликаты) с радикалом Si 2 О 7 6- (тортвейтит); тридисиликаты (например, розенханит); дисиликаты (метасиликаты) с радикалами SiО 3 N 2 n- (); димоносиликаты с радикалами типа Si 4 О 11 6- , AlSi 3 О 11 7- и др. (например, ); моносиликаты с радикалами Si 2 О 5 N 2 n- (каолинит); мононульсиликаты (родезит); нульалюмосиликаты с радикалами типа Tn 3+ Si 1-n О 2 n- (альбит). Принадлежность силикатов к средним, основным, кислым солям или кристаллогидратам позволяет выделять отделы. Более дробная систематика основывается на структурных признаках с учётом геометрии анионного мотива (отряды островных, цепочечных, сеточных или слоистых, каркасных силикатов природных) анионного и катионного субмотива (подотряды субкаркасных, субцепочечных и т.д. силикатов).

Свойства. Большинство силикатов природных из-за сложности состава имеют низкую симметрию. Около 45% из них относится к моноклинной, 20% — к ромбической, 9% — к триклинной (к низшим сингониям относятся прежде всего многие цепочечные, слоистые силикаты и каркасные алюмосиликаты), 7% — к тетрагональной, 10% — к тригональной и гексагональной (силикаты с кольцевыми треугольными и гексагональными радикалами) и 9% — к кубической (тетрасиликаты с изолированными SiО 4 4- -тетраэдрами; ряд каркасных нульалюмосиликатов) сингонии.

Большая часть силикатов бесцветные или белые; силикаты Fe, Mn, Ni, UО 2 2+ , Ti, Zr, V, Cu, TR и некоторых других элементов (а также содержащие их в виде изоморфных примесей) часто окрашены в различные цвета. Блеск стеклянный до алмазного. В тонких шлифах прозрачны. Многие силикатов природные обладают совершенной спайностью в трёх направлениях, для цепочечных и ленточных силикатов характерна спайность в двух направлениях, для слоистых — весьма совершенная спайность в одном направлении. Большинство силикатов (минералы с лёгкими катионами De, Mg, Al, каркасной и слоистой структурой) имеют низкую плотность (2000-3000 кг/м 3), которая возрастает до 3500 и даже 4000 кг/м 3 у тетрасиликатов с островными SiО 4 -тетраэдрами и до 6500 кг/м 3 у силикатов тяжёлых элементов (например, свинца). Твердость максимальная (до 6-8) у некоторых каркасных алюмосиликатов и силикатов с островной и цепочечной структурой снижается до 4-5 у большинства силикатов халькофильных элементов и до 1-2 у слоистых минералов. Показатели преломления силикатов в целом пропорциональны их плотности и колеблются в широких пределах.

Образование. Силикаты природные — полигенные минералы. В магматических породах нормального ряда от ультраосновных до кислых подавляющая роль принадлежит силикатам и алюмосиликатам катионов с низкими CX, тогда как силикаты с катионами, имеющими средние CX, известны в них в виде акцессорных минералов (циркон, титанит). В агпаитовых щелочных породах содержится большое число каркасных алюмосиликатов (полевые шпаты, фельдшпатиды), находящихся в тесной ассоциации с натриевыми пироксенами (эгирин, эгирин-авгит) и различными сложными силикатами Ti и Zr. Для пегматитов характерны силикаты катионов Na, К, Li, Cs, Be. Гидротермальным путём, а также при повышенном содержании в магме H 2 О образуются фельдшпатиды и цеолиты . Силикаты халькофильных элементов (хризоколла, виллемит, гемиморфит , и др.) типичны для зон окисления