Кто является основателем генетики. Каждую аминокислоту кодирует один триплет или более

Какой ученый основоположник генетики и как развивалась эта наука Вы узнаете в этой статье, Вы узнаете из этой статьи.

Какой ученый считается основоположником генетики?

Основоположником генетики по праву считают Г. Менделя!

Основоположником генетики является Грегор Мендель, который родился 22 июля 1822 года в крестьянской семье. Из – за финансового положения среднее образование он получил с трудом. А высшего вообще не имел. Мендель служил в монастыре Святого Фомы монахом в городе Брюнне под именем Грегора. Здесь же в Вене Грегор заинтересовался биологией и под окнами кельи разбил небольшой огородик. Он то и прославил Иоганна, который решил заняться скрещиванием растений. В качестве «подопытного» он выбрал горох, так как эта культура самопроизвольно помесей не дает. Целых 10 лет монах занимался экспериментами по скрещиванию гороха разных сортов. Результатом этого стали всемирно известные «гороховые законы», которые не были приняты современниками и даже, порой, высмеивались. Они даже не подозревали, что Мендель был основоположником новой науки. Теперь же выведенные августинским монахом «гороховые законы» называются законами Менделя. Они являют собой фундамент классической генетики. Но как это часто бывает, свое признание Мендель получил только после смерти. Он со своими экспериментами публиковался в моравском журнале научного общества, но ученые тогда не обратили на нее никакого внимания. Она называлась «Опыты с гибридами растений». Остаток своей жизни основатель генетики провел за садоводством, пчеловодством и метеорологическими наблюдениями.

1. Что изучает генетика?

Ответ. Генетика (от греч. genesis - происхождение) , наука, изучающая закономерности наследственности и изменчивости организмов.

2. Почему основателем генетики считают Г. Менделя?

Ответ. В 1866 году была опубликована работа с изложением фундаментальных открытий Г. Менделя, который установил закономерности передачи наследственных задатков, но эта работа, к сожалению, не была оценена современниками. Основной заслугой Г. Менделя было открытие дискретного характера наследования. Фактически, именно Г. Мендель является основоположником генетики, хотя летоисчисление генетики ведется с 1900 года - момента публикации работ К. Корренса, Г. Де Фриза, Э. Чермака.

3. Как называется метод исследования, созданный Г. Менделем?

Ответ. Основные закономерности наследования были открыты Г. Менделем. Мендель достиг успехов в своих исследованиях благодаря совершенно новому, разработанному им методу, получившему название гибридологического анализа. Сущность гибридологического метода изучения наследственности состоит в том, что о генотипе организма судят по признакам (фенотипу) потомков, полученных при определенных скрещиваниях.

Метод имеет основные положения:

Учитывается не весь многообразный комплекс признаков у родителей и гибридов, а анализируется наследование по отдельным альтернативным признакам.

Проводится точный количественный учет наследования каждого альтернативного признака в ряду последовательных поколений: прослеживается не только первое поколение от скрещивания, но и характер потомства каждого гибрида в отдельности. Гибридологический метод нашел широкое применение в науке и практике.

Вопросы после § 38

1. Почему Г. Мендель выбрал для исследования наследственности именно горох?

Ответ. Проводя свои классические опыты, Мендель следовал нескольким правилам. Во-первых, он использовал растения, которые отличались друг от друга малым количеством признаков. Во-вторых, ученый работал только с растениями чистых линий. Так, у растений одной линии семена всегда были зелеными, а у другой - желтыми. Чистые линии Мендель вывел предварительно, путем самоопыления растений гороха.

Мендель ставил опыты одновременно с несколькими родительскими парами гороха; растения каждой пары принадлежали к двум разным чистым линиям. Это позволило ему получить больше экспериментального материала.

При обработке полученных данных Мендель использовал количественные методы, точно подсчитывая, сколько растений с данным признаком (например, семян с желтой и зеленой окраской) появилось в потомстве.

Необходимо добавить, что Мендель очень удачно выбрал объект для своих опытов. Горох легко выращивать в условиях Чехии он размножается несколько раз в год, сорта гороха отличаются друг от друга рядом хорошо различимых признаков, и, наконец, в природе горох самоопыляем, но в эксперименте самоопыление легко предотвратить, и исследователь может опылить растение пыльцой с другого растения.

Исследуя закономерности наследования признаков, Г. Мендель использовал в опытах 22 чистые линии садового гороха. Растения этих линий имели сильно выраженные отличия друг от друга: форма семян (круглые-морщинистые); окраска семян (желтые – зеленые); форма бобов (гладкие – морщинистые); расположение цветков на стебле (пазушные – верхушечные); высота растения (нормальные - карликовые).

2. Что такое чистая линия?

Ответ. Чистая линия - группа организмов, имеющих некоторые признаки, которые полностью передаются потомству в силу генетической однородности всех особей. В случае гена, имеющего несколько аллелей, все организмы, относящиеся к одной чистой линии, являются гомозиготными по одному и тому же аллелю данного гена. Чистыми линиями часто называют сорта растений, при самоопылении дающих генетически идентичное и морфологически сходное потомство. Аналогом чистой линии у микроорганизмов является штамм. Чистые линии у животных с перекрестным оплодотворением получают путем близкородственных скрещиваний в течение нескольких поколений. В результате животные, составляющие чистую линию, получают одинаковые копии хромосом каждой из гомологичных пар.

3. Почему именно Г. Менделя считают основоположником генетики?

Ответ. Г. Мендель обладал важнейшими для настоящего учёного качествами. Во-первых, Г. Мендель сумел сформулировать конкретный вопрос, на который ему хотелось бы получить ответ, и, во-вторых, он умел правильно понимать и трактовать результаты опытов, т. е. был способен сделать корректные выводы из результатов своих экспериментов. Результаты многолетней работы Г. Мендель обобщил в публикации «Опыты над растительными гибридами», которая вышла в свет 8 февраля 1865 г. В этой статье были изложены основные закономерности наследования признаков, которые легли в основу современной генетики. Таким образом, генетика – одна из немногих научных дисциплин, у которых есть точная дата рождения. Однако работы Г. Менделя опередили своё время; они были оценены по достоинству только через 35 лет.

В 1900 г. три исследователя (Гуго де Фриз, Карл Эрих Корренс, Эрих Чермак) независимо друг от друга на разных объектах переоткрыли законы Менделя. Результаты работ этих исследователей доказали правильность закономерностей, установленных в своё время Г. Менделем. Они честно признали его первенство в этом вопросе и присвоили этим закономерностям имя Менделя. 1900 год считается официальной датой рождения науки генетики.

Хотя история генетики началась в XIX веке, еще древние люди замечали, что животные и растения передают в ряду поколений свои признаки. Другими словами, было очевидно, что в природе существует наследственность. При этом отдельные признаки могут изменяться. То есть помимо наследственности в природе существует изменчивость. Наследственность и изменчивость относятся к основным свойствам живой материи. Долгое время (до XIX-XX веков) истинная причина их существования была скрыта от человека. Это порождало ряд гипотез, которые можно разделить на два типа: прямое наследование и непрямое наследование.

Приверженцы прямого наследования (Гиппократ, Ламарк, Дарвин и др.) предполагали, что дочернему организму через определенные субстанции (геммулы по Дарвину), собирающиеся в половых продуктах, передается информация от каждого органа и каждой части тела родительского организма. По Ламарку следовало, что повреждение или сильное развитие органа напрямую передастся следующему поколению. Гипотезы непрямого наследования (Аристотель в IV в. до н. э., Вейсман в XIX в.) утверждали, что половые продукты образуются в организме отдельно и «не знают» об изменениях в органах тела.

В любом случае обе гипотезы искали «субстрат» наследственности и изменчивости.

История генетики как науки началась с работ Грегора Менделя (1822-1884), который в 60-х годах провел систематические и многочисленные опыты над горохом, установил ряд закономерностей наследственности, впервые высказал предположения об организации наследственного материала. Правильный выбор объекта исследования, изучаемых признаков, а также научная удача позволили ему сформулировать три закона:

Мендель понял, что наследственный материал дискретен, представлен отдельными задатками, передающимися потомству. При этом каждый задаток отвечает за развитие определенного признака организма. Признак обеспечивается парой задатков, пришедших с половыми клетками от обоих родителей.

В то время научному открытию Менделя не придали особого значения. Его законы были переоткрыты в начале XX века несколькими учеными на разных растениях и животных.

В 80-х годах XIX века были описаны митоз и мейоз, в ходе которых между дочерними клетками закономерно распределяются хромосомы. В начале XX века Т. Бовери и У. Сеттон пришли к выводу, что преемственность свойств в ряду поколений организмов определяется преемственностью их хромосом . То есть к этому периоду времени научный мир понял, в каких структурах заключается «субстрат» наследственности.

У. Бэтсоном был открыт закон чистоты гамет , а наука о наследственности и изменчивости впервые в истории была названа им генетикой . В. Иогансен ввел в науку понятия (1909 г.) , генотипа и фенотипа . В то время ученые уже поняли, что ген представляет собой элементарный наследственный фактор . Но его химическая природа еще не была известна.

В 1906 году было открытоявление сцепления генов , в том числе наследование признаков, сцепленное с полом . Понятие генотипа подчеркивало, что гены организма не просто набор независимых единиц наследственности, они образуют систему, в которой наблюдаются определенные зависимости.

Параллельно с изучением наследственности происходили открытия закономерностей изменчивости. В 1901 году де Фризом были заложены основы учения о мутационной изменчивости, связанной с возникновением изменений в хромосомах, что приводит к возникновению изменений признаков. Чуть позже было обнаружено, что часто возникают при воздействии радиации, определенных химических веществ и др. Таким образом было доказано, что хромосомы являются не только «субстратом» наследственности, но также изменчивости.

В 1910 году, во многом обобщая более ранние открытия, группой Т. Моргана была разработана хромосомная теория :

    Гены находятся в хромосомах и расположены там линейно.

    У каждой хромосомы есть гомологичная ей.

    От каждого из родителей потомок получает по одной из каждых гомологичных хромосом.

    Гомологичные хромосомы содержат одинаковый набор генов, но аллели генов могут быть разными.

    Гены, находящиеся в одной хромосоме, наследуются совместно () при условии их близкого расположения.

Среди прочего в начале XX века была обнаружена внехромосомная, или цитоплазматическая, наследственность, связанная с митохондриями и хлоропластами.

Химический анализ хромосом показал, что они состоят из белков и нуклеиновых кислот. В первой половине XX века многие ученые склонялись к мнению, что белки являются носителями наследственности и изменчивости.

В 40-х годах XX века в истории генетики происходит скачок. Исследования переходят на молекулярный уровень.

В 1944 году обнаруживается, что за наследственные признаки отвечает такое вещество клетки как . ДНК признается носителем генетической информации. Чуть позже было сформулировано, что один ген кодирует один полипептид .

В 1953 г. Д. Уотсон и Ф. Крик расшифровали структуру ДНК. Оказалось что это двойная спираль, состоящая из нуклеотидов . Ими была создана пространственная модель молекулы ДНК.

Позже были открыты следующие свойства (60-е годы):

    Каждая аминокислота полипептида кодируется триплетом (тремя азотистыми основаниями в ДНК).

    Каждую аминокислоту кодирует один триплет или более.

    Триплеты не перекрываются.

    Считывание начинается со стартового триплета.

    В ДНК нет «знаков препинания».

В 70-х годах в истории генетики происходит еще один качественный скачок – развитие генной инженерии . Ученые начинают синтезировать гены, изменять геномы . В это время активно изучаются молекулярные механизмы, лежащие в основе различных физиологических процессов .

В 90-х годах секвенируются геномы (расшифровывается последовательность нуклеотидов в ДНК) многих организмов. В 2003 году был завершен проект по секвенированию генома человека. В настоящее время существуют геномные базы данных . Это дает возможность комплексно исследовать физиологические особенности, заболевания человека и других организмов, а также определять родственную связь между видами. Последнее позволило систематике живых организмов выйти на новый уровень.

Основоположник генетики - австровенгерский естествоиспытатель Грегор Иоганн Мендель (1822-1884). В молодые годы он преподавал физику и естествознание в общеобразовательной школе, впоследствии стал послушником, а затем настоятелем Брюнненского монастыря ордена Святого Августина, расположенного в небольшом городке Брюнна в Австро-Венгрии (ныне город Брно в Чехии). В 1865 г. Г. Мендель опубликовал в трудах провинциального общества естествоиспытателей природы статью «Опыты над растительными гибридами», в которой на примере скрещивания различных линий садового гороха выделил закономерности наследования признаков. Однако эта работа долгое время оставалась неизвестной большинству современников Г. Менделя. Только в 1900 г. ботаники из разных стран - Хуго де Фриз (1848-1935) из Голландии, Карл Корренс (1864- 1933) из Германии и Эрих фон Чермак (1871-1962) из Австрии - на других биологических объектах, независимо друг от друга и почти одновременно «переоткрыли» закономерности наследования, установленные Г. Менделем.

Теперь 1900 г. считается официальным (но не фактическим) годом рождения генетики как науки, хотя сам термин «генетика» пред-

ложен только в 1906 г. англичанином Уильямом Бэтсоном (ученый перепроверил эксперименты Г. Менделя и полностью подтвердил их огромное значение).

Начало XX в. примечательно для историков генетики еще рядом событий. В 1901 г. немецкий врач Карл Ландштейнер разделил кровь человека по антигенам на 4 группы: 0, А, В и АВ, т.е. впервые привел пример наследования признаков у человека. Позже К. Ландштейнер совместно с П. Левиным и О. Винером описали Rh-фактор и группы крови системы MN (1927).

В дальнейшем в биологии и медицине произошли грандиозные перемены, связанные с возникновением и последующим торжеством идей эволюционизма, представлений о законах наследственности. Уже к 1950 г. не одни лишь прогрессивно мыслящие люди, но даже самые непримиримые ортодоксы, священники Римской католической церкви, были вынуждены согласиться с правомочностью эволюционной теории: ее признал в специальной энциклике «Происхождение человека» Папа Римский Пий XII. Однако католики настаивали: «Душа человека создана Богом!»

Следует отметить: материалистический термин «эволюция« впервые применил в начале XX в. английский врач Френсис Гальтон (1822-1911), основоположник евгеники - науки о совершенствовании человеческого рода.

Известно, что Ф. Гальтон приходился кузеном гораздо более знаменитому англичанину - Чарльзу Дарвину (1809-1882). Но тот отдавал предпочтение теории «пангенезиса«, основанной еще до н.э. древними философами Гиппократом (460-557), Платоном (429-347) и Аристотелем (384-322). Именно увлечение «пангенезисом» помешало Ч. Дарвину полностью обосновать (до рождения генетики) собственную прогрессивную теорию. Его ошибку в дальнейшем исправили последователи ученого.

Согласно современным представлениям, эволюция есть процесс происхождения биологических видов или прогрессивного развития живой материи, обусловленный внутренними (мутации) и внешними (естественный отбор, изоляция, дрейф генов) факторами.

Следует отметить: в конце XX в. дарвиновская интерпретация эволюции и даже правомерность самой постановки вопроса о том, была ли эволюция на Земле, ставились под сомнение деятелями церкви и поддерживающими их учеными-профессионалами. В частности, в противовес эволюционизму (эволюционизм - современный

дарвинизм как синтетическая теория эволюции) они выдвинули концепцию креационизма, предлагая рассматривать многообразие органического мира как результат божественного творения. Сторонники креационизма основываются на сравнении положений дарвиновской теории эволюции с данными биологических дисциплин (включая молекулярную биологию) и утверждают: теория эволюции - лишь одно из возможных объяснений существования органического мира, не имеющее фактического обоснования, а потому сходное с религиозными системами взглядов. По мнению таких исследователей, «наступает закат эпохи дарвинизма».

Существует также еще одна точка зрения на происхождение жизни на Земле: «...возможно, что это длительный эксперимент внеземных цивилизаций» на людях и других земных биологических видах, доставленных сюда из космоса в качестве «подопытных кроликов» много тысяч (если не миллионов) лет назад.

В пользу последней гипотезы свидетельствует, например, библейская легенда о Всемирном потопе: достаточно вспомнить «пассажиров» Ноева ковчега. Однако хотелось бы знать: куда столь странный, аморальный, по земным меркам, «эксперимент» заведет наш органический мир? Оставим данный вопрос без ответа и продолжим рассмотрение истории развития генетики, весьма неоднозначного в нашей стране.

В России о зарождении генетики как науки впервые сообщил в 1912 г. на лекции в Петербургском университете Николай Иванович Вавилов (1887-1943) - великий русский генетик, положивший начало пониманию эволюции мутационного процесса, создавший учение о генетических основах селекции, сформулировавший закон гомологичных рядов в наследственной изменчивости. Именно по инициативе Н.И. Вавилова в 1929 г. было принято решение об организации кафедр генетики и селекции в университетах СССР.

Большой вклад в мировую и отечественную генетику внес Николай Константинович Кольцов (1872-1940), в 1928 г. - заведующий кафедрой биологии во 2-м Московском университете (в дальнейшем - 2-й Московский медицинский институт им. Н.И. Пирогова, а затем - Российский медицинский университет). Работы Н.К. Кольцова (по изучению групп крови, активности фермента каталазы, проблем мутационной изменчивости; химического мутагенеза, трансплантации органов и тканей; их сохранения в высушенном состоянии, методов омоложения организма и культивирования клеток in vitro)

стали поистине новаторскими. Но главное его достижение - обоснование положения о наследственных молекулах - хромосомах, пророчески предугаданный принцип самоудвоения наследственных молекул (1927).

Правда, Н.К. Кольцов считал носителем наследственной информации не молекулу ДНК, а молекулу белка (в дальнейшем оказалось, что белок есть функция или проявление гена). Только в 1953 г. Джеймс Уотсон, Френсис Крик, Морис Уилкинс и Розалинда Франклин в своих работах доказали обратное, впервые описав молекулярную структуру нативной ДНК и получив ее рентгенограмму в виде двойной спирали («нечто вроде штопора»). В 1962 г. за это открытие трое из авторов получили Нобелевскую премию (Р. Франклин тогда уже скончалась от рака).

Предположение Н.К. Кольцова о наличии хромосом сыграло огромную роль в развитии генетики. Следует отметить, что биологическую функцию молекулы ДНК связали с ее химическим строением раньше 1953 г. Еще в 1944 г. О.Т. Эйвери и его коллеги установили: ДНК является носителем генетической информации.

Н.К. Кольцов был также близок к представлению, высказанному в 1941 г. Джорджем Бидлом и Эдвардом Тэйтемом в виде формулы: «один ген - один фермент». В дальнейшем она трансформировалась в формулу «один ген - один признак», а затем «один ген - одна полипептидная цепь». Последняя длительное время считалась основной в молекулярной биологии, но в конце XX в. появились и другие: «два гена или семь генов - одна полипептидная цепь; один ген или отдельные участки гена - несколько полипептидных цепей». Тем не менее, несомненно: Н.К. Кольцов, бесспорно, стоял у истоков молекулярной биологии и медицины.

Отечественную классическую школу исследований морфологии хромосом человека основал Григорий Андреевич Левитский (1878- 1942). Он заложил фундамент цитогенетики, создал первое руководство по материальным основам наследственности (1924). В его дискуссиях с С.Г. Навашиным и Л.Н. Делоне в 1931 г. впервые используются термины «кариотип« (хромосомный набор вида со всеми особенностями: числом, формой и деталями строения хромосом) и «идиограмма» (схематическое изображение хромосом).

Один из классиков русской генетики - Сергей Сергеевич Четвериков (1870-1959). Его работа «О некоторых моментах эволюционного процесса с точки зрения современной генетики» (1926)

положила начало целому научному направлению - популяционной генетике, в которой как наиболее важные факторы, оказывающие влияние на формирование генетической структуры популяции, рассматриваются естественный отбор и изоляция.

Впервые термин «популяция» введен В. Иогансеном в 1903 г. для обозначения неоднородной в генетическом отношении группы особей одного биологического вида и их отличия от особей однородной (чистой) линии. Однако еще Чарльз Дарвин объяснял происхождение видов в ходе эволюции в том числе наследственной изменчивостью и конкуренцией в пределах совокупности особей, т.е. популяции.

Многие работы русского генетика Александра Сергеевича Серебровского (1892-1948), опубликованные в 1920-е годы, для своего времени уникальны. Он занимался строением гена, его дробимостью и эволюцией, генетикой и селекцией отдельных видов животных, генетикой популяций, геногеографией, антропогенетикой и закономерностями органической эволюции, генетическими методами борьбы с вредными насекомыми. А.С. Серебровский был первым заведующим кафедрой генетики Московского государственного университета им. М.В. Ломоносова.

Нельзя не отметить заслуги многих других выдающихся советских и русских генетиков. Среди них Борис Львович Астауров (1904-1974) - первый президент Всесоюзного общества генетиков и селекционеров им. Н.И. Вавилова. Работы Б.Л. Астаурова посвящены исследованиям роли ядра и цитоплазмы в наследственности и онтогенезе, экспериментальной эмбриологии, биологии развития, искусственному партеногенезу и андрогенезу.

Широко известны труды Николая Петровича Дубинина (1907- 1998) - многолетнего лидера советской генетики, организатора и директора Новосибирского института цитологии и генетики и Московского института общей генетики АН СССР, академика АН СССР, почетного члена многих иностранных академий и научных обществ. К числу исследованных им проблем относятся: сложная структура гена, эффект положения, теория мутаций, проблемы генетики популяций, радиационной и экологической генетики и генетики человека.

Среди наиболее известных имен отечественных генетиков - имя Юрия Александровича Филипченко (1882-1930), читавшего первый в России курс лекций по генетике в Петербургском университете (1913),

изучавшего генетику пшеницы, эмбриологию и сравнительную анатомию низших насекомых, а также наследственность у человека.

Как сказано в начале главы, год рождения клинической генетики - 1902, когда Арчибальд Гаррод впервые опубликовал сообщение о наследственном заболевании - алкаптонурии. В 1908 г. в другой своей статье под названием «Врожденные нарушения метаболизма» он объединил четыре наследственных заболевания (алкаптонурия, альбинизм, пентозурия и цистинурия).

Основоположник отечественной клинической генетики - Сергей Николаевич Давиденков (1880-1961), первый русский врач-генетик и выдающийся детский врач-невропатолог. В круг его научных интересов входили: наследственные болезни нервной системы и их медикогенетическое консультирование, причины клинического полиморфизма наследственных болезней, эволюционно-генетические проблемы в невропатологии. С.Н. Давиденков обосновал необходимость применения в медицине генеалогического анализа, сформулировал принцип генетической гетерогенности и показал клиническую (фенотипическую) неоднородность многих нозологических форм (штрюмпелевская параплегия, семейные атаксии, амиотрофии). Он ввел в неврологию точные методы генетики, объяснил клинический полиморфизм неврологических заболеваний как результат сходного проявления разных мутаций и разной выраженности действия патологического гена (в зависимости от генотипической среды), предложил первую классификацию наследственных болезней нервной системы, основанную на генетических закономерностях.

Неоценимый вклад в развитие отечественной медицинской и клинической генетики внесли А.П. Акифьев (1938-2007), Л.О. Бадалян (1929-1994), А.Ф. Захаров (1928-1986), С.Г. Левит (1894- 1937), М.Е. Лобашев, А.А. Прокофьева-Бельговская (1903-1984), Н.В. Тимофеев-Рессовский (1900-1981) и др. Их заслуги - внедрение достижений генетики в медицину, распространение и приумножение генетических знаний даже в тридцатилетний период гонений на советскую генетику (1930-1960). В частности, в 1930 г. в Москве был организован Медико-биологический институт, переименованный в 1932 г. в Медико-генетический институт (директор - С.Г. Левит), где до 1937 г. успешно работал центр близнецовых исследований, большое внимание уделялось изучению мультифакториальных заболеваний. Однако затем институт закрыли, его директора и многих сотрудников репрессировали.

Только в 1969 г. в Москве вновь создается Институт медицинской генетики, преобразованный в 1990 г. в Медико-генетический научный центр АМН СССР, а затем РАМН.

Возрождение клинической генетики в России началось в конце 1970-х гг. во 2-м Московском медицинском институте им. Н.И. Пирогова (ныне Российский государственный медицинский университет), на кафедре нервных болезней педиатрического факультета (возглавляемой тогда Левоном Оганесовичем Бадаляном). Именно здесь впервые стали читать лекции по клинической генетике для студентов.

Генетика – это наука, изучающая закономерности наследования генетической информации и изменчивость организмов. Основоположник генетики – австрийский ученый Грегор Мендель.

История развития генетики

Генетика – относительно молодая наука, зародилась она в 19 ст., и развивается до сегодняшних дней.

Выделяют три основных этапа в развитии генетики:

Этап I

Первый этап связан с Грегором Менделем и открытием законов наследственности. Многочисленные исследования и скрещивания животных и растений уже вначале XX ст. полностью подтвердили теории, выдвинутые Менделем. Вклад в развитие генетики сделал биолог В. Иоганнсен, который описал такие понятия как «генотип», «фенотип» и «популяция».

Этап II

Второй этап начался с изучения генетики на клеточном уровне. Исследуя строение клетки, удалось установить, что гены являются участками гомологичных хромосом, которые в процессе деления распределяются между дочерними клетками. В этот период Т.Г.Морганом было открыто явление кроссинговера, который играет важную роль в механизме наследственной изменчивости.

Этап III

Третий этап характеризуется достижениями в сфере молекулярных наук, которые позволили изучать закономерности генетики на уровне бактерий и вирусов. Была выдвинута теория, которая гласит, что один ген отвечает за один фермент. Фермент катализирует определенную реакцию, среди множества других, которая отвечает за формирование признака.

В 50-60 годах прошлого столетия Ф.Крик и Дж.Уотсон разработали модель ДНК, которая представляла собой двойную спираль, она дала возможность проследить репликацию молекулы ДНК. Это открытие стало выдающимся событием века.

В XXI веке начала развиваться генная инженерия, которая дает возможность создавать собственные генетические системы. Это позволило выделять гены из одних участков и внедрять их в генетический аппарат других организмов. Так генная инженерия стала занимать важное место в селекции растений и животных, в медицине при изучении врожденных заболеваний, аномалий развития.

Основные понятия генетики

Наследственность - способность одного поколения живых организмов передавать свои характеристики следующему.

Приобретение потомством отличительных признаков в процессе индивидуального развития.

Признаки - особые черты строения организма, которые формируются на протяжении жизни и зависят от генетического фона и условий окружающей среды.

Фенотип - совокупность всех внешних и внутренних признаков организма.

Ген - наименьшая структурная и функциональная единица наследственности. Входит в состав молекулы ДНК и отвечает за образование и передачу конкретного свойства.

Генотип - набор генов, унаследованных от родителей, которые под влиянием внешних факторов определяют фенотип организма.

- гены, занимающие одинаковые локусы в гомологичных хромосомах.

Гомозиготы- особи, несущие аллельные гены с одинаковой молекулярной основой.

Гетерозиготы - особи, несущие аллельные гены различной молекулярной структуры.


Законы генетики

Основные законы были сформулированы Менделем, которые он вывел опытным путем, исследуя закономерности наследования на растениях.

Закон единообразия гибридов первого поколения.

Суть закона заключается в следующем: если скрестить два гомозиготных организма, которые кодируют разное проявление одного признака, то потомки в первом поколении будут единообразны. Аллель, который проявился, является доминантным, он подавляет рецессивный признак.

Определить это явление Менделю удалось, используя чистые линии гороха с белыми и пурпурными цветами. После скрещивания, все потомство имело пурпурный окрас цветков.

Закон расщепления.

Скрещивание гетерозигот, полученных в первом поколении, дает расщепление по такому принципу:

  • фенотип 3:1;
  • генотип 1:2:1.

Так, менделевский закон подтвердил, что рецессивные признаки никак не изменяются и не теряются, а просто не проявляются в сочетании с доминантным геном.

Закон независимого наследования признаков.

Скрещивание двух гетерозиготных особей, которые отличаются более чем по двум признакам, дает поколение с разнообразной и независимой комбинацией генов.

Разделы генетики

Классическая генетика изучает закономерности передачи генов.

Цитогенетика исследует структуру хромосом и их участие в передаче наследственной информации.

Молекулярная генетика исследует молекулярные основы наследования признаков путем изучения строения ДНК и РНК.

Биохимическая генетика направлена на изучение влияния генетических факторов на биохимические процессы в живом организме.

Медицинская генетика – изучает наследственные заболевания и разрабатывает эффективное лечение.

Значение генетики

Все чаще рождаются дети с наследственными аномалиями развития. Врожденная патология сказывается на деятельности жизненно важных органов и приводит к росту ранней детской смертности.

Неблагоприятная экологическая обстановка вредные привычки родителей приводят к разного рода мутациям, которые сказываются на здоровье человека.

На сегодняшний день ученые-генетики сделали много открытий в области медицины, селекции животных и растений, что позволяет целенаправленно влиять на наследственность организмов, предотвращая мутационные процессы.

Многие заболевания, как показали исследования, носят генетическую природу:

  • Увеличение количества хромосом (синдром Клайнфельтера);
  • уменьшение (синдром Шерешевского-Тернера);
  • болезни сцепленные с хромосомами (гемофилия, дальтонизм);
  • нарушения обмена веществ (галактоземия).

Теперь, зная причину развития заболевания, ученые разрабатывают методы предотвращения мутаций, которые ведут к врожденным аномалиям.

Селекция животных и растений уже стала самостоятельной наукой, но в основе ее лежат генетические закономерности наследования. Новые сорта растений с высокой урожайностью, ценные породы животных удалось получить, используя законы наследственности и изменчивости.

Фармацевтическая промышленность не обходится без генетической инженерии. Продукция антибиотиков стала возможной благодаря генетической модификации микроорганизмов-продуцентов. Так удалось многократно увеличить скорость синтеза лекарственных средств и уменьшить затраты на производство.