Найти значение функции распределения в точке. Функция распределения случайной величины. Функции одной случайной переменной

Функция распределения вероятностей случайной величины и ее свойства.

Рассмотрим функцию F(х) , определенную на всей числовой оси следующим образом: для каждого х значение F(х) равно вероятности того, что дискретная случайная величина примет значение, меньшее х , т. е.

(18)

Эта функция называется функцией распределения вероятностей , или кратко, функцией распределения .

Пример 1. Найти функцию распределения случайной величины , приведенной в примере 1, п. 1.

Решение: Ясно, что если , то F(x)=0 , так как не принимает значений, меньших единицы. Если , то ; если , то . Но событие <3 в данном случае является суммой двух несовместных событий: =1 и =2. Следовательно,

Итак для имеем F(x)=1/3 . Аналогично вычисляются значения функции в промежудках , и . Наконец, если x>6 то F(x)=1 , так как в этом случае любое возможное значение (1, 2, 3, 4, 5, 6) меньше, чем x . График функции F(x) изображен на рис. 4.

Пример 2. Найти функцию распределения случайной величины , приведенной в примере 2, п. 1.

Решение: Очевидно, что

График F(x) изображен на рис. 5.

Зная функцию распределения F(x) , легко найти вероятность того, что случайная величина удовлетворяет неравенствам .
Рассмотрим событие, заключающееся в том, что случайняя величина примет значение, меньшее . Это событие распадается на сумму двух несовместных событий: 1) случайная величина принимает значения, меньшие , т.е. ; 2) случайная величина принимает значения, удовлетворяющие неравенствам . Используя аксиому сложения, получаем

Но по определению функции распределения F(x) [см. формулу (18)], имеем , ; cледовательно,

(19)

Таким образом, вероятность попадания дискретной случайной величины в интервал равна приращению функции распределения на этом интервале.

Рассмотрим основные свойства функции распределения.
1°. Функция распределения является неубывающей.
В самом деле, пусть < . Так как вероятность любого события неотрицательна, то . Поэтому из формулы (19) следует, что , т.е. .

2°. Значения функции распределения удовлетворяют неравенствам .
Это свойство вытекает из того, что F(x) определяется как вероятность [см. формулу (18)]. Ясно, что * и .

3°. Вероятность того, что дискретная случайная величина примет одно из возможных значений xi, равна скачку функции распределения в точке xi .
Действительно, пусть xi - значение, принимаемое дискретной случайной величиной, и . Полагая в формуле (19) , , получим

Т.е. значение p(xi) равно скачку функции ** xi . Это свойство наглядно иллюстрируется на рис. 4 и рис. 5.

* Здесь и в дальнейшем введены обозначения: , .
** Можно показать, что F(xi)=F(xi-0) , т.е. что функция F(x) непрерывна слева в точке xi .

3. Непрерывные случайные величины.

Кроме дискретных случайных величин, возможные значения которых образуют конечную или бесконечную последовательность чисел, не заполняющих сплошь никакого интервала, часто встречаются случайные величины, возможные значения которых образуют некоторый интервал. Примером такой случайной величины может служить отклонение от номинала некоторого размера детали при правильно налаженном технологическом процессе. Такого рода, случайные величины не могут быть заданы с помощью закона распределения вероятностей р(х) . Однако их можно задать с помощью функции распределения вероятностей F(х) . Эта функция определяется точно так же, как и в случае дискретной случайной величины:

Таким образом, и здесь функция F(х) определена на всей числовой оси, и ее значение в точке х равно вероятности того, что случайная величина примет значение, меньшее чем х .
Формула (19) и свойства 1° и 2° справедливы для функции распределения любой случайной величины. Доказательство проводится аналогично случаю дискретной величины.
Случайная величина называется непрерывной , если для нее существует неотрицательная кусочно-непрерывная функция* , удовлетворяющая для любых значений x равенству

Исходя из геометрического смысла интеграла как площади, можно сказать, что вероятность выполнения неравенств равна площади криволинейной трапеции с основанием , ограниченной сверху кривой (рис. 6).

Так как , а на основании формулы (22)

Заметим, что для непрерывной случайной величины функция распределения F(х) непрерывна в любой точке х , где функция непрерывна. Это следует из того, что F(х) в этих точках дифференцируема.
На основании формулы (23), полагая x 1 =x , , имеем

В силу непрерывности функции F(х) получим, что

Следовательно

Таким образом, вероятность того, что непрерывная случайная величина может принять любое отдельное значение х, равна нулю .
Отсюда следует, что события, заключающиеся в выполнении каждого из неравенств

Имеют одинаковую вероятность, т.е.

В самом деле, например,

Так как

Замечание. Как мы знаем, если событие невозможно, то вероятность его наступления равна нулю. При классическом определении вероятности, когда число исходов испытания конечно, имеет место и обратное предложение: если вероятность события равна нулю, то событие невозможно, так как в этом случае ему не благоприятствует ни один из исходов испытания. В случае непрерывной случайной величины число возможных ее значений бесконечно. Вероятность того, что эта величина примет какое-либо конкретное значение x 1 как мы видели, равна нулю. Однако отсюда не следует, что это событие невозможно, так как в результате испытания случайная величина может, в частности, принять значение x 1 . Поэтому в случае непрерывной случайной величины имеет смысл говорить о вероятности попадания случайной величины в интервал, а не о вероятности того, что она примет какое-то конкретное значение.
Так, например, при изготовлении валика нас не интересует вероятность того, что его диаметр будет равен номиналу. Для нас важна вероятность того, что диаметр валика не выходит из поля допуска.

Функцией распределения случайной величины X называется функция F(x), выражающая для каждого х вероятность того, что случайная величина X примет значение , меньшее х

Пример 2.5. Дан ряд распределения случайной величины

Найти и изобразить графически ее функцию распределения. Решение. В соответствии с определением

F(jc) = 0 при х х

F(x) = 0,4 + 0,1 = 0,5 при 4 F{x) = 0,5 + 0,5 = 1 при х > 5.

Итак (см. рис. 2.1):


Свойства функции распределения:

1. Функция распределения случайной величины есть неотрицательная функция, заключенная между нулем и единицей:

2. Функция распределения случайной величины есть неубывающая функция на всей числовой оси, т.е. при х 2

3. На минус бесконечности функция распределения равна нулю, на плюс бесконечности - равна единице, т.е.

4. Вероятность попадания случайной величины X в интервал равна определенному интегралу от ее плотности вероятности в пределах от а до b (см. рис. 2.2), т.е.


Рис. 2.2

3. Функция распределения непрерывной случайной величины (см. рис. 2.3) может быть выражена через плотность вероятности по формуле:

F(x)= Jp (*)*. (2.10)

4. Несобственный интеграл в бесконечных пределах от плотности вероятности непрерывной случайной величины равен единице:

Геометрически свойства / и 4 плотности вероятности означают, что ее график - кривая распределения - лежит не ниже оси абсцисс , и полная площадь фигуры , ограниченной кривой распределения и осью абсцисс , равна единице.

Для непрерывной случайной величины X математическое ожидание М(Х) и дисперсия D(X) определяются по формулам:

(если интеграл абсолютно сходится); или

(если приведенные интегралы сходятся).

Наряду с отмеченными выше числовыми характеристиками для описания случайной величины используется понятие квантилей и процентных точек.

Квантилем уровня q (или q-квантилем) называется такое значение x q случайной величины , при котором функция ее распределения принимает значение , равное q, т. е.

  • 100q%-ou точкой называется квантиль X~ q .
  • ? Пример 2.8.

По данным примера 2.6 найти квантиль xqj и 30%-ную точку случайной величины X.

Решение. По определению (2.16) F(xo t3)= 0,3, т. е.

~Y~ = 0,3, откуда квантиль х 0 3 = 0,6. 30%-ная точка случайной величины X , или квантиль Х)_о,з = xoj » находится аналогично из уравнения ^ = 0,7 . откуда *,= 1,4. ?

Среди числовых характеристик случайной величины выделяют начальные v* и центральные р* моменты к-го порядка , определяемые для дискретных и непрерывных случайных величин по формулам:


Даны определения Функции распределения случайной величины и Плотности вероятности непрерывной случайной величины. Эти понятия активно используются в статьях о статистике сайта . Рассмотрены примеры вычисления Функции распределения и Плотности вероятности с помощью функций MS EXCEL .

Введем базовые понятия статистики, без которых невозможно объяснить более сложные понятия.

Генеральная совокупность и случайная величина

Пусть у нас имеется генеральная совокупность (population) из N объектов, каждому из которых присуще определенное значение некоторой числовой характеристики Х.

Примером генеральной совокупности (ГС) может служить совокупность весов однотипных деталей, которые производятся станком.

Поскольку в математической статистике, любой вывод делается только на основании характеристики Х (абстрагируясь от самих объектов), то с этой точки зрения генеральная совокупность представляет собой N чисел, среди которых, в общем случае, могут быть и одинаковые.

В нашем примере, ГС - это просто числовой массив значений весов деталей. Х – вес одной из деталей.

Если из заданной ГС мы выбираем случайным образом один объект, имеющей характеристику Х, то величина Х является случайной величиной . По определению, любая случайная величина имеет функцию распределения , которая обычно обозначается F(x).

Функция распределения

Функцией распределения вероятностей случайной величины Х называют функцию F(x), значение которой в точке х равно вероятности события X

F(x) = P(X

Поясним на примере нашего станка. Хотя предполагается, что наш станок производит только один тип деталей, но, очевидно, что вес изготовленных деталей будет слегка отличаться друг от друга. Это возможно из-за того, что при изготовлении мог быть использован разный материал, а условия обработки также могли слегка различаться и пр. Пусть самая тяжелая деталь, произведенная станком, весит 200 г, а самая легкая - 190 г. Вероятность того, что случайно выбранная деталь Х будет весить меньше 200 г равна 1. Вероятность того, что будет весить меньше 190 г равна 0. Промежуточные значения определяются формой Функции распределения. Например, если процесс настроен на изготовление деталей весом 195 г, то разумно предположить, что вероятность выбрать деталь легче 195 г равна 0,5.

Типичный график Функции распределения для непрерывной случайной величины приведен на картинке ниже (фиолетовая кривая, см. файл примера ):

В справке MS EXCEL Функцию распределения называют Интегральной функцией распределения (Cumulative Distribution Function , CDF ).

Приведем некоторые свойства Функции распределения:

  • Функция распределения F(x) изменяется в интервале , т.к. ее значения равны вероятностям соответствующих событий (по определению вероятность может быть в пределах от 0 до 1);
  • Функция распределения – неубывающая функция;
  • Вероятность того, что случайная величина приняла значение из некоторого диапазона плотность вероятности равна 1/(0,5-0)=2. А для с параметром лямбда =5, значение плотности вероятности в точке х=0,05 равно 3,894. Но, при этом можно убедиться, что вероятность на любом интервале будет, как обычно, от 0 до 1.

    Напомним, что плотность распределения является производной от функции распределения , т.е. «скоростью» ее изменения: p(x)=(F(x2)-F(x1))/Dx при Dx стремящемся к 0, где Dx=x2-x1. Т.е. тот факт, что плотность распределения >1 означает лишь, что функция распределения растет достаточно быстро (это очевидно на примере ).

    Примечание : Площадь, целиком заключенная под всей кривой, изображающей плотность распределения , равна 1.

    Примечание : Напомним, что функцию распределения F(x) называют в функциях MS EXCEL интегральной функцией распределения . Этот термин присутствует в параметрах функций, например в НОРМ.РАСП (x; среднее; стандартное_откл; интегральная ). Если функция MS EXCEL должна вернуть Функцию распределения, то параметр интегральная , д.б. установлен ИСТИНА. Если требуется вычислить плотность вероятности , то параметр интегральная , д.б. ЛОЖЬ.

    Примечание : Для дискретного распределения вероятность случайной величине принять некое значение также часто называется плотностью вероятности (англ. probability mass function (pmf)). В справке MS EXCEL плотность вероятности может называть даже "функция вероятностной меры" (см. функцию БИНОМ.РАСП() ).

    Вычисление плотности вероятности с использованием функций MS EXCEL

    Понятно, что чтобы вычислить плотность вероятности для определенного значения случайной величины, нужно знать ее распределение.

    Найдем плотность вероятности для N(0;1) при x=2. Для этого необходимо записать формулу =НОРМ.СТ.РАСП(2;ЛОЖЬ) =0,054 или =НОРМ.РАСП(2;0;1;ЛОЖЬ) .

    Напомним, что вероятность того, что непрерывная случайная величина примет конкретное значение x равна 0. Для непрерывной случайной величины Х можно вычислить только вероятность события, что Х примет значение, заключенное в интервале (а; b).

    Вычисление вероятностей с использованием функций MS EXCEL

    1) Найдем вероятность, что случайная величина, распределенная по (см. картинку выше), приняла положительное значение. Согласно свойству Функции распределения вероятность равна F(+∞)-F(0)=1-0,5=0,5.

    НОРМ.СТ.РАСП(9,999E+307;ИСТИНА) -НОРМ.СТ.РАСП(0;ИСТИНА) =1-0,5.
    Вместо +∞ в формулу введено значение 9,999E+307= 9,999*10^307, которое является максимальным числом, которое можно ввести в ячейку MS EXCEL (так сказать, наиболее близкое к +∞).

    2) Найдем вероятность, что случайная величина, распределенная по , приняла отрицательное значение. Согласно определения Функции распределения, вероятность равна F(0)=0,5.

    В MS EXCEL для нахождения этой вероятности используйте формулу =НОРМ.СТ.РАСП(0;ИСТИНА) =0,5.

    3) Найдем вероятность того, что случайная величина, распределенная по стандартному нормальному распределению , примет значение, заключенное в интервале (0; 1). Вероятность равна F(1)-F(0), т.е. из вероятности выбрать Х из интервала (-∞;1) нужно вычесть вероятность выбрать Х из интервала (-∞;0). В MS EXCEL используйте формулу =НОРМ.СТ.РАСП(1;ИСТИНА) - НОРМ.СТ.РАСП(0;ИСТИНА) .

    Все расчеты, приведенные выше, относятся к случайной величине, распределенной по стандартному нормальному закону N(0;1). Понятно, что значения вероятностей зависят от конкретного распределения. В статье найти точку, для которой F(х)=0,5, а затем найти абсциссу этой точки. Абсцисса точки =0, т.е. вероятность, того что случайная величина Х примет значение <0, равна 0,5.

    В MS EXCEL используйте формулу =НОРМ.СТ.ОБР(0,5) =0.

    Однозначно вычислить значение случайной величины позволяет свойство монотонности функции распределения.

    Обратная функция распределения вычисляет , которые используются, например, при . Т.е. в нашем случае число 0 является 0,5-квантилем нормального распределения . В файле примера можно вычислить и другой квантиль этого распределения. Например, 0,8-квантиль равен 0,84.

    В англоязычной литературе обратная функция распределения часто называется как Percent Point Function (PPF).

    Примечание : При вычислении квантилей в MS EXCEL используются функции: НОРМ.СТ.ОБР() , ЛОГНОРМ.ОБР() , ХИ2.ОБР(), ГАММА.ОБР() и т.д. Подробнее о распределениях, представленных в MS EXCEL, можно прочитать в статье .

    Универсальным способом задания закона распределения, пригодным как для дискретных, так и для непрерывных случайных величин, является функция распределения.

    Функцией распределения случайной величины X называется функция F (x ), определяющая для каждого значения x вероятность того, что случайная величина X примет значение меньшее, чем x , то есть

    F (x ) = P (X < x ).

    Основные свойства функции распределения F (x ) :

    1. Так как по определению F (x ) равна вероятности события, все возможные значения функции распределения принадлежат отрезку :

    0 £ F (x ) £ 1.

    2. Если , то , то есть F (x ) - неубывающая функция своего аргумента.

    3. Вероятность того, что случайная величина примет значение, принадлежащее полуинтервалу [a , b ), равна приращению функции распределения на этом интервале:

    P (a £ X < b ) = F (b ) - F (a ).

    4. Если все возможные значения случайной величины принадлежат отрезку [a , b ], то

    F (x ) = 0, при x £ a ; F (x ) = 1, при x > b .

    Функция распределения дискретных случайных величин может быть определена по формуле

    . (15)

    Если известен ряд распределения дискретной случайной величины, легко вычислить и построить ее функцию распределения. Продемонстрируем, как это делается на примере 23.

    Пример 25. Вычислить и построить функцию распределения для дискретной случайной величины, закон распределения которой, имеет вид:

    x i 0,1 1,2 2,3 4,5
    p i 0,1 0,2 0,6 0,1

    Решение . Определим значения функции F (x ) = P (X < x ) для всех возможных значений x :

    при x Î (- ¥; 0,1] нет ни одного значения случайной величины X , меньшего данных значений x , то есть нет ни одного слагаемого в сумме (15):

    F (x ) = 0;

    при x Î (0,1; 1,2] только одно возможное значение (X = 0,1) меньше рассматриваемых значений x . То есть при x Î (0,1; 1,2] F (x ) = P (X = 0,1) = 0,1;

    при x Î (1,2; 2,3] два значения (X = 0,1 и X = 1,2) меньше данных значений x , следовательно, F (x ) = P (X = 0,1) + P (X = 1,2) = 0,1 + 0,2 = 0,3;

    при x Î (2,3; 4,5] три значения (X = 0,1, X = 1,2 и X = 2,3) меньше данных значений x , следовательно, F (x ) = P (X = 0,1) + P (X = 1,2) + P (X = 2,3) = 0,1 + 0,2 + 0,6 = 0,9 ;

    при x Î (4,5, ¥) все возможные значения случайной величины X будут меньше данных значений x , и F (x ) = P (X = 0,1) + P (X = 1,2) + P (X = 2,3) +

    + P (X = 4,5) = 0,1 + 0,2 + 0,6 + 0,1 = 1.

    Таким образом ,

    График функции F (x ) изображен на рисунке 8.

    В общем случае, функция распределения F (x ) дискретной случайной величины X есть разрывная ступенчатая функция, непрерывная слева, скачки которой происходят в точках, соответствующих возможным значениям х 1 , х 2 , … случайной величины X и равны вероятностям p 1 , p 2 , … этих значений.


    Функция распределения непрерывных случайных величин . Теперь можно дать более точное определение непрерывных случайных величин: случайная величина X называется непрерывной , если ее функция распределения F (x ) при всех значениях x непрерывна и, кроме того, имеет производную всюду, за исключением, может быть, отдельных точек.

    Из непрерывности функции F (x ) следует, что вероятность каждого отдельного значения непрерывной случайной величины равна нулю .

    Так как вероятность каждого отдельного значения непрерывной случайной величины равна 0, свойство 3 функции распределения для непрерывной случайной величины будет иметь вид

    P (a £ X < b ) = P (a £ X £ b ) = P (a < X £ b ) = P (a < X < b ) = F (b ) - F (a ).

    Пример 26. Вероятности поражения цели для каждого из двух стрелков соответственно равны: 0,7; 0,6. Случайная величина X - число промахов, при условии, что каждый стрелок сделал по одному выстрелу. Составить ряд распределения случайной величины X , построить столбцовую диаграмму и функцию распределения.

    Решение. Возможные значения данной случайной величины X : 0, 1, 2. Условие задачи можно рассматривать как серию из n = 2 независимых испытаний. В данном случае для вычисления вероятностей возможных значений случайной величины X можно воспользоваться теоремами сложения вероятностей несовместных событий и умножения вероятностей независимых событий:

    Обозначим события:

    A i = {i -й стрелок поразил мишень}, i = 1, 2.

    Согласно условию, вероятность события A 1 P (A 1) = 0,7, вероятность события A 2 - P (A 2) = 0,6 . Тогда вероятности противоположных событий: , .

    Определим все элементарные события данного случайного эксперимента и соответствующие вероятности:

    Элементарные события События Вероятности
    Итого

    (Проверим, что ).

    Ряд распределения данной случайной величины X имеет вид

    x i Итого
    p i 0,42 0,46 0,12

    Столбцовая диаграмма, соответствующая этому ряду распределения, приведена на рисунке 9.

    Вычислим функцию распределения данной случайной величины:

    :

    при x Î (- ¥, 0] ;

    при x Î (0, 1] ;

    при x Î (1, 2] ;

    при x Î (2, +¥);

    Итак, функция распределения рассматриваемой случайной величины имеет вид:

    График функции F (x ) приведён на рисунке 10.

    Функция плотности распределения вероятностей непрерывной случайной величины.

    Плотностью распределения вероятностей непрерывной случайной величины X в точке x называется производная ее функции распределения в этой точке:

    f (x ) = F ¢(x ).

    По своему смыслу значения функции f (x ) пропорциональны вероятности того, что исследуемая случайная величина примет значение где-то в непосредственной близости от точки x .

    Функция плотности распределения f (x ), как и функция распределения F (x ), является одной из форм задания закона распределения, но она применима только для непрерывных случайных величин. Функцию плотности распределения вероятностей f (x ) еще называют дифференциальной функцией распределения , тогда как функцию распределения F (x ) называют, соответственно, интегральной функцией распределения .

    График функции плотности распределения f (x ) называется кривой распределения .

    Рассмотрим свойства, которыми обладает функция плотности распределения непрерывной случайной величины.

    Свойство 1. Плотность распределения вероятностей - неотрицательная функция:

    f (x ) ³ 0

    (геометрически: кривая распределения лежит не ниже оси абсцисс).

    Свойство 2. Вероятность попадания значения случайной величины на участок от a до b определяется по формуле

    ;

    (геометрически: эта вероятность равна площади криволинейной трапеции, ограниченной кривой f (x ), осью Ох и прямыми x = a и x = b).

    Свойство 3.

    (геометрически : площадь фигуры, ограниченной кривой распределения и осью абсцисс, равна единице).

    В частности, если все возможные значения случайной величины принадлежат отрезку [a , b ], то

    Свойство 4. Функция распределения F (x ) может быть найдена по известной функции плотности распределения следующим образом:

    .

    Пример 27. Непрерывная случайная величина задана функцией распределения

    Определить дифференциальную функцию плотности распределения.

    Решение . Определим дифференциальную функцию плотности распределения

    Пример 28. Является ли плотностью распределения некоторой случайной величины каждая из следующих функций?

    Вопросы для самоконтроля

    1. Что называется случайной величиной?

    2. Какие величины называются дискретными? непрерывными?

    3. Что называется законом распределения случайной величины?

    4. Какими способами может быть задан закон распределения дискретной случай-ной величины? непрерывной?

    5. Что характеризует функция распределения F(x) случайной величины?

    6. Как определить вероятность попадания значения случайной величины в некоторый интервал с помощью функции распределения?

    7. Что характеризует функция плотности распределения случайной величины? Укажите ее вероятностный смысл.

    8. Для каких величин определена функция плотности распределения?

    9. Может ли функция плотности распределения принимать отрицательные зна-чения?

    10. Как связаны между собой функции F(x) и f (x )?

    11. Какие случайные величины называются непрерывными?

    12. Чему равна площадь фигуры, ограниченной кривой распределения и осью абсцисс?

    13. Как определить вероятность попадания значения непрерывной случайной ве-личины в некоторый интервал с помощью функции плотности распределения?