Основные понятия и аксиомы. Определение натурального числа. Об аксиоматическом способе построения теории

В качестве основного понятия при аксиоматическом построении арифметики натуральных чисел взято отношение , заданное на непустом множестве N. Известными также считаются понятие множества, элемента множества и другие теоретико-множественные понятия, а также правила логики.

Элемент, непосредственно следующий за элементом а, обозначают а".

Суть отношения «непосредственно следовать за» раскрывается в следующих аксиомах.

Аксиома 1 .В множестве N существует элемент, непосредственно не следующий ни за каким элементом этого множества. Будем называть его единицей, и обозначать символом 1.

Аксиома 2 .Для каждого элемента а из N существует единственный элемент а", непосредственно следующий за а.

Аксиома 3. Для каждого элемента а из N существует не более одного элемента, за которым непосредственно следует а.

Аксиома 4 .Всякое подмножество М множества N совпадает с N, если обладает свойствами: 1) 1 содержится в М; 2) из того, что а содержится в М, следует, что и а" содержится в М.

Сформулированные аксиомы часто называют аксиомами Пеано.

Используя отношение «непосредственно следовать за» и аксиомы 1-4, можно дать следующее определение натурального числа.

Определение. Множество N, для элементов которого установлено отношение «непосредственно следовать за», удовлетворяющее аксиомам 1-4, называется множеством натуральных чисел, а его элементы - натуральными числами.

В данном определении ничего не говорится о природе элементов множества N.Значит, она может быть какой угодно. Выбирая в качестве множества N некоторое конкретное множество, на котором задано конкретное отношение «непосредственно следовать за», удовлетворяющее аксиомам 1- 4, мы получим модель данной системы аксиом. В математике доказано, что между всеми такими моделями можно установить взаимно однозначное соответствие, сохраняющее отношение «непосредственно следовать за», и все такие модели будут отличаться только природой элементов, их названием и обозначением. Стандартной моделью системы аксиом Пеано является возникший в процессе исторического развития общества ряд чисел: 1, 2, 3, 4, ...

Каждое число этого ряда имеет свое обозначение и название, которое мы будем считать известными.

Рассматривая натуральный ряд чисел в качестве одной из моделей аксиом 1- 4, следует отметить, что они описывают процесс образования этого ряда, причем происходит это при раскрытии в аксиомах свойств отношения «непосредственно следовать за». Так, натуральный ряд начинается с числа 1 (аксиома 1); за каждым натуральным числом непосредственно следует единственное натуральное число (аксиома 2); каждое натуральное число непосредственно следует не более чем за одним натуральным числом (аксиома 3); начиная от числа 1 и переходя по порядку к непосредственно следующим друг за другом натуральным числам, получаем все множество этих чисел (аксиома 4). Заметим, что аксиома 4 в формализованном виде описывает бесконечность натурального ряда, и на ней основано доказательство утверждений о натуральных числах.

Вообще моделью системы аксиом Пеано может быть любое счетное множество, например:

I,II,III,IIII,...

один, два, три, четыре,...

То обстоятельство, что в аксиоматических теориях не говорят об «истинной» природе изучаемых понятий, делает на первый взгляд эти теории слишком абстрактными и формальными, - оказывается, что одним и тем же аксиомам удовлетворяют различные множества объектов и разные отношения между ними. Однако в этой кажущейся абстрактности и состоит сила аксиоматического метода: каждое утверждение, выведенное логическим путем из данных аксиом, применимо к любым множествам объектов, лишь бы в них были определены отношения, удовлетворяющие аксиомам.

Итак, мы начали аксиоматическое построение системы натуральных чисел с выбора основного отношения «непосредственно следовать за» и аксиом, в которых описаны его свойства. Дальнейшее построение теории предполагает рассмотрение известных свойств натуральных чисел и операций над ними. Они должны быть раскрыты в определениях и теоремах, т.е. выведены чисто логическим путем из отношения «непосредственно следовать за», и аксиом 1- 4.

Первое понятие, которое мы введем после определения натурального числа, - это отношение «непосредственно предшествует», которое часто используют при рассмотрении свойств натурального ряда.

Определение. Если натуральное число b непосредственно следует за натуральным числом а, то число а называется непосредственно предшествующим (или предшествующим) числу b.

Отношение «предшествует» обладает рядом свойств. Они формулируются в виде теорем и доказываются с помощью аксиом 1 - 4.

Теорема 1. Единица не имеет предшествующего натурального числа.

Истинность данного утверждения вытекает сразу из аксиомы 1.

Теорема 2. Каждое натуральное число а, отличное от 1, имеет предшествующее число b , такое, что b " = а.

Доказательство. Обозначим через М множество натуральных чисел, состоящее из числа 1 и из всех чисел, имеющих предшествующее. Если число а содержится в М, то и число а" также есть в М, поскольку предшествующим для а" является число а. Это значит, что множество М содержит 1, и из того, что число а принадлежит множеству М, следует, что и число а" принадлежит М. Тогда по аксиоме 4 множество М совпадает с множеством всех натуральных чисел. Значит, все натуральные числа, кроме 1, имеют предшествующее число.

Отметим, что в силу аксиомы 3 числа, отличные от 1, имеют единственное предшествующее число.

Аксиоматическое построение теории натуральных чисел не рассматривается ни в начальной, ни в средней школе. Однако те свойства отношения «непосредственно следовать за», которые нашли отражение в аксиомах Пеано, являются предметом изучения в начальном курсе математики. Уже в первом классе при рассмотрении чисел первого десятка выясняется, как может быть получено каждое число. При этом используются понятия «следует» и «предшествует». Каждое новое число выступает как продолжение изученного отрезка натурального ряда чисел. Учащиеся убеждаются в том, что за каждым числом идет следующее, и притом только одно, что натуральный ряд чисел бесконечен. И конечно, знание аксиоматической теории поможет учителю методически грамотно организовать усвоение детьми особенностей натурального ряда чисел.

Раздел I. Математика и элементы логики.

Свойства множества натуральных чисел. Аксиоматическое определение вычитания целых неотрицательных чисел.

Число а меньше числа b (а < b ) тогда и только тогда, когда существует такое натуральное число с , что а + с = b .

При этих условиях говорят также, что число b больше а и пишут b > а.

Свойства отношения "меньше":

1. Для любого натурального числа а справедливо а < а, .

2. Для любых натуральных чисел а и b имеет место одно и только одно из трех отношений: а = b, а > b, а < b.

3. Если а < b и b < с, то а < с.

4. Если а < b, то неверно, что b < а.

Свойство монотонности сложения

1) а < b a + c < b + c; 2) а > b a + c > b + c.

Свойство монотонности умножения

1) а < b ac;

2) а > b ac>bc .

7. Свойство Архимеда: Для любых натуральных чисел а и b ; существует та­кое натуральное число n, что пb> а.

Из рассмотренных свойств отношения «меньше» вытекают важные особенности множества натуральных чисел , которые мы приводим без доказательства:

1) Ни для одного натурального числа, а не существует такого натурального числа п, что а <п <а + 1. Это свойство называется свойством дискретности множества натуральных чисел, а числа, а и а + 1 называют соседними .

2)Любое непустое подмножество множества натуральных чисел содержит наименьшее число. Это свойство называется принципом наименьшего числа .

3) Если М - непустое подмножество множества натуральных чисел и существует такое число b, что для всех чисел М выполняется неравенство х < b, то в множестве М есть наибольшее число. Это свойство называют принципом наибольшего числа .

Аксиоматическое определение вычитания целый неотрицательных чисел.

При аксиоматическом построении теории целых неотрицательных чисел вычитание определяется как операция, обратная сложению.

Разностью целых неотрицательных чисел а и b называется такое натуральное число с, что а = с + b. Это число обозначают а – b. Число а называют уменьшаемым, b – вычитаемым.



Разность целых неотрицательных чисел a и b существует, если b a и она единственна.

Теорема. Еслиразность целых неотрицательных чисел существует, если b a.

Доказательство. Пусть а = b . Тогда а – b = 0, и следовательно, разность существует. Если b < a , то по определению отношения «меньше» существует натуральное число с такое, что a = b + c . Тогда по определению разности с = а – b , т.е. разность существует и b + c = a . Если с = 0, то а = b; если с > 0, то b < a по определению отношения «меньше». Итак, b a .

Теорема. Если разность натуральных чиселa и b существует, то онаединственна.

Доказательство. Предположим, что существует два различных значения разности чисел а и b : a – b = c и a – b = c . Тогда, по определению разности, имеем: a = b + c и a = b + c . Отсюда следует, что b + c = b + c и значит c = c . Мы пришли к противоречию с нашим предположением. Следовательно, значение разности чисел a и b единственно.

Дистрибутивность умножения относительно вычитания: при b < a и при любых натуральных с верно равенство (a - b) c = a c - b c .

Докажем, что при b < a и при любых натуральных с верно равенство (a - b) c = a c - b c .

Доказательство. Пусть натуральные числа a и b выбраны произвольно, а с принимает различные натуральные значения. Обозначим через М множество таких натуральных чисел с, для которых верно равенство (a - b) c = a c - b c .

Докажем, что 1 М, т.е. что равенство (а - b) 1 = а 1 - b 1истинно. Согласно свойству 1 из определения умножения имеем: (а - b) 1 = а - b = а 1 - b 1.

Докажем теперь, что если с М, то с М, т.е. что из равенства (a - b) c = a c - b c следует равенство (a - b) с = a с - b с .

По определению умножения, имеем: (a - b) с =(а - b) (c + 1) = (а - b) c - (a - b) 1 = (a c - b c) + (a - b) = (a c - b с + a) - b =(a c + а) - (b c + b) =a (c + 1) – b (c + 1) = a с - b с .
Итак, мы показали, что множество М содержит 1, и из того, что оно содержит с , следует, что и с содержится в М . По аксиоме 4 получаем, что М = N . Это значит, что равенство (a - b) c = a c - b c верно для любых натуральных чисел с , а также для любых произвольных а и b .х на выражение а – с, будем иметь (а – c) + b = y.

Таким образом, мы доказали: если а с , то (a + b) – c = (a - c) + b.

Правило вычитания суммы из числа : при условии, что a b +c, имеем а – (b + c) = (a – b) – c.

Правило вычитания разности из числа: при a > b , имеем а – (b – c) = (a + c) – b = (a – b) +c.

Правило вычитания числа из разности: при a > b , имеем (а – b) – c = a – (b + c).

В начальном обучении математике определение вычитания как действия, обратного сложению, в общем виде, как правило, не дается, но им постоянно пользуются, начиная с выполнения действий над однозначными числами. Различные правила вычитания являются теоретической основой различных приемов вычислений.

Например, (40 + 16) – 10 = (40 – 10) + 16 = 30 + 16 = 46 или (40 + 16) – 10 = 40 + (16 – 10) = 40 + 6 = 46.

Неявное определение понятия путем указания множества аксиом, в которые оно вхо­дит наряду с другими понятиями. Аксиома представляет собой ут­верждение, принимаемое без доказательства. Совокупность акси­ом какой-то теории является одновременно и свернутой форму­лировкой этой теории, и тем контекстом, который определяет все входящие в нее понятия. Напр., аксиомы геометрии Евклида являются тем ограниченным по своему объекту текстом, в кото­ром встречаются понятия точки, прямой, плоскости и т. д., опре­деляющим значения данных понятий. Аксиомы классической механики Ньютона задают значения понятий «масса», «сила», «ус­корение» и др. Положения «Сила равна массе, умноженной на ускорение», «Сила действия равна силе противодействия» не яв­ляются явными определениями. Но они раскрывают, что пред­ставляет собой сила, указывая связи этого понятия с другими понятиями механики.

О. а. является частным случаем определения контекстуального. Принципиальная особенность О. а. заключается в том, что аксио­матический контекст строго ограничен и фиксирован. Он содер­жит все, что необходимо для понимания входящих в него поня­тий. Он ограничен по своей длине, а также по своему составу. В нем есть все необходимое и нет ничего лишнего.

О. а. - одна из высших форм научного определения понятий. Не всякая научная теория способна определить свои исходные поня­тия аксиоматически. Для этого требуется относительно высокий уровень развития знаний об исследуемой области; изучаемые объек­ты и их отношения должны быть также сравнительно просты. Точ­ку, линию и плоскость Евклиду удалось определить с помощью немногих аксиом еще две с лишним тысячи лет назад. Но попытка охарактеризовать с помощью нескольких утверждений такие слож­ные, многоуровневые объекты, как общество, история или ра­зум, не может привести к успеху. Аксиоматический метод здесь неуместен, он только огрубил бы и исказил реальную картину.

ОПРЕДЕЛЕНИЕ ГЕНЕТИЧЕСКОЕ (от греч. genesis - происхож­дение, источник)

Классическое, или родо-видовое, определе­ние, в котором спецификация определяемого предмета осуще­ствляется путем указания способа его образования, возникнове­ния, получения или построения. Напр.: «Окружность есть замкнутая кривая, описываемая концом отрезка прямой, вращаемого на плоскости вокруг неподвижного центра». О. г. отличаются большой эффективностью и часто встречаются в различных инструкциях и наставлениях, имеющих целью научить ч.-л.

ОПРЕДЕЛЕНИЕ КЛАССИЧЕСКОЕ, или: Определение через род и видовое отличие,

Определение, в котором пред­меты определяемого понятия вводятся в объем более широкого понятия и при этом с помощью отличительных признаков (видо­вое отличие) выделяются среди предметов этого более широкого понятия. Примерами О. к. могут быть: «Ромб есть плоский четыре­хугольник, у которого все стороны равны» (1), «Лексикология есть наука, изучающая словарный состав языка» (2). В О. к. (1) ромб (определяемый предмет) вводится сначала в класс плоских четырехугольников (род), а затем при помощи специфицирующего признака «иметь равные стороны» (видовое отличие) вы­деляется среди других плоских четырехугольников, отличается от них. В определении (2) определяемый предмет вводится в класс наук (род), а затем посредством указания специфицирующего признака «изучать словарный состав языка» (видовое отличие) выделяется среди других наук, которые не обладают этим при­знаком. В отличие от О. к. (1), объем определяемого понятия в О. к. (2) представляет класс, состоящий лишь из одного элемен­та (см.: Класс, Множество в логике). Многие научные и повсед­невные определения принимают форму О. к. В отличие от по­вседневных, в научных О. к. (если речь идет об опытных науках) видовое отличие всегда должно представлять собой существен­ный признак. По отношению именно к О. к. (или к тем, которые могут быть интерпретированы как О. к.) формулируются извес­тные правила (см.: Определение). Родо-видовые отношения игра­ют большую роль не только в О. к., но и при делении понятий и в классификациях, где процесс деления родового понятия на со­ставляющие его виды играет важную роль. Поэтому o.k. или оп­ределения через род и видовое отличие часто в логике называют классификационными.

ОПРЕДЕЛЕНИЕ НЕЯВНОЕ - определение, не имеющее формы равенства двух понятий. К О. н. относятся определение контексту­альное, определение остенсивное, определение аксиоматическое и др. О. н. противопоставляется определению явному, приравнивающе­му, или отождествляющему, два понятия.

ОПРЕДЕЛЕНИЕ НОМИНАЛЬНОЕ

Определение, выражаю­щее требование, как должно употребляться вводимое понятие, к каким объектам оно должно применяться. О. н. противопостав­ляется определению реальному, представляющему собой описа­ние определяемых объектов. Различие между этими двумя типа­ми определений принципиально важно, но его не всегда легко провести. Является ли некоторое определение описанием или же предписанием (требованием), во многом зависит от кон­текста употребления этого определения. Кроме того, некоторые определения носят смешанный, описательно-предписательный характер и функционируют в одних контекстах как описания, а в других - как предписания. Таковы, в частности, определения толковых словарей, описывающие обычные значения слов и одновременно указывающие, как следует правильно употреб­лять эти слова.

Реальное определение является истинным или ложным, как и всякое описательное высказывание. О. н., как и всякое предписание, не имеет истинностного значения. Оно может быть целесо­образным или нецелесообразным, эффективным или неэффек­тивным, но не истинным или ложным.

ОПРЕДЕЛЕНИЕ ОПЕРАЦИОНАЛЬНОЕ - определение физи­ческих величин (длины, массы, силы и др.) через описание совокупности специфицирующих их экспериментально-изме­рительных операций, напр.: «Сила есть физическая величина, пропорциональная растяжению пружины в пружинных весах». Иногда О. о. формулируются в сокращенной форме, напр.: «Тем­пература есть то, что измеряется термометром», где Dfn (опре­деляющее) в действительности представляет собой указание не только на прибор, которым измеряется определяемая физичес­кая величина, но и на совокупность операций, используемых при измерении температуры, которые в определении подразу­меваются. Одна и та же физическая величина может быть опре­делена не только операционально, но и при помощи определе­ний на теоретическом уровне. Напр., на теоретическом уровне температура может быть определена как величина, пропорцио­нальная кинетической энергии молекул. В соответствующих фи­зических теориях формулируются т.наз. правила соответствия, устанавливающие связь между понятиями, определенными опе­рационально, и понятиями, определенными на теоретическом уровне. Так, в кинетической теории газов формулируется следу­ющее проверяемое (и притом истинное) правило соответствия: «Числовые значения температуры газа, получаемые на основе показаний термометра, являются показателем средней кинети­ческой энергии молекул». Правила соответствия, таким образом, обеспечивают целостность эмпирического и теоретического уров­ней исследования. О. о. широко используются не только в физи­ке, но и в других опытно-экспериментальных науках.

ОПРЕДЕЛЕНИЕ ОСТЕНСИВНОЕ (от лат. ostentus - показыва­ние, выставление напоказ) - неявное определение, раскрываю­щее содержание понятия путем непосредственного показа, озна­комления обучаемого с предметами, действиями и ситуациями, обозначаемыми данным понятием. Напр., затрудняясь определить, что представляет собой зебра, мы можем подвести спрашиваю­щего к клетке с зеброй и сказать: «Это и есть зебра». О. о. не явля­ется чисто вербальным, поскольку включает не только слова, но и определенные действия.

ОПРЕДЕЛЕНИЕ РЕАЛЬНОЕ

Определение, дающее описание каких-то объектов. О. р. противопоставляется определению номиналь­ному, выражающему требование (предписание, норму), каким должны быть рассматриваемые объекты. Различие между О. р. и определением номинальным опирается на различие между опи­санием и пред писанием. Описать предмет - значит пере­числить те признаки, которые ему присущи; описание, соответ­ствующее предмету, является истинным, не соответствующее - ложным. Иначе обстоит дело с предписанием, его функция от­лична от функции описания. Описание говорит о том, каким является предмет, предписание указывает, каким он должен быть. «Ружье заряжено» - описание, и оно истинно, если ружье на самом деле заряжено. «Зарядите ружье!» - предписание, и его нельзя отнести к истинным или ложным.

Хотя различие между определениями-описаниями и опреде­лениями-предписаниями несомненно важно, его обычно нелег­ко провести. Зачастую утверждение в одном контексте звучит как О. р., а в другом выполняет функцию номинального. Иногда О. р., описывающее к.-л. объекты, обретает оттенок требования, как употреблять понятие, соотносимое с ними; номинальное опреде­ление может нести отзвук описания. Напр., задача обычного тол­кового словаря - дать достаточно полную картину стихийно сложившегося употребления слов, описать те значения, которые при­даются им в обычном языке. Но составители словарей ставят пе­ред собой и другую цель - нормализовать и упорядочить обычное употребление слов, привести его в определенную систему. Сло­варь не только описывает, как реально используются слова, он указывает также, как они должны правильно употребляться. Опи­сание здесь соединяется с требованием.

ОПРЕДЕЛЕНИЕ ЯВНОЕ

Определение, имеющее форму ра­венства двух понятий. Напр.: «Манометр - это прибор для изме­рения давления» или «Графомания - это болезненное пристрас­тие к писанию, к многословному, пустому, бесполезному сочи­нительству». В О. я. отождествляются, приравниваются друг к другу два понятия. Одно из них - определяемое понятие, со­держание которого требуется раскрыть, другое - определяю­щее понятие, решающее эту задачу. В определении маномет­ра определяемым понятием является «манометр», определяю­щим - «прибор для измерения давления».

О. я. имеет структуру: «S= DfР», где S - определяемое понятие, Р- определяющее понятие и знак «=Df» указывает на равенство понятий S и Р по определению.

Важным частным случаем О. я. является определение классичес­кое, или родо-видовое определение.

ОПРОВЕРЖЕНИЕ

Рассуждение, направленное против выдви­нутого тезиса и имеющее своей целью установление его ложности или недосказанности. Наиболее распространенный прием О. - выведение из опровергаемого утверждения следствий, противо­речащих истине. Если хотя бы одно следствие какого-то положе­ния ложно, то ложным является и само утверждение. Другой прием О. - доказательство истинности отрицания тезиса. Утвер­ждение и отрицание не могут быть одновременно истинными. Как только удается показать, что верным является отрицание тезиса, вопрос о его истинности отпадает.

ОШИБКА ЛОГИЧЕСКАЯ

Нарушения к.-л. законов, правил и схем логики. Если ошибка допущена неумышленно, она называ­ется паралогизмом; если правила логики нарушают умышленно, то это - софизм. Логические ошибки следует отличать от фактических ошибок. Последние обусловлены не нарушением пра­вил логики, а незнанием предмета, фактического положения дел, о котором идет речь. К О. л. нельзя причислять также ошибки сло­весного выражения наших мыслей. К числу последних относится широко известная омонимия - смешение понятий, происходя­щее вследствие того, что разные понятия часто выражаются од­ним и тем же словом, напр. «материализм» философский и «мате­риализм» в практической жизни, близкий к бездуховности.

Классификация О. л. обычно связывается с различными логи­ческими операциями и видами умозаключений. Так, можно выде­лить ошибки в делении понятий, в определении понятий; ошибки в индуктивном выводе; ошибки в дедуктивных умозаключениях; ошибки в доказательстве: по отношению к тезису, к аргументам, к демонстрации.

ПАРАДИГМА (от греч. paradeigma - пример, образец) - совокуп­ность теоретических и методологических положений, принятых на­учным сообществом на известном этапе развития науки и исполь­зуемых в качестве образца, модели, стандарта для научного исследо­вания, интерпретации, оценки и систематизации научных данных, для осмысления гипотез и решения задач, возникающих в процессе научного познания. Неизбежные в ходе научного познания затрудне­ния то или иное сообщество ученых стремится разрешать в рамках принятой им парадигмы. Так, в свое время ученые стремились интер­претировать новые эмпирические данные науки в рамках механисти­ческого мировоззрения, абсолютизировавшего представления класси­ческой механики, представлявшего собой некоторую П. Революцион­ные сдвиги в развитии науки связаны с изменением П.

ПЕРЕСЕЧЕНИЕ КЛАССОВ (МНОЖЕСТВ) - логическая опера­ция по нахождению общих для класса (множества) элементов. Так, П. к. студентов (A) и спортсменов (В) будет класс тех студентов, которые одновременно являются спортсменами. Результат может быть представлен в виде двух пересекающихся кругов (см. рис.), где заштрихованная часть будет представлять множество студентов, яв­ляющихся одновременно спортсмена­ми (см.: Множеств теория). В логике чаще говорят не о П. к., а о пересече­нии понятий. При этом имеется в виду операция нахождения общей части объема понятий.

ПОДМЕНА ТЕЗИСА (лат. ignoratio elenchi) - логическая ошибка в доказательстве, состоящая в том, что начав доказывать некоторый тезис, постепенно в ходе доказательства переходят к доказательству другого положения, сходного с тезисом. При этом происходит на­рушение закона тождества по отношению к тезису: тезис на всем протяжении доказательства должен оставаться одним и тем же. Опасность этой ошибки заключается в том, что благодаря сходству доказанного положения с тезисом создается иллюзия о доказаннос­ти именно тезиса. Напр.. доказывая положение «Н. невиновен», при­водят следующие аргументы: «Н. - хороший семьянин», «Н. - пере­довик производства» и т. п. Из этих аргументов вытекает вывод, что Н. - хороший человек. Но этот вывод не тождествен доказываемому тезису. Налицо подмена. П. т. часто совершается при опровержении, когда опровержение положения, лишь внешне сходного с тезисом, выдают за опровержение самого тезиса или опровержение одного из аргументов (или демонстрации) рассматривают как опровержение тезиса.

Тезис в процессе доказательства можно изменять. Иногда, дока­зывая некоторое положение, мы осознаем, что оно не совсем верно и нужно доказывать другое положение. В таком случае следует прямо сказать об этом, отказаться от ранее выставленного тезиса и сфор­мулировать новый тезис и после этого продолжить доказательство уже нового тезиса.

ПОДТВЕРЖДЕНИЕ - соответствие теории, закона, гипотезы некоторому факту или экспериментальному результату. В методоло­гии научного познания П. рассматривается как один из критериев истинности теории или закона. Для того чтобы установить, соответ­ствует ли теория действительности, т. е. верна ли она, из нее дедуци­руют предложение, говорящее о наблюдаемых или эксперименталь­но обнаруживаемых явлениях. Затем проводят наблюдения или ста­вят эксперимент, устанавливая истинность или ложность данного предложения. Если оно истинно, то это считается П. теории. Напр., обнаружение химических элементов, предсказанных Д. И. Менделе­евым на основе его таблицы, было П. этой таблицы; обнаружение планеты Уран в месте, вычисленном согласно уравнениям небесной механики Ньютона, было П. механики и т. п. С логической точки зрения процедура П. описывается следующим образом. Пусть Т~ проверяемая теория, A - эмпирическое следствие этой теории, связь между Т и А может быть выражена условным суждением «Если Т, то A». В процессе проверки обнаруживается, что A истинно; делается вывод о том, что Т подтверждена. Схема рассуждения выглядит следующим образом:

Такой вывод не дает достоверного заключения, поэтому на основа­нии истинности A мы не можем заключить, что теория Т также истинна, и говорим лишь, что теория Т подтверждена. Чем больше проверенных истинных следствий имеет теория, тем в большей сте­пени она считается подтвержденной.

ПОЗНАНИЕ - высшая форма отражения объективной действи­тельности, процесс выработки истинных знаний. Первоначально П. представляло собой одну из сторон практической деятельности лю­дей, постепенно в ходе исторического развития человечества П. стало особой деятельностью.

В П. выделяют два уровня: чувственное П., осуществляемое с помощью ощущения, восприятия, представления, и рациональное П., протекающее в понятиях, суждениях, умозаключениях и фиксируемое в теориях. Различают также обыденное, художе­ственное и научное П., а в рамках последнего - П. природы и П. общества. Различные стороны процесса П. исследуются рядом спе­циальных наук: когнитивной психологией, историей науки, социо­логией науки и т. п. Общее учение о П. дает философская теория П.

ПОЛЕМИКА - разновидность спора, отличающаяся тем, что ос­новные усилия спорящих сторон направлены на утверждение своей точки зрения по обсуждаемому вопросу.

Наряду с дискуссией, П. является одной из наиболее распростра­ненных форм спора. С дискуссией ее сближает наличие достаточно определенного тезиса, выступающего предметом разногласий, из­вестная содержательная связность, предполагающая внимание к аргументам противной стороны, очередность выступлений споря­щих, некоторая ограниченность приемов, с помощью которых оп­ровергается противная сторона и обосновывается собственная точ­ка зрения.

Вместе с тем П. существенно отличается от дискуссии. Если целью дискуссии являются прежде всего поиски общего согласия, того, что объединяет разные точки зрения, то основная задача П. - утвержде­ние одной из противостоящих позиций. Полемизирующие стороны менее, чем в дискуссии, ограничены в выборе средств спора, его стратегии и тактики. В П., как и в споре вообще, недопустимы не­корректные приемы (подмена тезиса, аргумент к силе или к неве­жеству, использование ложных и недоказанных аргументов и т. п.). В П. может применяться гораздо более широкий, чем в дискуссии, спектр корректных приемов. Большое значение имеют, в частности, инициатива, навязывание своего сценария обсуждения темы, вне­запность в использовании доводов, выбор наиболее удачного вре­мени для изложения решающих аргументов и т. п.

Хотя П. и направлена по преимуществу на утверждение своей позиции, нужно постоянно помнить, что главным в споре является достижение истины. Победа ошибочной точки зрения, добытая бла­годаря уловкам и слабости другой стороны, как правило, недолговеч­на, и она не способна принести моральное удовлетворение.

ПОНЯТИЕ - общее имя, имеющее относительно ясное и устой­чивое содержание и сравнительно четко очерченный объем. П. явля­ются, напр., «дом», «квадрат», «молекула», «кислород», «атом», «любовь», «бесконечный ряд» и т. п. Отчетливой границы между теми именами, которые можно назвать П., и теми, которые не относятся к П., не существует. «Атом» уже с античности является достаточно оформив­шимся П., в то время как «кислород» и «молекула» до XVIII в. вряд ли могли быть отнесены к П.

Имя «П.» широко используется и в повседневном языке, и в языке науки. Однако в истолковании содержания этого имени един­ства мнений нет. В одних случаях под П. имеют в виду все имена, включая и единичные, и пустые. К П. относят не только «столицу» и «европейскую реку», но и «столицу Белоруссии» и «самую большую реку Европы». В других случаях П. понимается как общее имя, отра­жающее предметы и явления в их общих и существенных признаках. Иногда П. отождествляется с содержанием общего имени, со смыс­лом, стоящим за таким именем.

Термин «П.» широко употреблялся в традиционной логике, кото­рая начинала с анализа П., затем переходила к исследованию сужде­ния, которое мыслилось составленным из П., и далее к описаниям умозаключения, составленного из суждений как более простых эле­ментов. В современной логике термины «П.», суждение и умозаключе­ние употребляются редко. Схема изложения логики «понятие -> суж­дение -> умозаключение» отброшена как устаревшая. Изложение со­временной логики начинается с логики высказываний, которая лежит в фундаменте всех иных логических систем и в которой простое высказывание не разлагается на составляющие его части.

ПОРОЧНЫЙ КРУГ - логическая ошибка в определении понятий и в доказательстве, суть которой заключается в том, что некоторое понятие определяется с помощью другого понятия, которое в свою очередь определяется через первое, или некоторый тезис доказывает­ся с помощью аргумента, истинность которого обосновывается с по­мощью доказываемого тезиса. Пример П. к. в определении: «Вращение есть движение вокруг собственной оси». Понятие «ось» само опреде­ляется через понятие «вращение» («ось - прямая, вокруг которой происходит вращение»). Частным случаем П.к. в определении поня­тий могут быть тавтологии, напр., «Демократ есть человек демократи­ческих убеждений». Примером П. к. в доказательстве могут служить многочисленные попытки математиков (до открытия Лобачевского) доказать независимость пятого постулата от других постулатов геометрии Евклида, использовавших при этом в качестве аргументов положения, эквивалентные доказываемому пятому постулату.

«ПОСЛЕ ЭТОГО ЗНАЧИТ ПО ПРИЧИНЕ ЭТОГО» (лат. post hoc ergo propter hoc)

Логическая ошибка, заключающаяся в том, что простую последовательность событий во времени принимают за их причинную связь. Напр., когда после появления кометы возникали какие-то несчастья, часто комету считали причиной несчастья; когда в трубке возникала пустота и вода в ней поднималась, то думали, что пустота есть причина поднятия воды и т. д. Данная ошибка лежит в основе многочисленных суеверий, легко возникающих в результате соединения во времени двух событий, никак не связан­ных друг с другом.

ПОСПЕШНОЕ ОБОБЩЕНИЕ - логическая ошибка в индуктив­ном выводе. Суть ее заключается в том, что, рассмотрев несколько частных случаев из какого-либо класса явлений, делают вывод обо всем классе. Напр.: 1 - простое число, 2 - простое число, 3 - простое число; следовательно, все натуральные числа - простые. Ошибка П.о. особенно часто совершается в повседневной жизни, когда люди по одному-двум случаям судят о целом классе.

ПРАВИЛО ВЫВОДА - правило, определяющее переход от посы­лок к следствиям. П. в. указывает, каким образом высказывания, ис­тинность которых известна, могут быть видоизменены, чтобы полу­чить новые истинные высказывания. Напр., правило отделе­ния устанавливает, что если истинны два высказывания, одно из которых имеет форму импликации, а другое является основанием (антецедентом) этой импликации, то и высказывание, являющееся следствием (консеквентом) импликации, истинно. Это правило, на­зываемое также правилом модус поненс, позволяет «отделить» след­ствие истинной импликации, при условии, что ее основание истинно. Скажем, от посылок «Если цирконий - металл, он электропроводен» и «Цирконий - металл» можно перейти к заключению «Цирконий электропроводен».

ПРАГМАТИКА - раздел семиотики, изучающий отношения между знаковыми системами и теми, кто воспринимает, интерпрети­рует и использует их. Для исследования прагматических свойств и отношений, существенных для адекватного восприятия и понимания текстов, чисто лингвистических и логических методов часто оказы­вается недостаточно и приходится прибегать также к методам пси­хологии, психолингвистики, этологии.

ПРЕВРАЩЕНИЕ (лат. obversio) в традиционной логике - вид непосредственного умозаключения, характеризующегося тем, что в исходных суждениях вида A, Е, I, О (см.: Суждение) предикат Р заменяется на не-Р (т. е. на его дополнение), и наоборот, и при этом качество суждения изменяется (утвердительное суждение преобра­зуется в отрицательное, и наоборот), а его общность (т. е. количество суждения) остается прежней. Так, из истинного суждения вида «Все S суть Р» путем его П. можно получить истинное суждение вида «Ни одно S не есть не-Р» (ср.: «Все тигры - хищные животные» и «Ни один тигр не является не-хищным животным»). Из истинного суждения вида «Ни одно S не есть Р» можно путем П. получить истинное суждение вида «Все S суть не-Р» (ср.: «Ни один кит не есть рыба» и «Все киты суть не-рыбы»). Из истинного суждения вида «Некоторые S суть Р» путем П. можно получить истинное суж­дение вида «Некоторые S не суть не-Р» (ср.: «Некоторые металлы являются жидкими» и «Некоторые металлы не являются не-жидкими»). Из истинного суждения вида «Некоторые S не суть Р» путем П. можно получить истинное суждение вида «Некоторые S есть не-Р» (ср.: «Некоторые учащиеся не являются отличниками» и «Неко­торые учащиеся являются не-отличниками»).

«ПРЕДВОСХИЩЕНИЕ ОСНОВАНИЯ» (лат. petitio principii) - ошиб­ка логическая в доказательстве, заключающаяся в том, что в качестве аргумента (основания), обосновывающего тезис, приводится поло­жение, которое хотя и не является заведомо ложным, однако нуж­дается в доказательстве. Так, социологическое учение англ. эконо­миста и священника Т. Р. Мальтуса (1766-1834) опиралось на два основных аргумента: население растет в геометрической прогрес­сии, в то время как средства к существованию возрастают лишь в арифметической прогрессии. Оба эти аргумента были недоказанны­ми, поэтому Мальтус совершал ошибку П. о. Ошибка стала явной, когда было показано, что население растет гораздо медленнее, чем предполагал Мальтус, а объем средств к существованию, напротив, возрастает намного быстрее.

ПРЕДИКАТ (от лат. praedicatum - сказанное) - языковое выра­жение, обозначающее какое-то свойство или отношение. П., указы­вающий на свойство отдельного предмета (напр., «быть зеленым»), называется одноместным. П., обозначающий отношение, назы­вается двухместным, трехместным и т. д., в зависимости от числа членов данного отношения («любит», «находится между» и т. д.).

В традиционной логике П. понимался только как свойство, преди­кативная связь означала, что предмету (субъекту) присущ опреде­ленный признак.

ПРИВЕДЕНИЕ К АБСУРДУ , или: Редукция к абсурду, приведение к нелепости (лат. reductio ad absurdum),

Рас­суждение, показывающее ошибочность какого-то положения путем выведения из него абсурда, т. е. противоречия. Если из высказывания А выводится как высказывание B, так и его отрицание, то верным является отрицание A. Напр., из высказывания «Треугольник - это окружность» вытекает как то, что треугольник имеет углы (так как быть треугольником значит иметь три угла), так и то, что у него нет углов (поскольку он окружность); следовательно, верным явля­ется не исходное высказывание, а его отрицание «Треугольник не является окружностью».

ПРИЧИННАЯ СВЯЗЬ

Физически необходимая связь между яв­лениями, при которой за одним из них всякий раз следует другое. Первое явление называется причиной, второе - действием или следствием.

ПРОПОЗИЦИОНАЛЬНАЯ СВЯЗКА - операция, позволяющая из данных суждений (высказываний) строить новые суждения (выс­казывания). В логике высказываний высказывания (формулы) рас­сматриваются лишь с точки зрения их истинности или ложности. Если A и В - к.-л. формулы (простые, элементарные или сложные, построенные из элементарных), то из них с помощью П. с. могут строиться новые формулы: А & В, AvB, A-> B, А = В, если А - формула, то ~А - также формула. Символы «&», «v», «->», «=», «~» выража­ют П. с., которые определяются на семантическом, содержательно-алгоритмическом уровне при помощи таблиц истинности. Эти П. с. соответственно называются: конъюнкцией, дизъюнкцией, импликаци­ей, эквиваленцией, отрицанием. Смысл П. с. в русском языке переда­ется при помощи следующих выражений:

конъюнкция - с помощью союзов «и», «а», «но», «хотя» и др.;

дизъюнкция (нестрогая) - с помощью выражений: «или», «или, или оба»;

импликация - с помощью выражений «если..., то», «влечет», «сле­дует» (ср.: «Если А, то В», «А влечет В», «Из А следует В»);

эквиваленция - с помощью выражений «эквивалентно», «равно­сильно», «тогда и только тогда», «если и только если»;

отрицание - с помощью выражений «не», «неверно, что».


Похожая информация.


Аксиоматическое определение

определение термина через множество аксиом (постулатов), в которые он входит и которые последовательно ограничивают область его возможных истолкований.

Напр., можно попытаться дать прямое определение понятия "равенство". Но можно привести систему истинных утверждений, включающих это понятие и неявно задающих его значение: "Каждый объект равен самому себе"; "В случае любых объектов, если первый равен второму, то второй равен первому"; "Для всех объектов верно, что если первый равен второму, а второй третьему, то первый равен третьему".

А. о. является частным случаем определения контекстуального. Всякий отрывок текста, всякий контекст, в котором встречается интересующее нас понятие, является в некотором смысле неявным определением последнего. Контекст ставит понятие в связь с другими понятиями и тем самым косвенно раскрывает его содержание. Встретив в тексте на иностранном языке одно-два неизвестных слова, мы, понимая текст в целом, можем составить примерное представление и о значениях неизвестных слов. Аналогично дело обстоит и с А. о. Совокупность аксиом к.-л. теории является одновременно и свернутой формулировкой этой теории, и тем контекстом, который неявно определяет все входящие в аксиомы понятия. Чтобы узнать, к примеру, что значат слова "масса", "сила", "ускорение" и т. п., можно обратиться к аксиомам классической механики Ньютона. "Сила равна массе, умноженной на ускорение", "Сила действия равна силе противодействия" и т. д. - эти положения, указывая связи понятия "сила" с другими понятиями механики, раскрывают его сущность.

Принципиальное отличие А. о. от иных контекстуальных определений в том, что аксиоматический контекст строго ограничен и фиксирован. Он содержит все, что необходимо для понимания входящих в него понятий. Он ограничен по размеру и по составу.

А. о. - одна из высших форм научного определения. Не всякая теория способна определить свои исходные термины аксиоматически, для этого требуется относительно высокий уровень развития знаний об исследуемой области. Изучаемые объекты и их отношения должны быть также сравнительно просты.


Словарь по логике. - М.: Туманит, изд. центр ВЛАДОС . А.А.Ивин, А.Л.Никифоров . 1997 .

Смотреть что такое "аксиоматическое определение" в других словарях:

    Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей … Википедия

    Определение, не имеющее формы равенства двух понятий. К О. н. относятся определение контекстуальное, определение остенсивное, определение аксиоматическое и др. О. н. противопоставляется определению явному, приравнивающему, или отождествляющему,… … Словарь терминов логики

    Неявное определение понятия путем указания множества аксиом, в которые оно входит наряду с другими понятиями. Аксиома представляет собой утверждение, принимаемое без доказательства. Совокупность аксиом какой то теории является одновременно и… … Словарь терминов логики

    - (лат. definitio) логическая операция, раскрывающая содержание понятия. Напр., обычное О. термометра указывает, что это, во первых, прибор и, во вторых, именно тот, с помощью которого измеряется температура. О. понятия термин говорит, что это… … Словарь терминов логики

    Матроид классификация подмножеств некоторого множества, представляющая собой обобщение идеи независимости элементов, аналогично независимости элементов линейного пространства, на произвольное множество. Содержание 1 Аксиоматическое… … Википедия

    Матроид классификация подмножеств некоторого множества, представляющая собой обобщение идеи независимости элементов, аналогично независимости элементов линейного пространства, на произвольное множество. Содержание 1 Аксиоматическое определение 2… … Википедия

    Матроид классификация подмножеств некоторого множества, представляющая собой обобщение идеи независимости элементов, аналогично независимости элементов линейного пространства, на произвольное множество. Содержание 1 Аксиоматическое определение 2… … Википедия

    - (греч. arithmetika, от arithmys число) наука о числах, в первую очередь о натуральных (целых положительных) числах и (рациональных) дробях, и действиях над ними. Владение достаточно развитым понятием натурального числа и умение… … Большая советская энциклопедия

    - (Peano), Джузеппе (27 авг. 1858 – 20 апр. 1932) – итал. математик и логик. Проф. математики в Туринском ун те (1890–1932). Известен важными результатами в матем. анализе, теории дифференц. уравнений (где ему принадлежит классич. формулировка осн … Философская энциклопедия

Книги

  • Аксиоматическое определение множества вещественных чисел. Учебное пособие , А. В. Орехов. Учебное пособие посвящено решению двух задач: во-первых, дать логически обоснованное аксиоматическое определение множества вещественных чисел и, во-вторых, изучить уникальные свойства этого…

- неявное определение понятия путем указания множества аксиом, в которые оно входит наряду с другими понятиями. Аксиома представляет собой утверждение, принимаемое без доказательства. Совокупность аксиом какой-то теории является одновременно и свернутой формулировкой этой теории, и тем контекстом, который определяет все входящие в нее понятия. Напр., аксиомы геометрии Евклида являются тем ограниченным по своему объекту текстом, в котором встречаются понятия точки, прямой, плоскости и т. д., определяющим значения данных понятий. Аксиомы классической механики Ньютона задают значения понятий «масса», «сила», «ускорение» и др. Положения «Сила равна массе, умноженной на ускорение», «Сила действия равна силе противодействия» не являются явными определениями. Но они раскрывают, что представляет собой сила, указывая связи этого понятия с другими понятиями механики.

О. а. является частным случаем определения контекстуального . Принципиальная особенность О. а. заключается в том, что аксиоматический контекст строго ограничен и фиксирован. Он содержит все, что необходимо для понимания входящих в него понятий. Он ограничен по своей длине, а также по своему составу. В нем есть все необходимое и нет ничего лишнего.

О. а. - одна из высших форм научного определения понятий. Не всякая научная теория способна определить свои исходные понятия аксиоматически. Для этого требуется относительно высокий уровень развития знаний об исследуемой области; изучаемые объекты и их отношения должны быть также сравнительно просты. Точку, линию и плоскость Евклиду удалось определить с помощью немногих аксиом еще две с лишним тысячи лет назад. Но попытка охарактеризовать с помощью нескольких утверждений такие сложные, многоуровневые объекты, как общество, история или разум, не может привести к успеху. Аксиоматический метод здесь неуместен, он только огрубил бы и исказил реальную картину.

ОПРЕДЕЛЕНИЕ ГЕНЕТИЧЕСКОЕ (от греч. genesis - происхождение, источник)

Классическое, или родо-видовое, определение, в котором спецификация определяемого предмета осуществляется путем указания способа его образования, возникновения, получения или построения. Напр.: «Окружность есть замкнутая кривая, описываемая концом отрезка прямой, вращаемого на плоскости вокруг неподвижного центра». О. г. отличаются большой эффективностью и часто встречаются в различных инструкциях и наставлениях, имеющих целью научить ч.-л.

ОПРЕДЕЛЕНИЕ КЛАССИЧЕСКОЕ, или: Определение через род и видовое отличие,

Определение, в котором предметы определяемого понятия вводятся в объем более широкого понятия и при этом с помощью отличительных признаков (видовое отличие) выделяются среди предметов этого более широкого понятия. Примерами О. к. могут быть: «Ромб есть плоский четырехугольник, у которого все стороны равны» (1), «Лексикология есть наука, изучающая словарный состав языка» (2). В О. к. (1) ромб (определяемый предмет) вводится сначала в класс плоских четырехугольников (род), а затем при помощи специфицирующего признака «иметь равные стороны» (видовое отличие) выделяется среди других плоских четырехугольников, отличается от них. В определении (2) определяемый предмет вводится в класс наук (род), а затем посредством указания специфицирующего признака «изучать словарный состав языка» (видовое отличие) выделяется среди других наук, которые не обладают этим признаком. В отличие от О. к. (1), объем определяемого понятия в О. к. (2) представляет класс, состоящий лишь из одного элемента (см.: Класс , Множество в логике ). Многие научные и повседневные определения принимают форму О. к. В отличие от повседневных, в научных О. к. (если речь идет об опытных науках) видовое отличие всегда должно представлять собой существенный признак . По отношению именно к О. к. (или к тем, которые могут быть интерпретированы как О. к.) формулируются известные правила (см.: Определение ). Родо-видовые отношения играют большую роль не только в О. к., но и при делении понятий и в классификациях , где процесс деления родового понятия на составляющие его виды играет важную роль. Поэтому o.k. или определения через род и видовое отличие часто в логике называют классификационными.