Правильный тетраэдр центр симметрии. Методическое обоснование урока. Виды симметрии кристаллов

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Элементы симметрии правильных многогранников Геометрия. 10 класс.

Тетраэдр - (от греческого tetra – четыре и hedra – грань) - правильный многогранник, составленный из 4 равносторонних треугольников. Из определения правильного многогранника следует, что все ребра тетраэдра имеют равную длину, а грани - равную площадь. Элементы симметрии тетраэдра Тетраэдр имеет три оси симметрии, которые проходят через середины скрещивающихся рёбер. Тетраэдр имеет 6 плоскостей симметрии, каждая из которых проходит через ребро тетраэдра перпендикулярно скрещивающемуся с ним ребру.

Октаэдр - (от греческого okto – восемь и hedra – грань) - правильный многогранник, составленный из 8 равносторонних треугольников. Октаэдр имеет 6 вершин и 12 ребер. Каждая вершина октаэдра является вершиной 4 треугольников, таким образом, сумма плоских углов при вершине октаэдра составляет 240 ° . Элементы симметрии октаэдра Три из 9 осей симметрии октаэдра проходят через противоположные вершины, шесть - через середины ребер. Центр симметрии октаэдра - точка пересечения его осей симметрии. Три из 9 плоскостей симметрии тетраэдра проходят через каждые 4 вершины октаэдра, лежащие в одной плоскости. Шесть плоскостей симметрии проходят через две вершины, не принадлежащие одной грани, и середины противоположных ребер.

Икосаэдр – (от греческого ico - шесть и hedra - грань) правильный выпуклый многогранник, составленный из 20 правильных треугольников. Каждая из 12 вершин икосаэдра является вершиной 5 равносторонних треугольников, поэтому сумма углов при вершине равна 300 °. Элементы симметрии и косаэдра Правильный икосаэдр имеет 15 осей симметрии, каждая из которых проходит через середины противоположных параллельных ребер. Точка пересечения всех осей симметрии икосаэдра является его центром симметрии. Плоскостей симметрии также 15.Плоскости симметрии проходят через четыре вершины, лежащие в одной плоскости, и середины противолежащих параллельных ребер.

Куб или гексаэдр (от греческого hex - шесть и hedra - грань) составлен из 6 квадратов. Каждая из 8 вершин куба является вершиной 3 квадратов, поэтому сумма плоских углов при каждой вершине равна 270 0 . У куба 12 ребер, имеющих равную длину. Элементы симметрии куба Ось симметрии куба может проходить либо через середины параллельных ребер, не принадлежащих одной грани, либо через точку пересечения диагоналей противоположных граней. Центром симметрии куба является точка пересечения его диагоналей. Через центр симметрии проходят 9 осей симметрии. Плоскостей симметрии у куба также 9 и проходят они либо через противоположные ребра (таких плоскостей-6), либо через середины противоположных ребер (таких - 3).

Додекаэдр (от греческого dodeka – двенадцать и hedra – грань) это правильный многогранник, составленный из 12 равносторонних пятиугольников. Додекаэдр имеет 20 вершин и 30 ребер. Вершина додекаэдра является вершиной трех пятиугольников, таким образом, сумма плоских углов при каждой вершине равна 324 0. Элементы симметрии додекаэдра Додекаэдр имеет центр симметрии и 15 осей симметрии. Каждая из осей проходит через середины противолежащих параллельных ребер. Додекаэдр имеет 15 плоскостей симметрии. Любая из плоскостей симметрии проходит в каждой грани через вершину и середину противоположного ребра.

Развертки правильных многогранников Развертка - это способ развернуть многогранник на плоскость после проведения разрезов по нескольким ребрам. Развертка представляет собой плоский многоугольник, составленный из меньших многоугольников - граней исходного многогранника. Один и тот же многогранник может иметь несколько разных разверток.

В п. 12.1 мы определили правильный многогранник как многогранник, у которого равны друг другу все элементы одного вида: грани, ребра и т.д. Но правильные многогранники можно определить как самые симметричные изо всех многогранников. Это означает следующее. Если мы возьмем на правильном многограннике некоторую вершину А, подходящее к ней ребро а и грань а, подходящую к этому ребру, и еще любой такой же набор то существует такое самосовмещение многогранника,

которое вершину А переводит в вершину А, ребро а - в ребро а, грань а - в грань а.

Докажем это. Так как любые две грани правильного многогранника равны, то существует движение, которое одну из них переведет в другую. Поскольку все двугранные углы этого многогранника равны, то в результате совмещения граней весь многогранник самосовместится или перейдет в многогранник, симметричный исходному относительно плоскости второй грани. Во втором случае симметрия относительно плоскости этой грани завершит процесс самосовмещения правильного многогранника.

Верно и обратное: многогранники, обладающие этим свойством, будут правильными, так как у них окажутся равны все ребра, все плоские углы и все двугранные углы.

Рассмотрим теперь элементы симметрии правильных многогранников.

Начнем с элементов симметрии куба.

1. Центр симметрии - центр куба.

2. Плоскости симметрии (рис. 12.17): 1) три плоскости симметрии, перпендикулярные ребрам в их серединах; 2) шесть плоскостей симметрии, проходящих через противоположные ребра.

3. Оси симметрии: 1) три оси симметрии 4-го порядка, проходящие через центры противоположных граней (рис. 12.18а); 2) шесть осей поворотной симметрии 2-го порядка, проходящие через середины противоположных ребер (рис. 12.186); 4) четыре диагонали куба являются осями зеркального поворота шестого порядка, самосовмещающего куб (рис. 12.18в).

Это самый интересный и не сразу видный элемент симметрии куба. Сечение куба плоскостью, проходящей через его центр перпендикулярно диагонали, представляет правильный шестиугольник; при повороте куба вокруг диагонали на угол 60° шестиугольник отображается на себя, а куб в целом еще нужно отразить в плоскости шестиугольника.

Октаэдр двойственен кубу, и потому у него те же элементы симметрии с той разницей, что плоскости симметрии и оси, проходящие у куба через вершины и центры граней, у октаэдра проходят наоборот: через центры граней и вершины (рис. 12.19). Так, зеркальная ось 6-го

порядка проходит у октаэдра через центры противоположных граней.

Обратимся к элементам симметрии правильного тетраэдра.

1. Шесть плоскостей симметрии, каждая из которых проходит через ребро и середину противоположного ребра (рис. 12.20а).

2. Четыре оси 3-го порядка, проходящие через вершины и центры противоположных им граней, т.е. через высоты тетраэдра (рис. 12.20б).

3. Три оси зеркального поворота 4-го порядка, проходящие через середины противоположных ребер (рис. 12.20в).

Центра симметрии у тетраэдра нет.

В куб можно вписать два правильных тетраэдра (рис. 12.16). При самосовмещениях куба эти тетраэдры либо самосовмещаются, либо отображаются друг на друга. Выясните, при каких самосовмещениях куба происходит самосовмещение тетраэдров, а при каких они отображаются друг на друга.

Убедитесь, что в первом случае получатся все самосовмещения тетраэдра, так что группа симметрии куба включает в себя группу симметрии куба как подгруппу. (См. п. 28.4).

Группы симметрии у додекаэдра и икосаэдра одинаковы, поскольку эти правильные многогранники двойственны

друг другу. У них есть центр симметрии, плоскости симметрии, оси поворотной симметрии и оси зеркальной поворотной симметрии. Труднее всего найти последние из этих элементов симметрии. Укажем, как их построить.

Оси зеркальной поворотной симметрии в икосаэдре (так же, как и в кубе) соединяют противоположные вершины этого многогранника (рис. 12.21), а в додекаэдре (как и в октаэдре) эти оси идут через центры их параллельных граней (рис. 12.22). Плоскости, проходящие через центры симметрии правильных многогранников и перпендикулярные указанным осям, пересекают правильные многогранники по правильным многоугольникам (рис. 12.23).

В частности, додекаэдр и икосаэдр они пересекают по правильным десятиугольникам (рис. 12.23 г,д). Из сказанного следует, что икосаэдр и додекаэдр самосовмещаются зеркальными поворотами относительно осей шестого и десятого порядков.

Найдите самостоятельно более простые элементы симметрии икосаэдра и додекаэдра - плоскости симметрии и оси поворотной симметрии.

1 Минерало́гия -наукаоминералах- природныххимических соединениях.

Минералогия изучает состав, свойства, структуры и условия образования минералов

Минералы- кристаллические элементы или химические соединения,возникающие в ходе геологических процессов.

2 Минеральный вид - это совокупность минералов данного химического состава с данной кристаллической структурой.

К 1-му мин.виду относятся все минеральные индивиды,характеризующиеся:

Одинаковой структурной группой

Химическим составом,непрерывно изменяющимся в определенных пределах

Равновесным существованием в определенных термодинамических условиях земной коры

3 Симметрические преобразование и элементы симметрии кристаллических многогранников.

Симметрия– правильная повторяемость элементов ограничения кристаллов при

выполнении симметрических операций.

Элементами ограничения кристаллов считаются их грани, ребра и вершины.

Симметрические операции– это повороты и отражения кристалла

относительно элементов симметрии.

Элементы симметрии 1 рода.

Ось симметрии Ln - это воображаемая прямая линия, проходящая при вращении кристалла вокруг которой через один и тот же угол наблюдается повторения элементов ограничения. L6-L4L3L2

Элементы симметрии 2 рода:

-плоскость симметрии(Р)- такая плоскость,которая делит фигуры на две равные части,каждая из которой является зеркальным отображением другой

-центр симметрии(инверсии)(С)- представляет собой точку внутри кристалла от которой по обе стороны на равных расстояниях нах-ся тождественные точкиграней и вершин.центр инверсии бывает только один либо его нет.

Инверсионная ось симметрии Ln– это воображаемая линия, при повороте вокруг которой на угол, задаваемый порядком оси, с последующимотражением в точке, лежащей на этой оси, как в центре инверсии, кристаллсовмещается сам с собой.

Таким образом, действие инверсионной оси вклю-чает в себя два момента: во-первых, поворот на угол, задаваемый порядком

оси, во-вторых, отражение в точке, как в центре инверсии.

4. Полярные и неполярные оси симметрии

а) полярные –на концах оси разные эл-ты фигуры;

б)неполярные(биполярные)на концах оси одинаковые эл-ты фигуры.

5.Единичные направления в криталлах.

Единственное, не повторяющееся в кристалле направление называет-ся единичным.

В кубе нет единичных направлений, здесь для любогонаправления можно найти симметрично-равное.

По симметрии и по числу единичных направлений кристаллы делятся на три категории: низшую, среднюю, высшую.

6В учебной символике символике Браве - оси симметрии обозначаются как Ln

Где подстрочный цифровой индекс п указывает на порядок

оси1 Графически оси симметрии обозначаются многоугольниками:

    в плоскости –

    плоскость симметрии Р

    Отражение в точке (инверсия) –

    центр симметрии, инверсии С

    Поворот с отражением в точке - инверсионная ось L n i - с черточкой наверху. Порядок оси - 1, 2, 3, 4, 6.

Инверсионные оси Зеркальные оси

L 6 = L 3 + перп.P. Л 6 = L 3

L 4 Л 3 = L 6

L 3 = L 3 + C. Л 4 = L 4

L 2 = P. Л 2

L 1 = C .


Формула симметрии состоит из записанных элементов симметрии данного кристалла в определенной последовательности: оси высшего порядка®осиL2 ®плоскости симметрии®центр симметрии. В кубической сингонии на втором месте всегда стоит4L3 . Если какой-либо элемент отсутствует, он опускается.

Геометрия прекрасна тем, что, в отличие от алгебры, где не всегда понятно, что и зачем считаешь, дает наглядность объекта. Этот удивительный мир различных тел украшают собой правильные многогранники.

Общие сведения о правильных многогранниках

По мнению многих, правильные многогранники, или как их еще называют Платоновы тела, обладают неповторимыми свойствами. С этими объектами связано несколько научных гипотез. Когда начинаешь изучать данные геометрические тела, понимаешь, что практически ничего не знаешь о таком понятии, как правильные многогранники. Презентация этих объектов в школе не всегда проходит интересно, поэтому многие даже и не помнят, как они называются. В памяти большинства людей остается только куб. Ни одни тела в геометрии не обладают таким совершенством, как правильные многогранники. Все названия этих геометрических тел произошли из Древней Греции. Они означают количество граней: тетраэдр - четырехгранный, гексаэдр - шестигранный, октаэдр - восьмигранный, додекаэдр - двенадцатигранный, икосаэдр - двадцатигранный. Все эти геометрические тела занимали важнейшее место в концепции Платона о мироздании. Четыре из них олицетворяли стихии или сущности: тетраэдр - огонь, икосаэдр - воду, куб - землю, октаэдр - воздух. Додекаэдр воплощал все сущее. Он считался главным, поскольку был символом мироздания.

Обобщение понятия многогранника

Многогранником является совокупность конечного числа многоугольников такая, что:

  • каждая из сторон любого из многоугольников является одновременно и стороной только одного другого многоугольника по той же стороне;
  • от каждого из многоугольников можно дойти до других переходя по смежным с ним многоугольникам.

Многоугольники, составляющие многогранник, представляют собой его грани, а их стороны - ребра. Вершинами многогранников являются вершины многоугольников. Если под понятием многоугольник понимают плоские замкнутые ломаные, то приходят к одному определению многогранника. В том случае, когда под этим понятием подразумевают часть плоскости, что ограничена ломаными линиями, то следует понимать поверхность, состоящую из многоугольных кусочков. называют тело, лежащее по одну сторону плоскости, прилегающей к его грани.

Другое определение многогранника и его элементов

Многогранником называют поверхность, состоящую из многоугольников, которая ограничивает геометрическое тело. Они бывают:

  • невыпуклыми;
  • выпуклыми (правильные и неправильные).

Правильный многогранник - это выпуклый многогранник с максимальной симметрией. Элементы правильных многогранников:

  • тетраэдр: 6 ребер, 4 грани, 5 вершин;
  • гексаэдр (куб): 12, 6, 8;
  • додекаэдр: 30, 12, 20;
  • октаэдр: 12, 8, 6;
  • икосаэдр: 30, 20, 12.

Теорема Эйлера

Она устанавливает связь между числом ребер, вершин и граней, топологически эквивалентных сфере. Складывая количество вершин и граней (В + Г) у различных правильных многогранников и сравнивая их с количеством ребер, можно установить одну закономерность: сумма количества граней и вершин равняется числу ребер (Р), увеличенному на 2. Можно вывести простую формулу:

  • В + Г = Р + 2.

Эта формула верна для всех выпуклых многогранников.

Основные определения

Понятие правильного многогранника невозможно описать одним предложением. Оно более многозначное и объемное. Чтобы тело было признано таковым, необходимо, чтобы оно отвечало ряду определений. Так, геометрическое тело будет являться правильным многогранником при выполнении таких условий:

  • оно выпуклое;
  • одинаковое количество ребер сходится в каждой из его вершин;
  • все грани его - правильные многоугольники, равные друг другу;
  • все его равны.

Свойства правильных многогранников

Существует 5 разных типов правильных многогранников:

  1. Куб (гексаэдр) - у него плоский угол при вершине составляет 90°. Он имеет 3-гранный угол. Сумма плоских углов у вершины составляет 270°.
  2. Тетраэдр - плоский угол при вершине - 60°. Он имеет 3-гранный угол. Сумма плоских углов у вершины - 180°.
  3. Октаэдр - плоский угол при вершине - 60°. Он имеет 4-гранный угол. Сумма плоских углов у вершины - 240°.
  4. Додекаэдр - плоский угол при вершине 108°. Он имеет 3-гранный угол. Сумма плоских углов у вершины - 324°.
  5. Икосаэдр - у него плоский угол при вершине - 60°. Он имеет 5-гранный угол. Сумма плоских углов у вершины составляет 300°.

Площадь поверхности этих геометрических тел (S) вычисляется, как площадь правильного многоугольника, умноженная на количество его граней (G):

  • S = (a: 2) х 2G ctg π/p.

Объем правильного многогранника

Эта величина вычисляется путем умножения объема правильной пирамиды, в основании которой находится правильный многоугольник, на число граней, а высота ее является радиусом вписанной сферы (r):

  • V = 1: 3rS.

Объемы правильных многогранников

Как и любое другое геометрическое тело, правильные многогранники имеют различные объемы. Ниже представлены формулы, по которым можно их вычислить:

  • тетраэдр: α х 3√2: 12;
  • октаэдр: α х 3√2: 3;
  • икосаэдр; α х 3;
  • гексаэдр (куб): 5 х α х 3 х (3 + √5) : 12;
  • додекаэдр: α х 3 (15 + 7√5) : 4.

Гексаэдр и октаэдр являются дуальными геометрическими телами. Иными словами, они могут получиться друг из друга в том случае, если центр тяжести грани одного принимается за вершину другого, и наоборот. Также дуальными являются икосаэдр и додекаэдр. Сам себе дуален только тетраэдр. По способу Евклида можно получить додекаэдр из гексаэдра с помощью построения «крыш» на гранях куба. Вершинами тетраэдра будут любые 4 вершины куба, не смежные попарно по ребру. Из гексаэдра (куба) можно получить и другие правильные многогранники. Несмотря на то что есть бесчисленное множество, правильных многогранников существует всего 5.

Радиусы правильных многоугольников

С каждым из этих геометрических тел связаны 3 концентрические сферы:

  • описанная, проходящая через его вершины;
  • вписанная, касающаяся каждой его грани в центре ее;
  • срединная, касающаяся всех ребер в середине.

Радиус сферы описанной рассчитывается по такой формуле:

  • R = a: 2 х tg π/g х tg θ: 2.

Радиус сферы вписанной вычисляется по формуле:

  • R = a: 2 х ctg π/p х tg θ: 2,

где θ - двухгранный угол, который находится между смежными гранями.

Радиус сферы срединной можно вычислить по следующей формуле:

  • ρ = a cos π/p: 2 sin π/h,

где h величина = 4,6 ,6,10 или 10. Отношение описанных и вписанных радиусов симметрично относительно p и q. Оно рассчитывается по формуле:

  • R/r = tg π/p х tg π/q.

Симметрия многогранников

Симметрия правильных многогранников вызывает основной интерес к этим геометрическим телам. Под ней понимают такое движение тела в пространстве, которое оставляет одно и то же количество вершин, граней и ребер. Другими словами, под действием преобразования симметрии ребро, вершина, грань или сохраняет свое первоначальное положение, или перемещается в исходное положение другого ребра, другой вершины или грани.

Элементы симметрии правильных многогранников свойственны всем видам таких геометрических тел. Здесь речь ведется о тождественном преобразовании, которое оставляет любую из точек в исходном положении. Так, при повороте многоугольной призмы можно получить несколько симметрий. Любая из них может быть представлена как произведение отражений. Симметрию, которая является произведением четного количества отражений, называют прямой. Если же она является произведением нечетного количества отражений, то ее называют обратной. Таким образом, все повороты вокруг прямой представляют собой прямую симметрию. Любое отражение многогранника - это обратная симметрия.

Чтобы лучше разобраться в элементах симметрии правильных многогранников, можно взять пример тетраэдра. Любая прямая, которая будет проходить через одну из вершин и центр этой геометрической фигуры, будет проходить и через центр грани, противоположной ей. Каждый из поворотов на 120 и 240° вокруг прямой принадлежит к множественному числу симметрий тетраэдра. Поскольку у него по 4 вершины и грани, то получается всего восемь прямых симметрий. Любая из прямых, проходящих через середину ребра и центр этого тела, проходит через середину его противоположного ребра. Любой поворот на 180°, называемый полуоборотом, вокруг прямой является симметрией. Поскольку у тетраэдра есть три пары ребер, то получится еще три прямые симметрии. Исходя из вышеизложенного, можно сделать вывод, что общее число прямых симметрий, и в том числе тождественное преобразование, будет доходить до двенадцати. Других прямых симметрий у тетраэдра не существует, но при этом у него есть 12 обратных симметрий. Следовательно, тетраэдр характеризуется всего 24 симметриями. Для наглядности можно построить модель правильного тетраэдра из картона и убедиться, что это геометрическое тело действительно имеет всего 24 симметрии.

Додекаэдр и икосаэдр - наиболее близкие к сфере тела. Икосаэдр обладает наибольшим числом граней, наибольшим и плотнее всего может прижаться к вписанной сфере. Додекаэдр обладает наименьшим угловым дефектом, наибольшим телесным углом при вершине. Он может максимально заполнить свою описанную сферу.

Развертки многогранников

Правильные которых мы все склеивали в детстве, имеют много понятий. Если есть совокупность многоугольников, каждая сторона которых отождествлена с только одной стороной многогранника, то отождествление сторон должно соответствовать двум условиям:

  • от каждого многоугольника можно перейти по многоугольникам, имеющим отождествленную сторону;
  • отождествляемые стороны должны иметь одинаковую длину.

Именно совокупность многоугольников, которые удовлетворяют эти условия, и называется разверткой многогранника. Каждое из этих тел имеет их несколько. Так, например, у куба их насчитывается 11 штук.



























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Методическое обоснование урока.

Использование знаний из физики, астрономии, МХК, биологии на уроке геометрии при обобщении систематизации сведений по теме “Симметрия в пространстве. Правильные многогранники. Элементы симметрии правильных многогранников”.

Тип урока: урок применения знаний, умений и навыков учащихся.

Цели урока:

Образовательные: обобщение и систематизация сведений о правильных многогранниках и их элементов симметрии, применении симметрии в пространстве.

Развивающие:

  • Развитие умения логически излагать свои мысли, используя литературный язык;
  • Развитие умения аргументировать;
  • Развитие умения слушания и распределения внимания во время слушания;
  • Развитие умения задавать уточняющие вопросы;
  • Развитие умения полученные знания в нестандартных ситуациях;
  • Развивать умения выделять главное, сравнивать, обобщать;
  • Развитие абстрактного и наглядно-образного мышления.

Воспитательные: Воспитание любви к предмету, воспитание сознательной дисциплины, формирование навыков контроля и самоконтроля, активизация познавательной деятельности в коллективе и формирование навыков сотрудничества, межпредметная связь. Привитие чувств к прекрасному, эстетическое воспитание.

Принципы обучения.

Дидактические :

  • Систематичности и последовательности обучения.
  • Доступности (опора на знания учащихся).
  • Индивидуализации обучения (учёт психологических типов восприятия материала учащимися, дифференциация дидактического материала к заданиям).
  • Научности.
  • Связь теории с практикой.

Оборудование урока (средства обучения).

  • Магнитная доска.
  • Модели многогранников, модели правильных многогранников. Таблица.
  • Карточки с заданиями.
  • На рабочем столе учащихся: учебники, тетради, ручки и карандаши, линейки. Опорные конспекты.

Структура урока:

  1. Организационный этап.
  2. Этап проверки домашнего задания.
  3. Этап всесторонней проверки знаний.
  4. Этап обобщения и систематизации знаний.
  5. Подведение итогов урока.
  6. Этап информации учащихся о домашнем задании, инструктаж по его выполнению.

Методы контроля учебной деятельности на данном уроке:

  1. Устный и письменный.
  2. Фронтальный, групповой, индивидуальный.
  3. Итоговый контроль.

Ход урока

1. Организационный этап.

Взаимное приветствие учителя и учащихся.

Сообщение темы урока, плана работы на уроке обобщения и систематизации сведений по теме.

Постановка цели.

2. Этап проверки домашнего задания. Заготовки моделей многогранников.

3. Этап всесторонней проверки знаний.

Математический диктант с взаимопроверкой (письменно и карточки сдают учителю). Приложение 1.

Фронтальный опрос:

  • Симметрия в планиметрии.
  • Виды симметрии.
  • Свойство симметрии.
  • Фигуры, симметричные сами себе.

4. План урока.

  • Знакомство с понятием “симметрия” и её видами, элементами симметрии правильных многогранников;
  • Изучение проявлений симметрии в окружающем нас мире;
  • Перспективы применения симметрии в различных сферах деятельности человека.
    • Симметрия в пространстве. Рассказ учителя с обсуждением.
    • Симметрия в природе. Выступление ученика. Ответы на вопросы учащихся.
    • Симметрия в искусстве: архитектуре, скульптуре, живописи. Выступление ученика. Ответы на вопросы учащихся.
    • Правильные многогранники. Рассказ ученика по готовым моделям.

Вопросы предлагаются учащимся заранее.

Вопросы и задания.

  1. Понятие многогранника.
  2. Понятие пирамиды. Изготовить модели.
  3. Понятие призмы. Изготовить модели.

Индивидуальные:

  1. Из справочной литературы сделать подборку материалов о правильных многогранниках.
  2. Подготовить сообщения: “Симметрия в пространстве”, “Симметрия в природе”, “симметрия в искусстве”.
  3. Изготовить модели правильных многогранников.

Групповые:

  1. Приведите примеры применения симметрии в пространстве, природе, искусстве.
  2. Подготовить информацию о древнегреческом учёном Платоне.

Симметрия в пространстве.

“Симметрия....есть идея, с помощью которой человек веками пытался объяснить и создать порядок, красоту и совершенство”. Эти слова принадлежат известному математику Герману Вейлю.

В планиметрии мы рассматривали фигуры, относительно точки и прямой. В стереометрии рассматривают симметрию относительно точки, прямой и плоскости.

Точки А иА 1 называются симметричными относительно точки О (центр симметрии), если О - середина отрезка АА 1 . точка О считается симметричной самой себе. Чертёж.

Точки А и А 1 называются симметричными относительно Прямой а (ось симметрии), если прямая проходит через середину отрезка АА 1 и перпендикулярна этому отрезку. Каждая точка прямой а считается симметричной самой себе. Чертёж. Лист, снежинка, бабочка – примеры осевой симметрии. Приложение 2.

Ежедневно каждый из нас по несколько раз в день видит отражение в зеркале. Это настолько обычно, что мы не удивляемся, не задаём вопросов, не делаем открытий. Немецкий философ Иммануил Кант говорил о зеркальном отражении так: “Что может более похоже на мою руку или моё ухо, чем их собственное отражение в зеркале? И всё же руку, которую я вижу в зеркале, нельзя поставить на место постоянной руки...”.

Это и есть симметрия относительно плоскости.

Точки А и А 1 называются симметричными относительно плоскости (плоскость симметрии), если плоскость проходит через середину отрезка АА 1 и перпендикулярна этому отрезку. Каждая точка плоскости считается симметричной самой себе. Чертёж.

Введём понятия центра, оси и плоскости симметрии фигуры.

Точка (прямая, плоскость) называется центром (осью, плоскостью) симметрии фигуры, если каждая точка фигуры симметрична относительно неё некоторой точке той же фигуры. Если фигура имеет центр (ось, плоскость) симметрии, то говорят, что она обладает центральной (осевой, зеркальной) симметрией.

Симметрия в природе.

“Раз, стоя перед чёрной доской и рисуя на ней мелом разные фигуры, я вдруг был поражён мыслью: почему симметрия приятна для глаз? Что такое симметрия? Это врождённое чувство, отвечал я сам себе. На чём же оно основано? Разве во всём жизни симметрия?” - задавал вопросы Николенька Иртеньев из “Отрочества” Л.Толстого.

Почему же в природе царит симметрия? Почему симметрично всё живое от микроорганизмов до человека?

Господство симметрии в природе объясняется силой тяготения, действующей во всей Вселенной. Действием тяготения или его отсутствие объясняется тем, что и космические тела, плавающие во Вселенной, и микроорганизмы, взвешенные в воде, обладают высшей формой симметрии – сферической (при любом повороте относительно центра фигуры совпадает сама с собой). Все организмы, растущие в прикреплённом состоянии (деревья) или живущие на дне океана (морские звёзды), т.е. организмы, для которых направление силы тяжести является решающим, имеют ось симметрии. Для животных способных передвигаться в воде, воздухе или по земле, кроме направления силы тяжести, важным оказывается и направление движения животного. Такие животные имеют плоскость симметрии. Биологи эту плоскость называют билатеральной, а тип симметрии – зеркальным.

Примеры симметрии в живой природе - насекомые, а именно, красивейшие создания земли – бабочки, которая являет собой пример зеркальной симметрии. Приложение 2.

Почти все кристаллы в природе – симметричны. Приложение 3.

Симметрия в искусстве (архитектуре, скульптуре, живописи, литературе, музыке, танцах).

Наблюдая окружающий его мир, человек, исторически пытался более или менее реалистично отобразить его в различных видах искусства, поэтому очень интересно рассмотреть симметрию в живописи, скульптуре, архитектуре, литературе, музыке и танцах.

Симметрию в живописи мы можем увидеть уже в наскальных рисунках первобытных людей. В древние века значительной частью искусства рисования – были иконы, при создании которых художники использовали свойства зеркальной симметрии. Глядя на них сегодня, поражаешься удивительной симметричностью в обликах святых, хотя иногда происходит интересная вещь – в асимметричных изображениях мы ощущаем симметрию, как норму, от которой художник уклоняется под влиянием внешних факторов.

Элементы симметрии можно увидеть в общих планах зданий. Приложение 4. Скульптура и живопись тоже дают множество ярких примеров использования симметрии для решения эстетических задач. Примерами являются гробница Джулиано Медичи работы великого Микеланжело, мозаика апсиды собора Св. Софии в Киеве, где изображены две фигуры Христа, один причащает хлебом, другой – вином.

Зеркально – симметричное раздвоение фигуры Христа позволило одновременно изображать два важнейших момента евхаристии: причащение вином, обозначавшим кровь Христа. Зеркальное раздвоение Христа было одним из излюбленных приёмов иконографии тайной вечери. Приложение 5 .

Симметрия, вытесняемая из живописи и архитектуры, постепенно занимала новые сферы жизни людей – музыку и танцы. Так в музыке 15-го века было открыто новое направление – имитационная полифония, являющаяся музыкальным аналогом орнамента, позже появились – фуги, звуковые версии сложного узора. В современном песенном жанре, как я считаю, припев – это пример простейшей переносной симметрии вдоль оси (текста песни). В танцах, использующих постоянно повторяющиеся фигуры и па, мы так же находим симметрию, смотрите на рисунок. Приложение 6.

Литература тоже не обошла своим вниманием симметрию. Так примером симметрии в литературе могут служить палиндромы, это такие части текста, обратная и прямая последовательность букв которых совпадают. Например, “А роза упала на лапу Азора” (А.Фет), “Уж редко рукою окурок держу”. Как частный случай палиндромов, мы знаем много слов в русском языке, являющихся перевёртышами: кок, топот, казак и многие другие. На использовании таких слов часто строятся загадки – ребусы.

Правильные многогранники.

В геометрии фигура может иметь один или несколько центров симметрии (осей). Выпуклый многогранник называется правильным, если все его грани-равные правильные многогранники и в каждой его вершине сходится одно и то же число ребер. Примером правильного многогранника является куб.

Докажем, что не существует правильного многогранника, гранями которого являются правильные шестиугольники, семиугольники и вообще при 6.

При 6 угол каждого многоугольника больше или равен 120. С другой стороны, при каждой вершине многогранника должно быть не менее трёх плоских углов. Но 120

По этой же причине каждая вершина правильного многогранника может быть вершиной 3, 4, 5 правильных треугольников, 3 квадратов или 3 правильных пятиугольников. Значит, есть только 5 правильных многогранников. Приложение 7.

  • Тетраэдр – четырёхгранник.
  • Гексаэдр – шестигранник (куб).
  • Октаэдр – восьмигранник.
  • Икосаэдр – двадцатигранник.
  • Додекаэдр - двенадцатигранник.

Правильные многогранники с древних времён привлекли к себе внимание учёных, архитекторов, художников.

Подробно описал свойства правильных многогранников древнегреческий учёный Платон. Поэтому их называют телами Платона. Правильным многогранникам посвящена 13 книга “Начал” Евклида. Платон считал, что атомы огня имеют форму тетраэдра, земли- гексаэдра, воздуха- октаэдра, воды- икосаэдра, вся вселенная – форму додекаэдра.

Герои картины испанского живописца С.Дали в “Тайной вечере” сидят на фоне огромного додекаэдра. Приложение 5. Художник А. Дюдер в гравюре “Меланхолия” дал перспективное изображение додекаэдра. Приложение 8.

В эпоху возрождения меланхолический темперамент отождествляли с творческим началом. На гравюре Дюрера Меланхолия окружена атрибутами зодчества и геометрии, отчего математики любят считать этот шедевр графического искусства олицетворением творческого духа математика, а саму Меланхолию – представительницей математики в мире прекрасного.

Этап закрепления и обобщения.

Предлагаются модели многогранников:

1) дать характеристику;

2) выбрать из данных моделей многогранников – тела Платона.

6. Этап проверки знаний по изученной теме.

Выполнить практическую работу. Групповая работа. Приложение 9.

7. Вывод урока делают сами ученики.

Итак, что мы сегодня узнали? Что Вам запомнилось из нашей сегодняшней темы?

  • Симметрия в пространстве.
  • Симметрия в природе.
  • Симметрия в искусстве: архитектуре, скульптуре, живописи.
  • Правильные многогранники.

Итоги урока.

Выставление оценок за урок учащиеся сдают листочки с практической работой.

9. Информация о домашнем задании.

1) Сделать поделки или нарисовать: геометрические фигуры, предметы, живые существа, которые имеют ось (центр) симметрии.

2)Индивидуальное творческое задание учащимся, которые получили хорошие и отличные оценки за урок. Написать реферат на тему: “Симметрия в быту, технике и физике”.

3) Презентация “Симметрия вокруг нас”

10. Список литературы.

  1. Детская энциклопедия, 3-е издание, “Педагогика”, М., 1973.
  2. Л. Тарасов, Этот удивительно симметричный мир, “Просвещение”, М., 1980.
  3. И.Ф. Шарыгин, Л. Н. Ерганжиева. Наглядная геометрия, “МИРОС”, 1995.

Интернет-ресурсы.