Расположение корней квадратного. Расположение корней квадратного трёхчлена в зависимости от значений параметра

4. Расположение корней квадратного трехчлена в зависимости от параметра

Часто встречаются задачи с параметрами, в которых требуется определить расположение корней квадратного трехчлена на числовой оси. Опираясь на основные положения и обозначения предыдущего параграфа, рассмотрим следующие случаи:

1. Пусть задан квадратный трехчлен , где
и точка m на оси Ox . Тогда оба коня
квадратного трехчлена
будут строго меньше m

или

Геометрическая иллюстрация приведена на рисунке 3.1 и 3.2.


2.Пусть задан квадратный трехчлен , где и точка m на оси Ox . Неравенство
выполняется тога и только тогда, когда числа a и
имеют разные знаки, то есть
(рис. 4.1 и 4.2.)


3. Пусть задан квадратный трехчлен , где и точка m на оси Ox . Тогда оба коня
квадратного трехчлена будут строго больше m тогда и только тогда, когда выполняются следующие условия:

или

Геометрическая иллюстрация приведена на рисунке 5.1 и 5.2.


4. Пусть задан квадратный трехчлен , где и интервал (m , M ) Тогда оба корня квадратного трехчлена принадлежат указанному интервалу тогда и только тогда, когда выполняются следующие условия:

или

Геометрическая иллюстрация приведена на рисунке 6.1 и 6.2.


5. Пусть задан квадратный трехчлен , где , - его корни и отрезок
. Отрезок лежит в интервале
тогда и только тогда, когда выполняются следующие условия:

Геометрическая иллюстрация приведена на рисунке 7.1 и 7.2.


Пример. Найти все значения параметра a , при каждом из которых оба корня уравнения
больше -2.

Решение. В условии задачи указано. Что уравнение имеет два корня, поэтому . Рассматриваемая ситуация описывается случаем 3 и изображена на рисунке 5.1. и 5.2.

Найдем ,
,

Учитывая все это, запишем совокупность двух систем:

или

Решая эти две системы, получим .

Ответ. При каждом значении параметра a из промежутка оба корня уравнения больше -2.

Пример. При каких значениях параметра a неравенство
выполняется для любых
?

Решение. Если множество X – решение данного неравенства, то условие задачи означает, что промежуток
должен находиться внутри множества X , то есть

.

Рассмотрим все возможные значения параметра а .

1.Если а=0 , то неравенство примет вид
, и его решением будет промежуток
. В этом случае условие выполняется и а=0 является решением задачи.

2.Если
, то графиком правой части неравенства является квадратный трехчлен, ветви которого направлены вверх. Решение неравенства зависит от знака .

Рассмотри случай, когда
. Тогда для того, чтобы для всех выполнялось неравенство , требуется, чтобы корни квадратного трехчлена были меньше числа -1, то есть:

или

Решив эту систему, получим
.

Если
, то парабола лежит выше оси О x , и решением неравенства будет любое число из множества действительных числе, в том числе, и промежуток . Найдем такие а из условия:

или

Решив эту систему, получим
.

3.Если
, то при
решением неравенства является промежуток , который не может включать в себя промежуток , а при
данное неравенство не имеет решений.

Объединяя все найденные значения а , получим ответ.

Ответ. Для любого значения параметра из промежутка
неравенство выполняется для любых .

Пример. При каких значениях параметра а множество значений функции содержит отрезок
?

Решение. 1. Если
, то

а) при а = 1 функция примет вид y = 2, и множество ее значений состоит из единственной точки 2 и не содержит отрезок ;

б) при а = -1 функция примет вид y = -2 x +2 . Ее множество значений
содержит отрезок , значит а = -1 является решением задачи.

2.Если
, то ветви параболы направлены вверх, наименьшее значение функция принимает в вершине параболы
:

,
.

Множество значений функции есть промежуток
, который содержит отрезок
, если выполняются условия:


.

3. Если
, то ветви параболы направлены вниз, наибольшее значение функция принимает в вершине параболы
. Множество значений функции есть промежуток
, который содержит отрезок , если выполняются условия:

Решая эту систему неравенств, получим
.

Объединяя решения, получим
.

Ответ. При
множество значений функции содержит отрезок .

Задачи для самостоятельного решения

1. Не вычисляя корней квадратного уравнения
, найти

а)
, б)
, в)

2. Найти множество значений функции

а)
, б)
, в)
, г)

3. Решить уравнения

а)
, б)

4. При каких значениях параметра а оба корня уравнения
лежат на интервале (-5, 4)?

5. При каких значениях параметра а неравенство выполняется при всех значениях x ?

6. При каких значениях параметра а наименьшее значение функции

На отрезке
равно -1?

7. При каких значениях параметра а уравнение
имеет корни?

Карпова Ирина Викторовна

ПРОГРАММА И УЧЕБНЫЕ МАТЕРИАЛЫ ЭЛЕКТИВНОГО КУРСА по математике для учащихся 8-9 классов «Элементы теории вероятностей и математической статистики»

Пояснительная записка

В настоящее время становится очевидной универсальность вероятностно-статистических законов, они стали основой описания научной картины мира. Современная физика, химия, биология, демография, лингвистика, философия, весь комплекс социально-экономических наук развиваются на вероятносто-статистической базе.

Ребенок в своей жизни ежедневно сталкивается с вероятностными ситуациями. Круг вопросов, связанных с осознанием соотношения понятий вероятности и достоверности, проблемой выбора наилучшего из нескольких вариантов решения, оценкой степени риска и шансов на успех – все это находится в сфере реальных интересов становления и саморазвития личности.

Все вышесказанное обусловливает необходимость знакомства ребенка с вероятностно-статистическими закономерностями.

Цель курса: познакомить учащихся с некоторыми теоретико-вероятностными закономерностями и статистическими методами обработки данных.

Задачи курса

    Познакомить учащихся с основным понятийным аппаратом теории вероятностей.

    Научить определять вероятность событий в классической схеме испытаний.

    Познакомить с методами первичной обработки статистических данных.

Требования к уровню усвоения содержания курса

В результате освоения программы курса учащиеся должны знать:

    основные понятия теории вероятностей: испытание, исход испытания, пространство элементарных событий, случайное, достоверное, невозможное события, совместные и несовместные события;

    условия классической схемы испытаний и определение вероятности события в классической схеме испытаний;

    определение относительной частоты появления события и статистической вероятности;

    определение вариационного ряда и его основных числовых характеристик.

В процессе изучения курса учащиеся должны пробрести умения:

    определять все возможные исходы испытания, совместность и несовместность событий;

    решать теоретико-вероятностные задачи на вычисление вероятности в классической схеме испытаний;

    вычислять относительную частоту появления события;

    составлять статистическое распределение выборки и вычислять её числовые характеристики.

Программа предполагает развитие у учащихся навыков :

    использования имеющихся алгоритмов и при необходимости их творческой переработки в конкретных условиях задачи;

    самостоятельного решения задач;

    использования при решении задач обобщенных схем, содержащих основные определения и формулы.

Объем курса: предлагаемый курс рассчитан на 20 часов

Тематическое планирование

Темы занятий

Количество часов

Основные понятия теории вероятностей.

Классическая схема испытаний. Определение вероятности в классической схеме испытаний.

Частота абсолютная и относительная.

Статистическое определение вероятности.

Генеральная и выборочная совокупности.

Статистическое распределение выборки.

Числовые характеристики статистического распределения.

Статистическое оценивание и прогноз.

Текст пособия

Математику многие любят за её вечные истины: дважды два всегда четыре, сумма четных чисел четна, а площадь прямоугольника равна произведению его смежных сторон. В любой задаче, которую вы решали на уроках математики, у всех получался один и тот же ответ – нужно было только не делать ошибок в решении.

Реальная жизнь не так проста и однозначна. Исходы многих явлений заранее предсказать невозможно, какой бы полной информацией мы о них не располагали. Нельзя, например, сказать наверняка, какой стороной упадет подброшенная вверх монета, когда в следующем году выпадет первый снег или сколько человек в городе захотят в течение ближайшего часа позвонить по телефону. Такие непредсказуемые явления называются случайными .

Однако случай тоже имеет свои законы, которые начинают проявляться при многократном повторении случайных явлений. Если подбросить монету 1000 раз, то «орёл» выпадет приблизительно в половине случаев, чего никак нельзя сказать о двух или даже десяти бросаниях. Обратите внимание на слово «приблизительно» – закон не утверждает, что число «орлов» будет в точности 500 или окажется в промежутке от 490 до 510. Он вообще ничего не утверждает наверняка, но дает определенную степень уверенности в том, что некоторое случайное событие произойдет. Такие закономерности изучает специальный раздел математики – теория вероятностей.

Теория вероятностей неразрывно связана с нашей повседневной жизнью. Это дает замечательную возможность установить многие вероятностные законы опытным путем, многократно повторяя случайные эксперименты. Материалами для этих экспериментов чаще всего будут обыкновенная монета, игральный кубик, набор домино, рулетка и даже колода карт. Каждый из этих предметов, так или иначе, связан с играми. Дело в том, что случай здесь предстает в наиболее чистом виде, и первые вероятностные задачи были связаны с оценкой шансов игроков на выигрыш.

Современная теория вероятностей ушла от азартных игр так же далеко, как геометрия от задач землеустройства, но их реквизит по-прежнему остается наиболее простым и надежным источником случая. Поупражнявшись с рулеткой и кубиком, вы научитесь вычислять вероятность случайных событий в реальных жизненных ситуациях, что позволит вам оценивать свои шансы на успех, проверять гипотезы, принимать решения не только в играх и лотереях.

Математическая статистика – раздел математики, в котором изучаются методы сбора, систематизации и обработки результатов наблюдений массовых случайных явлений для выявления существующих закономерностей.

В некотором смысле задачи математической статистики обратны задачам теории вероятностей: имея дело только с экспериментально полученными значениями случайных величин, статистика ставит своей целью выдвижение и проверку гипотез о распределении этих случайных величин и оценку параметров их распределения.

1. Случайные события. Как сравнивать события?

Как любой другой раздел математики, теория вероятностей имеет свой понятийный аппарат, который используется при формулировке определений, доказательстве теорем и выводе формул. Рассмотрим понятия, которые будем использовать при дальнейшем изложении теории.

Испытание – осуществление комплекса условий.

Исход испытания (элементарное событие) – любой результат который может произойти при проведении испытания.

Примеры.

1) Испытание:

Исходы испытания: ω 1 – на верхней грани кубика появилось одно очко;

ω 2 – на верхней грани кубика появилось два очка;

ω 3 – на верхней грани кубика появилось три очка;

ω 4 – на верхней грани кубика появилось четыре очка;

ω 5 – на верхней грани кубика появилось пять очков;

ω 6 – на верхней грани кубика появилось шесть очков.

Всего возможно 6 исходов испытания (или 6 элементарных события).

2) Испытание: ученик сдает экзамен.

Исходы испытания: ω 1 – ученик получил двойку;

ω 2 – ученик получил тройку;

ω 3 – ученик получил четверку;

ω 4 – ученик получил пятерку.

Всего возможно 4 исхода испытания (или 4 элементарных события).

Замечание . Обозначение ω – является стандартным обозначением для элементарного события, в дальнейшем мы будем пользоваться этим обозначением.

Будем называть исходы данного испытания равновозможными , если исходы испытания имеют одинаковые шансы на появление.

Пространство элементарных событий – множество всех элементарных событий (исходов испытания), которые могут появиться при проведении испытания.

В примерах, которые мы рассмотрели выше, фактически были описаны пространства элементарных событий данных испытаний.

Замечание. Число точек в пространстве элементарных событий (ПЭС), т.е. число элементарных событий в дальнейшем будем обозначать буквой n .

Рассмотрим основное понятие, которым мы будем пользоваться в дальнейшем.

Определение 1.1. Событием называется совокупность некоторого числа точек ПЭС.

События в дальнейшем мы будем обозначать большими латинскими буквами: А, В, С .

Определение 1.2. Событие, которое может произойти, а может и не произойти при проведении испытания, называется случайным событием.

Купив лотерейный билет, мы можем выиграть, а можем и не выиграть; на очередных выборах правящая партия может победить, а может и не победить; на уроке Вас могут вызвать к доске, а могут и не вызвать и т.п. Все это примеры случайных событий, которые при одних и тех же условиях могут произойти, а могут и не произойти при проведении испытания.

Замечание. Любое элементарное событие так же является случайным событием.

Определение 1.3. Событие, которое происходит при любом исходе испытания, называется достоверным событием.

Определение 1.4. Событие, которое не может произойти ни при каком исходе испытания, называется невозможным событием.

Пример.

1) Испытание: подбрасывается игральный кубик.

Событие А: на верхней грани кубика выпало четное число очков;

Событие В: на верхней грани кубика выпало число очков, кратное 3;

Событие С: на верхней грани кубика выпало 7 очков;

Событие D: не верхней грани кубика выпало число очков меньшее 7.

События А и В могут произойти, а могут и не произойти при проведении испытания, поэтому это случайные события.

Событие С не может произойти никогда, поэтому оно является невозможным событием.

Событие D происходит при любом исходе испытания, значит это достоверное событие.

Мы говорили, что случайные события при одних и тех же условиях могут произойти, а могут и не произойти. При этом у одних случайных событий шансов произойти больше (значит, они более вероятные – ближе к достоверным), а у других меньше (они менее вероятные – ближе к невозможным). Поэтому в первом приближении можно определить вероятность, как степень возможности наступления того или иного события.

Понятно, что более вероятные события будут происходить чаще, чем менее вероятные. Так что сравнивать вероятности можно по частоте, с которой события происходят.

Попытаемся расположить на специальной вероятностной шкале следующие события в порядке возрастания вероятности их появления.

Событие А: в следующем году первый снег в Хабаровске выпадет в воскресенье;

Событие В: свалившийся со стола бутерброд упал маслом вниз;

Событие С: при подбрасывании игрального кубика выпадет 6 очков;

Событие D: при подбрасывании игрального кубика выпадет четное число очков;

Событие Е: при подбрасывании игрального кубика выпало 7 очков;

Событие F: при подбрасывании игрального кубика выпадет число очков, меньшее 7.

Итак, в начальной точке нашей шкалы расположим невозможные события, так как степень возможности их наступления (вероятность) практически равна 0. Таким образом, это будет событие Е . В конечной точке нашей шкалы расположим достоверные событие – F . Все остальные события являются случайными, попробуем расположить их на шкале в порядке возрастания степени их появления. Для этого мы должны выяснить какие из них менее вероятные, а какие более вероятные. Начнем с события D : когда мы подбрасываем игральный кубик, каждая из 6 граней имеет равные шансы оказаться верхней. Четное число очков – на трёх гранях кубика, на трёх других – нечетное. Значит, ровно половина шансов (3 из 6) за то, что событие D произойдет. Поэтому расположим событие D в середине нашей шкалы.

У события С только один шанс из 6, в то время как у события D – три шанса из 6 (как мы выяснили). Поэтому С менее вероятно и будет расположено на шкале левее события D .

Событие А еще менее вероятно, чем С , ведь в недели 7 дней и в любой из них с равной вероятностью может выпасть первый снег, поэтому у события А один шанс из 7. Событие А , таким образом, будет расположено еще левее, чем событие С .

Труднее всего расположить на шкале событие В . Здесь нельзя точно подсчитать шансы, но можно призвать на помощь жизненный опыт: бутерброд гораздо чаще падает на пол именно маслом вниз (есть даже «закон бутерброда»), поэтому событие В гораздо вероятнее, чем D , поэтому на шкале расположим его правее, чем D . Таким образом, получим шкалу:

Е А С D В F

невозможное случайные достоверное

Построенная вероятностная шкала не совсем настоящая – на ней нет числовых меток, делений. Перед нами встает задача научиться вычислять степень возможности наступления (вероятность) того или иного события.

Квадратный трехчлен - основная функция школьной математики - между прочим, не самая примитивная. Умение использовать предоставляемые им ресурсы для решения задач в большой степени характеризует уровень математического мышления изучающего школьную алгебру. В данной работе дается обоснование этого тезиса и приведены примеры конкретного применения свойств квадратичной функции. Стимулирующим фактором является то обстоятельство, что при решении какой бы то ни было задачи с параметрами рано или поздно приходится (и удается) задачу переформулировать в терминах квадратного трехчлена и решить ее с привлечением свойств этой универсальной функции.

Исследование квадратного трехчлена

Определение . Квадратным трехчленом относительно переменной x называется выражение вида f(x) = ax 2 + bx + c (1), где a, b, cR, a0.

Квадратный трехчлен - обычный многочлен степени 2. Спектр вопросов, формулируемых в терминах квадратного трехчлена, неожиданно оказывается чрезвычайно широким. Поскольку задачи, связанные с исследованием квадратного трехчлена, занимают традиционно почетное и видное место в письменных выпускных школьных и вступительных вузовских экзаменах, очень важно научить школьника (будущего абитуриента) неформальному (то есть творческому) владению разнообразными приемами и методами такого исследования. В данной методической разработке фиксируются основные утверждения о квадратном трехчлене (теорема Виета, расположение корней относительно заданных точек числовой оси, техника обращения с дискриминантом), решаются задачи различных типов и разных уровней сложности. Главный идеологический вывод заключается в том, что в школьной математике существуют насыщенные глубоким содержанием фрагменты, доступные учащемуся и не требующие привлечения средств математического анализа и иных разделов так называемой “высшей математики”.

Графиком трехчлена (1) является парабола; при a 0 - вверх. Расположение параболы относительно оси Ox зависит от значения дискриминанта D = b 2 - 4ac: при D>0 имеются две точки пересечения параболы с осью Ox (два различных действительных корня трехчлена); при D=0 - одна точка (двукратный действительный корень); при D 0 - выше оси Ox). Стандартным приемом является следующее представление трехчлена (с помощью выделения полного квадрата):

f(x) = ax 2 + bx + c = = . Это представление позволяет легко строить график посредством линейных преобразований графика функции y=x 2 ; координаты вершины параболы: .

Это же преобразование позволяет сразу решить простейшую задачу на экстремум: найти наибольшее (при a 0) значение функции (1); экстремальное значение достигается в точке и равно .

Одно из основных суждений о квадратном трехчлене –

Теорема 1 (Виета) . Если x 1 , x 2 - корни трехчлена (1), то

(формулы Виета).

С помощью теоремы Виета можно решать многие задачи, в частности, те, в которых требуется сформулировать условия, определяющие знаки корней. Две следующие теоремы являются непосредственными следствиями теоремы Виета.

Теорема 2 . Для того, чтобы корни квадратного трехчлена (1) были действительны и имели одинаковые знаки, необходимо и достаточно выполнение следующих условий:

D = b 2 - 4ac 0, x 1 x 2 = > 0,

при этом оба корня положительны при x 1 + x 2 = > 0,

и оба корня отрицательны при x 1 + x 2 =

Теорема 3 . Для того, чтобы корни квадратного трехчлена (1) были действительны и имели различные знаки, необходимо и достаточно выполнение следующих условий:

D=b 2 - 4ac > 0, x 1 x 2 =

при этом положительный корень имеет больший модуль при x 1 + x 2 = > 0,

и отрицательный корень имеет больший модуль при x 1 + x 2 =

Доказываемые ниже теоремы и следствия эффективно могут (и значит, должны) применяться при решении задач с параметрами.

Теорема 4 . Для того, чтобы оба корня квадратного трехчлена (1) были меньше, чем число M, то есть на числовой прямой корни лежат левее точки M, необходимо и достаточно выполнение следующих условий:

, или, объединяя условия,

(рис. 1,а и 1,б).

Доказательство .

Необходимость . Если трехчлен (1) имеет действительные корни x 1 и x 2 (может быть, совпадающие), x 1 x 2 и x 1 , (x 1 - M) (x 2 - M) > 0, x 1 + x 2 0, M > (x 1 + x 2)/2. По формулам Виета , поэтому , или , ч.т.д.

Достаточность - противоречие с условием. Если же , то (x 1 - M)(x 2 - M)0, x 1 x 2 - (x 1 + x 2)M + M 2 0, откуда , af(M) 0 - вновь противоречие с условием; остается только возможность x 1

Теорема 5 . Для того, чтобы один из корней квадратного трехчлена (1) был меньше, чем число M, а другой больше, чем число M, то есть точка M лежала бы в интервале между корнями, необходимо и достаточно выполнение следующих условий:

, или, объединяя условия, af(M)

(рис. 2,а и 2,б).

Доказательство .

Необходимость . Если трехчлен (1) имеет действительные корни x 1 и x 2 , x 1 M , то (x 1 - M)(x 2 - M), поэтому , или af(M)

Достаточность . Пусть af(M) , или , , тогда (x 1 - M)(x 2 - M)0,

x 1 x 2 - (x 1 + x 2)M + M 2 0, откуда , af(M)0 - противоречие с условием; остается только возможность , что и требуется доказать. Теорема доказана.

Теорема 6 . Для того, чтобы оба корня квадратного трехчлена (1) были больше, чем число M, то есть на числовой прямой корни лежат правее точки M, необходимо и достаточно выполнение следующих условий:

, или, объединяя условия,

(рис. 3,а и 3,б).

Доказательство . Необходимость . Если трехчлен (1) имеет действительные корни x 1 и x 2 (может быть, совпадающие), x 1 x 2 и x 1 > M, x 2 > M , то , (x 1 -M)(x 2 -M)>0, x 1 + x 2 > 2M; иначе x 1 x 2 - (x 1 + x 2)M + M 2 > 0, M , поэтому , или , ч.т.д.

Достаточность . Пусть . Рассуждаем от противного. Предположим, что , , тогда - противоречие с условием. Если же , то (x 1 - M)(x 2 - M)0, x 1 x 2 - (x 1 + x 2)M + M 2 0, откуда , af(M) 0 - вновь противоречие с условием; остается только возможность x 1 > M, x 2 > M, что и требуется доказать. Теорема доказана.

Следствие 1 . Для того, чтобы оба корня квадратного трехчлена (1) были больше, чем число M, но меньше, чем число N (M

, или, объединяя условия,

(рис. 4,а и 4,б).

Следствие 2 . Для того, чтобы только больший корень квадратного трехчлена (1) принадлежал интервалу (M,N), где M

, или, объединяя условия,

меньший корень при этом лежит вне отрезка

(рис. 5,а и 5,б).

Следствие 3 . Для того, чтобы только меньший корень квадратного трехчлена (1) принадлежал интервалу (M,N), где M

, или, объединяя условия, ;

больший корень при этом лежит вне отрезка

(рис. 6,а и 6,б).

Следствие 4 . Для того, чтобы один из корней квадратного трехчлена (1) был меньше, чем M, а другой больше, чем N (M

, или, объединяя условия,

(рис. 7,а и 7,б).

Разумеется, аналитическая и геометрическая интерпретации результатов теорем 4-6 и следствий 1-4 эквивалентны, и стратегической целью является выработка навыков точного перевода с одного языка на другой. Особенно важно продемонстрировать, как “визуализация” (“графический взгляд”) помогает безошибочно записать формальные условия, необходимые и достаточные для выполнения требований задачи.

Укажем типичные задачи, решаемые с помощью доказанных теорем (более общо - решаемые на основании свойств квадратного трехчлена).

Задача 1 . Найдите все значения a, при которых уравнения x 2 +ax+1=0 и x 2 +x+a=0 имеют хотя бы один общий корень.

Решение . Оба уравнения имеют в точности одинаковые корни в том и только том случае, если коэффициенты соответствующих квадратных трехчленов совпадают (многочлен второй степени полностью определяется двумя своими корнями и при этом соответственные коэффициенты этих многочленов равны), отсюда получаем a=1. Однако, если учитывать только действительные корни, то при a=1 таковых нет (дискриминант соответствующего трехчлена отрицателен). При a1 рассуждаем так: если x 0 - корень обоих уравнений f(x)=0 и g(x)=0, то x 0 будет корнем уравнения f(x)-g(x)=0 (это только необходимое, но не достаточное условие существования общего корня двух уравнений f(x)=0 и g(x)=0, так как уравнение f(x) - g(x)=0 является их следствием ); вычтем из первого уравнения второе, и получим

(x 2 + ax + 1) - (x 2 + x + a) = 0, x(a-1) - (a-1)=0, откуда, поскольку a1, x=1. Таким образом, если заданные уравнения имеют общий корень, то он равен 1 . Подставим x = 1 в первое уравнение: 1 + a + 1 = 0, и a = -2.

Ответ . a = -2.

Задача 2 . При каких a сумма квадратов корней уравнения x 2 - ax + a – 1 = 0 будет наименьшей?

Решение . По теореме Виета , x 1 + x 2 = a, x 1 x 2 = a - 1. Имеем:

x 1 2 + x 2 2 = (x 1 +x 2) 2 - 2x 1 x 2 = a 2 - 2(a-1) = a 2 - 2a + 2 = (a-1) 2 + 1 1 и =1 при a=1.

Ответ . a = 1.

Задача 3 . Существуют ли такие a, что корни многочлена f(x)=x 2 +2x+a действительны, различны и оба заключены между -1 и 1?

Решение . Для того, чтобы оба корня x 1 и x 2 трехчлена f(x) были заключены между -1 и 1, необходимо, чтобы между -1 и 1 было заключено среднее арифметическое этих корней: ; но, по теореме Виета , , поэтому

Ответ . Нет.

Задача 4 . При каких значениях параметра a оба корня квадратного уравнения x 2 +(2a+6)x + 4a + 12 = 0 действительны и оба больше -1?

Решение . Теорема 6 дает:

, , , .

Ответ . .

Задача 5 . При каких значениях параметра a оба корня квадратного уравнения x 2 +4ax+ (1-2a+4a 2) = 0 действительны и оба меньше -1?

Решение . Теорема 4 дает:

, , , a>1.

Ответ . a > 1.

Задача 6 . При каких значениях параметра a один корень квадратного уравнения f(x) = (a-2)x 2 - 2(a+3)x + 4a = 0 больше 3, а другой меньше 2?

Решение . Заметим сразу, что a2 (иначе уравнение имело бы только один корень). Применим следствие 4 (здесь M=2, N=3):

, , , 2

Ответ . a(2;5).

Задача 7 . При каких a уравнение (a-1)x 2 -(2a-1)x+a+5 = 0 (2) имеет действительные корни? Исследуйте знаки этих корней.

Решение . Если a = 1, уравнение (2) является линейным: -x + 6 = 0, x = 6 > 0.

Если a1, то уравнение (2) - квадратное и имеет действительные корни тогда и только тогда, когда D=(2a-1) 2 -4(a-1)(a+5)0, . Оба корня положительны при (теорема 6 ), откуда

и ;

оба корня отрицательны при (теорема 4 ) - эта система решений не имеет; корни имеют разные знаки при (a-1)(a+5) теорема 5), то есть -5

Ответ .

При оба корня положительны; при a=-5 один из корней равен 0.

При a = 1 - единственный положительный корень x=6.

При решений нет.

Задача 8 . Найдите все действительные значения a, при которых трехчлен

(a 2 -1)x 2 + 2(a-1)x + 1 положителен при всех действительных x.

Решение . При a 2 =1 получаем двучлен 2(a-1)x+1; при a=1 условие задачи выполняется, при a=-1 - нет. Если же a 2 1, то для выполнения неравенства

(a 2 -1)x 2 +2(a-1)x+1>0 при всех xR необходимо и достаточно

,

откуда находим a>1.

Ответ . a 1.

Уравнения

Задача 9 . При каких условиях уравнение x 2 +px+q=0 (3), где x=sint, имеет решения относительно t? Найдите все эти решения.

Решение . 1. Уравнение (3) имеет корень x 1 =-1, или sint=-1, или t=, если 1-p+q=0. При этом второй корень равен x 2 =1-p; значит, если , то уравнение sin 2 t +psint+q=0 (4) имеет еще, кроме указанных, корни (при p=2 обе серии корней совпадают).

2. Уравнение (3) имеет корень x 1 =1, или sint=1, или t=, если

1+p+q=0. При этом второй корень равен x 2 =-1-p; значит, если , то уравнение (4) имеет еще, кроме указанных, корни (при p=-2 обе серии корней совпадают).

3. Корни (3) равны между собой при p 2 -4q=0; тогда x 1 =x 2 =-p/2; если к тому же , то , а при p2 корней нет. Если p=2, то q=1, x 2 +2x+1=0, x=-1, t=, а если p=-2, то x=1, t=.

Случай I имеет место тогда и только тогда, когда 1-p+q>0, 1+p+q следствие 3), или p-1 .

Случай II имеет место тогда и только тогда, когда 1-p+q 0 (следствие 2 ), или -p-1 .

Случай III имеет место тогда и только тогда, когда p 2 >4q, -2+p 0, 1-p+q>0, 1+p+q>0 (следствие 1 ), или -2

При этом .

В остальных случаях уравнение sin 2 t +psint+q=0 не имеет решений.

Задача 10 . При каких aR уравнение sin 4 x+cos 4 x+sin2x+a=0 (5) имеет решения? Найдите эти решения.

Решение . Так как sin 4 x + cos 4 x = sin 4 x + 2sin 2 xcos 2 x + cos 4 x - 2sin 2 xcos 2 x =

(sin 2 x+cos 2 x) 2 - 4sin 2 xcos 2 x = 1 - sin 2 2x, уравнение (5) можно переписать так:

1 - sin 2 2x + sin2x + a = 0, sin 2 2x - 2sin2x - 2 - 2a = 0; сделаем замену y=sin2x:

y 2 - 2y - 2 - 2a = 0 (6).

Уравнение (6) имеет действительные корни, если D=3+2a. Пусть y 1 , y 2 - корни (6). Уравнение (5) имеет корни в одном из следующих случаях:

1. Хотя бы один корень равен 1. Тогда 1-2-2-2a=0, a=; уравнение (6) приобретает вид y 2 -2y+1=0, и второй корень также равен 1; следовательно, при a= sin2x=1, 2x=.

2. Хотя бы один корень равен -1. Тогда 1+2-2-2a=0, a=; уравнение (6) приобретает вид y 2 -2y-3=0, и второй корень равен 3; но корень y=3 не подходит, следовательно, при a= sin2x=-1, 2x=.

3. -1 : 3+2a>0, a>-, (-1) 2 -2(-1)-2-2a>0, 2(-1)-2

1 2 -21-2-2a>0, 21-2>0 - противоречивая система (0=2-2>0).

4. y 1: (-1) 2 -2(-1)-2-2a1-2-2a>0 - противоречие.

5. -1 Следствие 3: В этом случае 1 2 -21-2-2a (-1)-2-2a>0 и . Корнями (6) являются y 1 =1-, y 2 =1+, и только . Тогда

Самым мощным инструментом при решении сложных задач с параметрами является теорема Виета. Но здесь нужно быть предельно внимательным к формулировке.

Этих двух теорем (прямой и обратной)

Теорема Виета

Если уравнение имеет корни и ; то выполнены равенства .

Особенности теоремы:

Первое . Теорема верна только для уравнения и не верна для

В последнем случае нужно сначала разделить обе части уравнения на ненулевой коэффициент а при х 2 , а потом уже применять теорему Виета.

Второе. Для использования результатов теоремы необходимо иметь факт существования корней уравнений т.е. не забывать наложить условие D>0

Обратная

Теорема Виета

Если есть произвольные числа и то они являются корнями уравнения

Очень важное замечание , облегчающее решение задач: обратная теорема гарантирует существование корней в уравнении что позволяет не возится с дискриминантом. Он автоматически в этом случае неотрицателен.

Условия на корни Равносильное условие на коэффициенты а,в,с, и дискриминант D
Корни существуют (и различны)
Корни существуют и равны Причем
Корни существуют и
Корни существуют и
Корни существуют и различны
Корни существуют, один корень равен нулю, а другой >0

1). Установить, при каких значениях параметра уравнение

Не имеет корней.

Если уравнение не имеет корней, то необходимо и достаточно, чтобы дискриминант

имеет различные положительные корни .

Раз корни есть, то если они оба положительные, то и Воспользуемся формулой Виета, тогда для данного уравнения

Имеет различные отрицательные корни


Имеет корни разного знака

Имеет совпадающие корни

2). При каких значениях параметра а оба корня квадратного уравнения будут положительными?

Решение.

Так как заданное уравнение является квадратным, то оба его корня (равные или различные) будут положительными, если дискриминант неотрицателен, а сумма и произведение корней положительны, то есть



Так как, а по теореме Виета,

То получим систему неравенств

3). Найти все значения параметра а неположительны.

Так как заданное уравнение является квадратным, то . Оба его корня (равные или различные) будут отрицательными или равными нулю, если дискриминант неотрицательный, сумма корней отрицательна или равна нулю, а произведение корней неотрицательно, то есть

а по теореме Виета

то получим систему неравенств.

откуда

4).При каких значениях параметра а равна 22.5 ?

Вначале предложим “ решение “, с которым нам не раз приходилось встречаться.

поскольку то получаем “Ответ” Однако при найденном значении а исходное уравнение корней не имеет.

В этом решении мы столкнулись с одной из “популярнейших” ошибок, связанной с применением теоремы Виета:

вести речь о корнях предварительно не выяснив, существуют они или нет.

Так, в данном примере, в первую очередь необходимо было установить, что лишь при исходное уравнение имеет корни. Только после этого можно обратится к выкладкам, приведенным выше.

Ответ: Таких а не существует.

5). Корни уравнения таковы, что Определить

Решение. По теореме Виета Возведем обе части первого равенства в квадрат Учитывая, что а получаем или Проверка показывает, что значения удовлетворяют исходному уравнению.

Ответ :

6).При каком значении параметра а сумма квадратов корней уравнения принимает наименьшее значение:

Найдем дискриминант данного уравнения. Имеем Здесь важно не сделать ошибочный вывод о том, что уравнение имеет два корня при любом а . оно действительно имеет два корня при любом, но допустимом а , т.е. при при

Используя теорему Виета, запишем

Таким образом, для получения ответа осталось найти наименьшее значение квадратичной функции

на множестве

Поскольку при а при то функция на указанном множестве принимает наименьшее значение в точке

Задачи для самостоятельного решения

1). Найти все значения параметра а , при которых корни квадратного уравнения

неотрицательны

2). Вычислить значение выражения ,где -корни уравнения

3). Найти все значения параметра а , при которых сумма квадратов действительных корней уравнения больше 6.

Ответ:

4).При каких значениях параметра а уравнение ах 2 -4х+а=0 имеет:

а) положительные корни

б) отрицательные корни

Расположение корней квадратичной функции относительно

заданных точек.

Для подобных задач характерна следующая формулировка: при каких значениях параметра корни (только один корень) больше (меньше, не больше, не меньше) заданного числа А; корни расположены между числами А и В; корни не принадлежат промежутку с концами в точках А и В и т.п.

При решении задач, связанных с квадратным трехчленом

часто приходится иметь дело со следующими стандартными ситуациями (которые мы сформулируем в виде «вопрос – ответ».

Вопрос 1 . Пусть дано число (1) оба его корня и больше т.е. ?

Ответ . Коэффициенты квадратного трехчлена (7) должны удовлетворять условиям

где - абсцисса вершины параболы .

Справедливость сказанного вытекает из рис. 1, на котором отдельно представлены случаи и Отметим, что двух условий и еще недостаточно, чтобы корни и были больше На первом из рис. 1 штрихом изображена парабола, удовлетворяющая этим двум условиям, но ее корни меньше Однако, если к указанным двум условиям добавить, что абсцисса вершины параболы больше то и корни будут большими чем

Вопрос 2 . Пусть дано число При каких условиях на коэффициенты квадратного трехчлена (1) его корни и лежат на разные стороны от т.е. ?

Ответ. коэффициенты квадратного трехчлена (1) должны удовлетворять условию

Справедливость сказанного вытекает из рис. 2, на котором отдельно представлены случаи и Отметим, что указанное условие гарантирует существование двух различных корней и квадратного трехчлена (1).

Вопрос 3 . При каких условиях на коэффициенты квадратного трехчлена (1) его корни и различны и только один из них лежит в заданном интервале

Ответ. Коэффициенты квадратного трехчлена (1) должны удовлетворять условию

Вопрос 4. При каких условиях на коэффициенты квадратного трехчлена (1) множество его корней не пусто и все его корни и лежат в заданном интервале т.е.


Ответ . Коэффициенты квадратного трехчлена (1) должны удовлетворять условиям

Для решения таких задач полезно работать с таблицей, которая приведена ниже.

Корни многочлена


.

Уравнения содержащие параметр.
Урок 2: Расположение корней квадратного уравнения в зависимости
от параметра.
Цель: Формировать умение распознавать положение параболы в
зависимости от ее коэффициентов.
I.
Объяснение нового материала.
Ход урока
Решение многих задач с параметрами, предлагаемых на экзаменах, в
частности, на ЕГЭ по математике, требует умения правильно
формулировать необходимые и достаточные условия, соответствующие
различным случаям расположения корней квадратного трёхчлена на
числовой оси.
Рассмотрим пример: найдите все значения параметра с, при которых оба

меньше, чем – 1.
1
2). Теперь нужно
Уравнение имеет два различных корня при D > 0 (с >
составить систему уравнений когда х1>−1 и х2>−1 . Ее будет
достаточно сложно решить.
Для решения заданий такого типа существует специальный метод.
Сначала рассмотрим квадратичную функцию f(x) = ax2+bx+c,a≠0.
Запишем ее в виде f(x)=a(x+ b
2a)
Вспомним основные характеристики параболы, позволяющие построить ее
график. При решении заданий с параметрами эти характеристики
применяются в другом контексте.
+ 4ac−b2
4a
2
.
1. Прямая x=−b
2a – ось параболы, которая является одновременно
осью ее симметрии. Вершиной параболы является точка (
−b
2a
;4ac−b2
4a).
2. Знак числа а показывает, куда направлены ветви параболы: если а >
0, то вверх, если а < 0, то вниз.

3. Дискриминант D=b2−4ac показывает, пересекается ли парабола с
осью абсцисс.
Объединим вышесказанное в таблице:
Расположение графика по отношению к оси абсцисс в зависимости от
знаков коэффициента а и дискриминанта.
а > 0
а < 0
D > 0
D = 0
D < 0
Утверждение 1: Оба корня меньше числа А, то есть х1 < А и х2 < А тогда
и только тогда, когда { D>0,
a>0,
x0f(A)>0
или { D>0,
a<0,
x0f(A)<0.
Утверждение 2: Корни лежат по разные стороны от числа А, то есть х1 <
А < х2 , тогда и только тогда, когда { a>0,
системы можно заменить формулой a⋅f(A)<0.
f(A)<0 или { a<0,
f(A)>0.
Эти две
Утверждение 3: Оба корня больше числа А, то есть х1 > А и х2 > А, тогда
и только тогда, когда { D>0,
a>0,
x0>A,
f(A)>0
или { D>0,
a<0,
x0>A,
f(A)<0.

Утверждение 4: Оба корня лежат между точками А и В, то есть А < х1 <
a<0,
А<х0<В,
f(A)<0,
f(В)<0.
a>0,
А<х0<В,
f(A)>0,
f(В)>0
В и А < х2 < В, тогда и только тогда, когда { D>0,
> х2 и А < х1 < В, тогда и только тогда, когда { a>0,
> х2 и А < х2 < В, тогда и только тогда, когда { a>0,
или { D>0,
f(В)>0 или { a<0,
или { a<0,
f(A)>0,
f(В)<0
f(A)>0,
f(В)<0.
f(A)<0,
f(В)>0.
f(A)<0,
Утверждение 5: Больший корень лежит между точками А и В, то есть х1
Утверждение 6: Меньший корень лежит между точками А и В, то есть х1
Утверждение 7: Корни лежат по разные стороны от отрезка
есть х1 < А < В < х2, тогда и только тогда, когда { a>0,
f(A)<0,
f(В)<0
или { a<0,
f(A)>0,
f(В)>0.
[А;В]
, то
Вернемся к примеру1: найдите все значения параметра с, при которых оба
корня квадратного уравнения х2+4сх+(1−2с+4с2)=0 различны и
меньше, чем – 1. (Для решения необходимо воспользоваться утверждением
1.)
Пример 2: При каких действительных значениях k оба корня (в том числе
кратных) уравнения (1 + k)х2 – 3kх + 4k = 0 больше 1? (Для решения
необходимо воспользоваться утверждением 3.)
II. Закрепление пройденного материала. Практическая работа в
группах.
1 группа:
1. При каких значениях k число 2 находится между корнями уравнения 2х2
1
2 х + (k – 3)(k + 5) = 0?

2. При каких значениях параметра а оба корня уравнения х2 – ах + 2 = 0
лежат в интервале (0; 3)?

2 группа:
1. При каких значениях k число 3 находится между корнями уравнения х2
+
х + (k – 1)(k + 7) = 0?
2. Существуют ли такие значения параметра а, что корни уравнения х2 +
2х + а = 0 лежат между – 1 и 1?
3 группа:
1. Найдите множество значений параметра k, при число 2 находится
между корнями уравнения 9х2 – 6х – (k – 2)(k + 2) = 3.
2. При каких значениях параметра а все решения уравнения (а – 1)х2 – (а +
1)х + а = 0 имеет единственное решение удовлетворяющее условию 0 <
x < 3?
III. Домашняя работа.
1. При каких значениях параметра а оба корня уравнения (а + 4)х2 – 2(а +
2)х + 3(а + 6) = 0 положительны?
2. При каких значениях параметра а оба корня уравнения (а – 3)х2 – 3(а –
4)х + 4а – 16 = 0 принадлежат интервалу (2; 5)?
3. При каких значениях параметра а один из корней уравнения 2ах2 – 2х –
3а – 2 = 0 больше 1, а другой меньше 1?

Квадратные уравнения с параметрами

(Методическая разработка для учащихся 9-11 классов)

учитель математики высшей квалификационной категории,

заместитель директора по УВР

Мегион 2013

Предисловие

https://pandia.ru/text/80/021/images/image002.png" height="22 src=">2.Применение теоремы Виета

Научные работы" href="/text/category/nauchnie_raboti/" rel="bookmark">научной работы учащегося. В задачах с параметрами содержится множество приёмов, необходимых не только для математического развития личности, но и и в любом другом научном исследовании. Поэтому решение задач с параметрами и в частности решение квадратных уравнений с параметрами является пропедевтикой научно-исследовательской работы учащихся. На ЕГЭ по математике (часто задания С5), ГИА (задания части 2) и на вступительных экзаменах встречаются, в основном, два типа задач с параметрами. Первый: «Для каждого значения параметра найти все решения некоторого уравнения или неравенства». Второй: «Найти все значения параметра, при каждом из которых для данного уравнения или неравенства выполняются некоторые условия». Соответственно и ответы в задачах этих двух типов различаются по существу. В ответе к задаче первого типа перечисляются все возможные значения параметра и для каждого из этих значений записываются решения уравнения. В ответе к задаче второго типа указываются все значения параметра, при которых выполняются условия, указанные в задаче.

Как известно, решению задач с параметрами в школе уделяется очень мало внимания. Поэтому решение задач с параметрами всегда вызывает большие трудности у учащихся; трудно рассчитывать на то, что учащиеся, подготовка которых не содержала «параметрическую терапию», смогут в жесткой атмосфере конкурсного экзамена успешно справиться с подобными задачами, следовательно, учащиеся должны специально готовиться к «встрече с параметрами». Многие учащиеся воспринимают параметр как «обычное» число. Действительно, в некоторых задачах параметр можно считать постоянной величиной, но это постоянная величина принимает неизвестные значения. Поэтому необходимо рассматривать задачу при всех возможных значениях этой постоянной величины. В других задачах бывает удобно искусственно объявить параметром одну из неизвестных.

Задачи с параметрами обладают диагностической и прогностической ценностью – с помощью задач с параметрами можно проверить знание основных разделов школьной математики, уровень математического и логического мышления, первоначальные навыки научно-исследовательской деятельности , а главное, перспективные возможности успешного овладения курсом математики данного вуза.

Анализ вариантов ЕГЭ по математике и вступительных экзаменов в различные вузы показывает, что большинство предлагаемых задач с параметрами связано с расположением корней квадратного трехчлена. Будучи основной в школьном курсе математики, квадратичная функция формирует обширный класс задач с параметрами, разнообразных по форме и содержанию, но объединенных общей идеей – в основе их решения лежат свойства квадратичной функции. При решении таких задач рекомендуется работать с тремя типами моделей:

1. вербальная модель – словесное описание задачи;

2. геометрическая модель – эскиз графика квадратичной функции;

3. аналитическая модель – система неравенств, при помощи которой описывается геометрическая модель.

Методическое пособие содержит теоремы о расположении корней квадратного трехчлена (необходимые и достаточные условия расположения корней квадратичной функции относительно заданных точек), применение теоремы Виета к решению квадратных уравнений с параметрами. Приведены подробные решения 15 задач с методическими рекомендациями . Назначение данного пособия – помочь выпускнику и учителю математики в подготовке к сдаче ЕГЭ и ГИА по математике, и вступительного экзамена в вуз в виде теста или в традиционной форме.

https://pandia.ru/text/80/021/images/image004.png" width="16" height="32 src="> - лежит правее прямой х = n (условие xb>n);

3. парабола пересекается с прямой х = n в точке, лежащей в верхней полуплоскости при a>0 и в точке, лежащей в нижней полуплоскости при а<0 (условие a∙f(n) >0).

https://pandia.ru/text/80/021/images/image007.png" width="266" height="264">.png" width="311" height="264">.png" width="280" height="240">.png" width="38" height="31 src=">.png" width="263" height="264">.png" width="266" height="264">.png" width="311" height="264">.png" width="280" height="264">.png" width="266" height="264">.png" width="263" height="264">.png" width="280" height="264">.png" width="311" height="264">.png" width="263" height="264">.png" width="266" height="264">.png" width="290" height="264">.png" width="266" height="264">.png" width="290" height="264">.png" width="266" height="264">.png" width="263" height="264">.png" width="266" height="264">.png" width="153" height="43 src=">

Теорема 10. Квадратные уравнения х2 + p1x + q1 = 0 и x2 + p2x + q2 = 0,

дискриминанты которых неотрицательны, имеют по крайней мере один общий корень тогда и только тогда, когда (q2 – q1)2 = (p2 – p1)(p1q2 – q1p2).

Доказательство.

Пусть f1(x) = x2 + p1x + q1, f2(x) = x2 + p2x + q2 и числа х1, х2 являются корнями уравнения f1(x) = 0. Для того чтобы уравнения f1(x) = 0 и f2(x) = 0 имели по крайней мере один общий корень, необходимо и достаточно, чтобы f1(x)∙f2(x) = 0, т. е. чтобы (x12 + p2x1 + q2)(x22 + p2x2 + q2) = 0. Представим последнее равенство в виде

(x12 + p1x1 + q1 + (p2 – p1)x1 + q2 – q1) (x22 + p1x2 + q1 + (p2 – p1)x2 + q2 – q1) = 0.

Поскольку х12 + p1x1 + q1 = 0 и x22 + p1x2 + q1 = 0, отсюда получаем

((p2 – p1)x1 + (q2 – q1))((p2 – p1)x2 + (q2 – q1)) = 0, т. е.

(p2 – p1)2x1x2 + (q2 – q1)(p2 – p1)(x1 + x2) + (q2 – q1)2 = 0.

По теореме Виета x1 +x2 = - p1 и x1x2 =q1; следовательно,

(p2 – p1)2q1 – (q2 – q1)(p2 - p1)p1 + (q2 – q1)2 = 0, или

(q2 – q1)2 = (p2 - p1)((q2 – q1)p1 - (p2 - p1)q1) = (p2 – p1)(q2p1 – q1p1 – p2q1 + p1q1) =

(p2 – p1)(q2p1 – p2q1), что и требовалось доказать.

https://pandia.ru/text/80/021/images/image040.png" width="116" height="65 src=">

Квадратное уравнение ax 2 + bx + c = 0

1) имеет два действительных положительных корня тогда и только тогда, когда одновременно выполняются условия:

;

2) имеет два действительных отрицательных корня тогда и только тогда, когда одновременно выполняются условия:

;

3) имеет два действительных корня разных знаков тогда и только тогда, когда одновременно выполняются условия:

;

4) имеет два действительных корня одного знака, если

Замечание 1. Если коэффициент при х 2 содержит параметр, необходимо разбирать случай, когда он обращается в нуль.

Замечание 2. Если дискриминант квадратного уравнения является полным квадратом, то вначале удобней найти явные выражения для его корней.

Замечание 3. Если уравнение, содержащее несколько неизвестных, является квадратным относительно одной из них, то часто ключом к решению задачи служит исследование его дискриминанта.

Приведем схему исследования задач, связанных с расположением корней квадратного трехчлена f (x ) = ax 2 + bx + c :

1.Исследование случая а = о (если первый коэффициент зависит от параметров).

2.Нахождение дискриминанта D в случае а≠0.

3.Если D - полный квадрат некоторого выражения, то нахождение корней х1, х2 и подчинение условиям задачи.

4..png" width="13" height="22 src=">3. Примеры решения задач для подготовки к ГИА и ЕГЭ по математике

Пример 1. Решите уравнение (a - 2)x 2 – 2ax + 2a – 3 = 0.

Решение. Рассмотрим два случая: а = 2 и а ≠ 2. в первом случае исходное уравнение принимает вид - 4х + 1 = 0..png" width="255" height="58 src=">

При а = 1 или а = 6 дискриминант равен нулю и квадратное уравнение имеет один корень: , т. е. при а = 1 получаем корень , а при а = 6 – корень .

При 1 < a < 6 дискриминант положителен и квадратное уравнение имеет два корня: https://pandia.ru/text/80/021/images/image053.png" width="163" height="24 src=">уравнение не имеет корней; при а = 1 уравнение имеет один корень х = -1; при уравнение имеет два корня ; при а = 2 уравнение имеет единственный корень ; при а = 6 уравнение имеет единственный корень .

Пример 2. При каком значении параметра а уравнение (а - 2)х 2 + (4 – 2а )х + 3 = 0 имеет единственный корень?

Решение . Если а = 2, то уравнение превращается в линейное∙х + 3 = 0; которое не имеет корней.

Если а ≠ 2, то уравнение – квадратное и имеет единственный корень при нулевом дискриминанте D .

D = 0 при а 1 = 2 и a 2 = 5. Значение а = 2 исключается, так как противоречит условию, что исходное уравнение – квадратное.

Ответ : а = 5.

4.

(а - 1)х 2 + (2а + 3)х + а + 2 = 0 имеет корни одного знака?

Решение. Так как по условию задачи рассмотренное уравнение – квадратное, значит, а ≠ 1. очевидно, условие задачи предполагает также существование корней квадратного уравнения, что означает неотрицателность дискриминанта

D = (2a + 3)2 – 4(a - 1)(a + 2) = 8a + 17.

Так как по условию корни должны быть одинаковых знаков, то х 1∙х 2 > 0, т. е..png" width="149" height="21 src=">.С учетом условий D ≥ 0 и а ≠ 1 получим https://pandia.ru/text/80/021/images/image060.png" width="191" height="52 src=">.

Пример 3. Найти все значения а, для которых уравнение х2 – 2(а – 1)х + (2а + 1) = 0 имеет два положительных корня.

Решение. Из теоремы Виета для того чтобы оба корня х1 и х2 данного уравнения были положительными, необходимо и достаточно, чтобы дискриминант квадратного трехчлена х2 – 2(а – 1)х + (2а + 1) был неотрицательным, а произведение х1∙х2 и сумма х1 + х2 были положительными. Получаем, что все а, удовлетворяющие системе

И только они, являются решениями поставленной задачи. Э та система равносильна системе

Решением которой, а следовательно, и самой задачи являются все числа из промежутка }