Структура и свойства популяций экологические пирамиды. Пирамида биомасс, энергии, чисел. Перенос энергии в сообществе

Зачастую изучение экологических пирамид вызывает большие затруднения у учащихся. На самом деле даже самые примитивные и легкие экологические пирамиды начинают изучать еще дошкольники и школьники в начальных классах. Экологии как науке в последние годы начали уделять большое количество внимания, поскольку эта наука в современном мире играет значимую роль. Экологическая пирамида - это часть экологии как науки. Для того чтобы разобраться, что это, необходимо прочитать данную статью.

Что такое экологическая пирамида?

Экологическая пирамида - это такой графический рисунок, который чаще всего изображают в форме треугольника. Такие модели изображают трофическую структуру биоценоза. Это значит, что экологические пирамиды отображают число особей, их биомассу или же количество той энергии, которая в них заключена. Каждая из них может демонстрировать какой-либо один показатель. Соответственно, это значит, что экологические пирамиды могут быть нескольких типов: пирамида, которая отображает число особей, пирамида, отражающая количество биомассы представленных особей, а также последняя экологическая пирамида, которая наглядно демонстрирует количество энергии, заключенной в этих особях.

Что такое пирамиды чисел?

Пирамида чисел (или же численностей) демонстрирует количество организмов на каждом трофическом уровне. Такая экологическая графическая модель может использоваться в науке, но крайне редко. Звенья в экологической пирамиде численностей можно изображать практически до бесконечности, то есть структуру биоценоза в одной пирамиде изобразить крайне трудно. Помимо этого на каждом трофическом уровне присутствует множество особей, из-за которых порой практически невозможно продемонстрировать цельную структуру биоценоза в одном, полном масштабе.

Пример построения пирамиды чисел

Для того чтобы понять пирамиду чисел и ее построение, необходимо выяснить, каких особей и какие взаимодействия между ними включает в себя данная экологическая пирамида. Примеры сейчас рассмотрим подробно.

Пусть основанием фигуры станет 1000 тонн травы. Этой травой, допустим за 1 год, смогут прокормиться в естественных условиях выживания порядка 26 миллионов особей кузнечиков или других насекомых. Кузнечики в данном случае будут находиться выше растительности и составлять уже второй трофический уровень. Третьим трофическим уровнем станут 90 тысяч лягушек, которые за год употребят в пищу расположенных ниже насекомых. Около 300 форелей смогут употребить этих лягушек за год, соответственно, они будут расположены на четвертом трофическом уровне в пирамиде. Взрослый человек будет расположен уже на вершине экологической пирамиды, он станет пятым и завершающим звеном в этой цепочке, то есть последним трофическим уровнем. Это произойдет потому, что за год человек сможет употребить в пищу порядка 300 форелей. В свою очередь, человек является высшим звеном в соответственно, уже его в пищу употребить не сможет никто. Как показано на примере, недостающие звенья в экологической пирамиде чисел невозможны.

Она может иметь самые разнообразные структуры в зависимости от экосистемы. Например, эта пирамида для экосистем суши может выглядеть практически так же, как и пирамида энергии. Это значит, что пирамида биомасс будет построена таким образом, что количество биомассы будет уменьшаться с каждым последующим трофическим уровнем.

Вообще пирамиды биомасс изучают главным образом студенты, потому что для понимания их необходимы некоторые знания в сферах биологии, экологии и зоологии. Данная экологическая пирамида - это такой графический рисунок, который представляет соотношение между процудентами (то есть производителями органических веществ из неорганических) и консументами (потребителями этих органических веществ).

и процуденты?

Для того чтобы наверняка понять принцип построения пирамиды биомасс, необходимо разобраться, кто такие консументы и процуденты.

Процудентами являются производители органических веществ из неорганических. Это растения. Например, листья растений используют углекислый газ (неорганическое вещество), а производят в результате фотосинтеза органическое вещество.

Консументы - потребители данных органических веществ. В экосистеме суши ими являются животные и люди, а в водных экосистемах - различные морские животные и рыбы.

Обращенные пирамиды биомасс

Обращенная пирамида биомасс имеет построение перевернутого вниз треугольника, то есть его основание уже, чем вершина. Такую пирамиду называют обращенной или перевернутой. Экологическая пирамида имеет данное построение в том случае, если биомасса процудентов (производителей органических веществ) меньше, чем биомасса консументов (потребителей органических веществ).

Как мы знаем, экологическая пирамида - это графическая модель той или иной экосистемы. Одной из важных экологических моделей является графическое построение потока энергии. Пирамида, которая отражает скорость и время прохождение пищи через называется пирамидой энергий. Она была сформулирована благодаря знаменитому американскому ученому, который являлся экологом и зоологом, - Реймонду Линдеману. Реймонд сформулировал закон (правило экологической пирамиды), который утверждал, что при переходе с низшего трофического уровня на последующий через представленные пищевые цепи проходит порядка 10 % (более или менее) энергии, которая поступила на предыдущий уровень в экологической пирамиде. А оставшаяся часть энергии, как правило, тратится на процесс жизнедеятельности, на воплощение этого процесса. А в результате самого процесса обмена в каждом звене организмы теряют порядка 90 % своей энергии.

Закономерность пирамиды энергий

На самом деле закономерность состоит в том, что через верхние трофические уровни проходит намного меньше (в несколько раз) энергии, чем через нижние. Именно по этой причине больших хищных зверей намного меньше, чем, к примеру, лягушек или насекомых.

Рассмотрим для примера такого хищного зверя, как медведь. Он может находиться на вершине, то есть на самом последнем трофическом уровне, потому что трудно найти зверя, который бы им питался. В случае если бы в большом количестве существовали звери, который потребляли бы в пищу медведей, они бы уже вымерли, потому что не смогли бы прокормиться, поскольку медведи немногочисленны. Это и доказывает пирамида энергий.

Пирамида природных равновесий

Ее начинают изучать школьники в 1-х или 2-х классах, потому что она вполне легка для понимания, но в то же время очень важна как составляющая науки экологии. Пирамида природного равновесия действует в разных экосистемах, как в наземной природе, так и в подводной. Часто ее используют для ознакомления школьников с важностью каждого существа на земле. Для того чтобы понять пирамиду природных равновесий, необходимо рассмотреть примеры.

Примеры построения пирамиды природных равновесий

Пирамиду природных равновесий может наглядно демонстрировать взаимодействие реки и леса. Например, графический рисунок может показывать следующее взаимодействие природных ресурсов: на берегу реки рос лес, который уходил далеко вглубь. Река была очень полноводной, а на ее берегу росли цветы, грибы, кустарники. В ее водах было множество рыбы. В этом примере наблюдается экологический баланс. Река отдает свою влагу деревьям, деревья же создают тень, не позволяют воде из реки испаряться. Рассмотрим и обратный пример природного равновесия. Если с лесом что-то случится, деревья сгорят или их вырубят, то река сможет высохнуть, не получая защиты. Это и есть пример разрушения

То же самое может произойти с животными и растениями. Рассмотрим сов, и желуди. Желуди являются основанием в экологической пирамиде природного равновесия, потому что они ничем не питаются, но при этом питают грызунов. Вторым составляющим в следующем трофическом уровне станут лесные мыши. Они питаются желудями. На вершине пирамиды будут совы, потому что они питаются мышами. Если пропадут желуди, которые растут на дереве, то мышам нечем будет питаться и они, скорее всего, умрут. Но тогда и совам некого будет есть, и весь их вид погибнет. Это и есть пирамида природного равновесия.

Благодаря этим пирамидам экологи могут следить за состоянием природы, животного мира и делать соответствующие выводы.

Правило Линдемана (10%)

Сквозной поток энергии, проходя через трофические уровни биоценоза, постепенно гасится. В 1942 г. Р. Линдеман сформулировал закон пирамиды энергий, или закон (правило) 10%, согласно которому с одного трофического уровня экологической пирамиды переходит на другой, более высокий ее уровень (по «лестнице»: продуцент - консумент - редуцент) в среднем около 10% поступившей на предыдущий уровень экологической пирамиды энергии. Обратный поток, связанный с потреблением веществ и продуцируемой верхним уровнем экологической пирамиды энергии более низкими ее уровнями, например, от животных к растениям, намного слабее - не более 0,5% (даже 0,25%) от общего ее потока, и потому говорить о круговороте энергии в биоценозе не приходится.

Если энергия при переходе на более высокий уровень экологической пирамиды десятикратно теряется, то накопление ряда веществ, в том числе токсичных и радиоактивных, в примерно такой же пропорции увеличивается. Этот факт фиксирован в правиле биологического усиления. Оно справедливо для всех ценозов. В водных биоценозах накопление многих токсичных веществ, в том числе хлорорганических пестицидов, коррелирует с массой жиров (липидов), т.е. явно имеет энергетическую подоснову.

Экологические пирамиды

Для наглядности представления взаимоотношений между организмами различных видов в биоценозе принято использовать экологические пирамиды, различая пирамиды численности, биомасс и энергии.

Среди экологических пирамид наиболее известными и часто используемыми являются:

§ Пирамида численности

§ Пирамида биомасс

Пирамида численности. Для построения пирамиды численности подсчитывают число организмов на некоторой территории, группируя их по трофическим уровням:

§ продуценты - зеленые растения;

§ первичные консументы - травоядные животные;

§ вторичные консументы - плотоядные животные;

§ третичные консументы - плотоядные животные;

§ га-е консументы («конечные хищники») - плотоядные животные;

§ редуценты - деструкторы.

Каждый уровень изображается условно в виде прямоугольника, длина или площадь которого соответствуют численному значению количества особей. Расположив эти прямоугольники в соподчиненной последовательности, получают экологическую пирамиду численности (рис. 3), основной принцип построения которой впервые сформулировал американский эколог Ч. Элтон Николайкин Н. И. Экология: Учеб. для вузов / Н. И. Николайкин, Н. Е. Николайкина, О. П. Мелехова. - 3-е изд., стереотип. - М.: Дрофа, 2004..

Рис. 3. Экологическая пирамида численности для луга, поросшего злаками: цифры - число особей

Данные для пирамид численности получают достаточно легко путем прямого сбора образцов, однако существуют и некоторые трудности:

§ продуценты сильно различаются по размерам, хотя один экземпляр злака или водоросли имеет одинаковый статус с одним деревом. Это порой нарушает правильную пирамидальную форму, иногда давая даже перевернутые пирамиды (рис. 4) Там же.;

Рис.

§ диапазон численности различных видов настолько широк, что при графическом изображении затрудняет соблюдение масштаба, однако в таких случаях можно использовать логарифмическую шкалу.

Пирамида биомасс. Экологическую пирамиду биомасс строят аналогично пирамиде численности. Ее основное значение состоит в том, чтобы показывать количество живого вещества (биомассу - суммарную массу организмов) на каждом трофическом уровне. Это позволяет избежать неудобств, характерных для пирамид численности. В этом случае размер прямоугольников пропорционален массе живого вещества соответствующего уровня, отнесенной к единице площади или объема (рис. 5, а, б) Николайкин Н. И. Экология: Учеб. для вузов / Н. И. Николайкин, Н. Е. Николайкина, О. П. Мелехова. - 3-е изд., стереотип. - М.: Дрофа, 2004.. Термин «пирамида биомасс» возник в связи с тем, что в абсолютном большинстве случаев масса первичных консументов, живущих за счет продуцентов, значительно меньше массы этих продуцентов, а масса вторичных консументов значительно меньше массы первичных консументов. Биомассу деструкторов принято показывать отдельно.

Рис. 5. Пирамиды биомасс биоценозов кораллового рифа (а) и пролива Ла-Манш (б): цифры - биомасса в граммах сухого вещества, приходящегося на 1 м 2

При отборе образцов определяют биомассу на корню или урожай на корню (т.е. в данный момент времени), которая не содержит никакой информации о скорости образования или потребления биомассы.

Скорость создания органического вещества не определяет его суммарные запасы, т.е. общую биомассу всех организмов каждого трофического уровня. Поэтому при дальнейшем анализе могут возникнуть ошибки, если не учитывать следующее:

* во-первых, при равенстве скорости потребления биомассы (потеря из-за поедания) и скорости ее образования урожай на корню не свидетельствует о продуктивности, т.е. о количестве энергии и вещества, переходящих с одного трофического уровня на другой, более высокий, за некоторый период времени (например, за год). Так, на плодородном, интенсивно используемом пастбище урожай трав на корню может быть ниже, а продуктивность выше, чем на менее плодородном, но мало используемом для выпаса;

* во-вторых, продуцентам небольших размеров, например водорослям, свойственна высокая скорость роста и размножения, уравновешиваемая интенсивным потреблением их в пищу другими организмами и естественной гибелью. Поэтому продуктивность их может быть не меньше чем у крупных продуцентов (например, деревьев), хотя на корню биомасса может быть мала. Иными словами, фитопланктон с такой же продуктивностью, как у дерева, будет иметь намного меньшую биомассу, хотя мог бы поддерживать жизнь животных такой же массы.

Одним из следствий описанного являются «перевернутые пирамиды» (рис. 3, б). Зоопланктон биоценозов озер и морей чаще всего обладает большей биомассой, чем его пища - фитопланктон, однако скорость размножения зеленых водорослей настолько велика, что в течение суток они восстанавливают всю съеденную зоопланктоном биомассу. Тем не менее в определенные периоды года (во время весеннего цветения) наблюдают обычное соотношение их биомасс (рис. 6) Николайкин Н. И. Экология: Учеб. для вузов / Н. И. Николайкин, Н. Е. Николайкина, О. П. Мелехова. - 3-е изд., стереотип. - М.: Дрофа, 2004..


Рис. 6. Сезонные изменения в пирамидах биомассы озера (на примере одного из озер Италии): цифры - биомасса в граммах сухого вещества, приходящегося на 1 м 3

Кажущихся аномалий лишены пирамиды энергий, рассматриваемые далее.

Пирамида энергий. Самым фундаментальным способом отражения связей между организмами разных трофических уровней и функциональной организации биоценозов является пирамида энергий, в которой размер прямоугольников пропорционален энергетическому эквиваленту в единицу времени, т.е. количеству энергии (на единицу площади или объема), прошедшей через определенный трофический уровень за принятый период (рис. 7) Там же.. К основанию пирамиды энергии можно обоснованно добавить снизу еще один прямоугольник, отражающий поступление энергии Солнца.

Пирамида энергий отражает динамику прохождения массы пищи через пищевую (трофическую) цепь, что принципиально отличает ее от пирамид численности и биомасс, отражающих статику системы (количество организмов в данный момент). На форму этой пирамиды не влияют изменения размеров и интенсивности метаболизма особей. Если учтены все источники энергии, то пирамида всегда будет иметь типичный вид (в виде пирамиды вершиной вверх), согласно второму закону термодинамики.


Рис. 7. Пирамида энергии: цифры - количество энергии, кДж * м -2 *r -1

Пирамиды энергий позволяют не только сравнивать различные биоценозы, но и выявлять относительную значимость популяций в пределах одного сообщества. Они являются наиболее полезными из трех типов экологических пирамид, однако получить данные для их построения труднее всего.

Одним из наиболее удачных и наглядных примеров классических экологических пирамид служат пирамиды, изображенные на рис. 8 Николайкин Н. И. Экология: Учеб. для вузов / Н. И. Николайкин, Н. Е. Николайкина, О. П. Мелехова. - 3-е изд., стереотип. - М.: Дрофа, 2004.. Они иллюстрируют условный биоценоз, предложенный американским экологом Ю. Одумом. «Биоценоз» состоит из мальчика, питающегося только телятиной, и телят, которые едят исключительно люцерну.


Рис.

Правило 1% Экология. Курс лекций. Составил: к.т.н., доцент Тихонов А.И., 2002.. Точки Пастера, как и закон пирамиды энергий Р. Линдемана, дали повод для формулировки правил одного и десяти процентов. Конечно, 1 и 10 - числа приближенные: около 1 и примерно 10.

«Магическое число» 1% возникает из соотношения возможностей потребления энергии и «мощностей», необходимых для стабилизации среды. Для биосферы доля возможного потребления общей первичной продукции не превышает 1% (что следует и из закона Р. Линдемана: около 1% чистой первичной продукции в энергетическом выражении потребляют позвоночные животные как консументы высших порядков, около 10% - беспозвоночные как консументы низших порядков и оставшуюся часть - бактерии и грибы-сапрофаги). Как только человечество на грани прошлого и нашего веков стало использовать большее количество продукции биосферы (сейчас не менее 10%), так перестал удовлетворяться принцип Ле Шателье - Брауна (видимо, примерно с величины 0,5% от общей энергетики биосферы): растительность не давала прироста биомассы в соответствии с увеличением концентрации СО 2 и т.д. (прирост количества связанного растениями углерода наблюдался лишь в прошлом веке).

Эмпирически порог потребления 5 - 10% от суммы вещества, приводящий с переходом через него к заметным изменениям в системах природы, достаточно признан. Принят он главным образом на эмпирико-интуитивном уровне, без различения форм и характера управления в этих системах. Ориентировочно можно разделить намечающиеся переходы для природных систем с организменным и консорционным типом управления с одной стороны, и популяционных систем с другой. Для первых интересующие нас величины - порог выхода из стационарного состояния до 1% от потока энергии («нормы» потребления) и порог саморазрушения - около 10% от этой «нормы». Для популяционных систем превышение в среднем 10% объема изъятия приводит к выходу этих систем из стационарного состояния.

Эко­ло­ги­че­ские пи­ра­ми­ды - это гра­фи­че­ские мо­де­ли, отража­ю­щие число осо­бей (пи­ра­ми­да чисел), ко­ли­че­ство их био­мас­сы (пи­ра­ми­да био­масс) или за­клю­чён­ной в них энер­гии (пи­ра­ми­да энер­гии) на каж­дом тро­фи­че­ском уров­не и ука­зы­ва­ю­щие на по­ни­же­ние всех по­ка­за­те­лей с повыше­ни­ем трофи­че­ско­го уров­ня.

Различают три типа экологических пирамид: энергии, биомассы и численности. О пирамиде энергии мы говорили в предыдущем разделе «Перенос энергии в экосистемах». Соотношение живого вещества на разных уровнях подчиняется в целом тому же правилу, что и соотношение поступающей энергии: чем выше уровень, тем ниже общая биомасса и численность составляющих её организмов.

Пирамида биомассы

Пирамиды биомассы, так же, как и численности, могут быть не только прямыми, но и перевернутыми, свойственные водным экосистемам.

Пирамида экологическая (трофическая) графическое изображение количественных соотношений между трофическими уровнями биоценоза -продуцентами, консументами (отдельно каждого уровня) и редуцентами, выраженное в их численности (пирамида чисел), биомассе (пирамида биомасс) или скорости нарастания биомассы (пирамида энергий).

Пирамида биомасс - соотношение между продуцентами, консументами и редуцентами в экосистеме, выраженное в их массе и изображенное в виде трофической модели.

Пирамиды биомассы, так же, как и численности, могут быть не только прямыми, но и перевернутыми (рис. 12.38). Перевернутые пирамиды биомассы свойственны водным экосистемам, в которых первичные продуценты, например, фитопланктонные водоросли, очень быстро делятся, а их потребители - зоопланк-тонные ракообразные - гораздо крупнее, но имеют длительный цикл воспроизводства. В частности, это относится к пресноводной среде, где первичная продуктивность обеспечивается микроскопическими организмами, скорость обмена веществ которых повышена, т. е. биомасса мала, производительность велика.

Пирамиды биомассы представляют более фундаментальный интерес, так как в них устранен «физический» фактор и четко показаны количественные соотношения биомасс. Если организмы не слишком сильно различаются по размеру, то, обозначив на трофических уровнях общую массу особей, можно получить ступенчатую пирамиду. Но если организмы низших уровней в среднем мельче организмов высших уровней, то имеет место обращенная пирамида биомассы. Например, в экосистемах с очень мелкими продуцентами и крупными консументами общая масса последних может быть в любой данный момент выше общей массы продуцентов. Для пирамид биомассы можно сделать несколько обобщений.

Пирамида биомасс показывает изменение биомасс на каждом следующем трофическом уровне: для наземных экосистем пирамида биомасс сужается кверху, для экосистемы океана - имеет перевернутый характер (сужается книзу), что связано с быстрым потреблением фитопланктона консументами.

Пирамида численности

Пирамида численности — экологическая пирамида, отражающая число особей на каждом пищевом уровне. Пирамида чисел не всегда дает четкое понятие о структуре пищевых цепей, так как в ней не учитываются размеры и масса особей, продолжительность жизни, интенсивность обмена веществ по главная тенденция - уменьшение числа особей от звена к звену — в большинстве случаев прослеживается.

Так, в степной экосистеме была установлена следующая численность особей: продуценты — 150 000, травоядные консументы 20 000, плотоядные консументы 9000 экз/ар (Одум, 1075), что в пересчете на гектар составит цифры в 100 раз большие. Биоценоз луга характеризуемся следующей численностью особей на площади 4 тыс. м2: продуцентов — 5 842 424, растительноядных консументов I порядка — 708 024, плотоядных консументов II порядка - 35 490, плотоядных консументов III порядка — 3.

Перевёрнутые пирамиды

Если скорость размножения популяции жертвы высока, то даже при низкой биомассе такая популяция может быть достаточным источником пищи для хищников, имеющих более высокую биомассу, но низкую скорость размножения. По этой причине пирамиды численности могут быть перевернутыми, т.е. плотность организмов в данный конкретный момент времени на низком трофическом уровне может быть ниже, чем плотность организмов на высоком уровне. Например, на одном дереве может жить и кормиться множество насекомых (перевернутая пирамида численности).

Перевернутая пирамида биомасс свойственна морским экосистемам, где первичные продуценты (фитопланктонные водоросли) очень быстро делятся (имеют большой репродуктивный потенциал и быструю смену поколений). В океане за год может смениться до 50 поколений фитопланктона. Потребители фитопланктона гораздо крупнее, но размножаются значительно медленнее. За то время, пока хищные рыбы (а тем более моржи и киты) накопят свою биомассу, сменится множество поколений фитопланктона, суммарная биомасса которых намного больше.

Пирамидами биомасс не учитывается продолжительность существования поколений особей на разных трофических уровнях и скорость образования и выедания биомассы. Вот почему универсальным способом выражения трофической структуры экосистем являются пирамиды скоростей образования живого вещества, т.е. продуктивности. Их обычно называют пирамидами энергий, имея в виду энергетическое выражение продукции.

Различают три способа составления экологических пирамид:

1. Пирамида численностей отражает численное соотношение особей разных трофических уровней экосистемы. Если организмы в пределах одного или разных трофических уровней сильно различаются между собой по размерам, то пирамида численностей дает искаженные представления об истинных соотношениях трофических уровней. Например, в сообществе планктона численность продуцентов в десятки и сотни раз больше численности консументов, а в лесу сотни тысяч консументов могут питаться органами одного дерева - продуцента.

2. Пирамида биомасс показывает количество живого вещества, или биомассы, на каждом трофическом уровне. В большинстве наземных экосистем биомасса продуцентов, т. е. суммарная масса растений наибольшая, а биомасса организмов каждого последующего трофического уровня меньше предыдущего. Однако в некоторых сообществах биомасса консументов I порядка бывает больше биомассы продуцентов. Например, в океанах, где основными продуцентами являются одноклеточные водоросли с высокой скоростью размножения, их годовая продукция в десятки и даже сотни раз может превышать запас биомассы. Вместе с тем, вся образованная водорослями продукция так быстро вовлекается в цепи питания, что накопление биомассы водорослей мало, но вследствие высоких темпов размножения небольшой их запас оказывается достаточным для поддержания скорости воссоздания органического вещества. В связи с этим в океане пирамида биомасс имеет обратное соотношение, т. е. «перевернута». На высших трофических уровнях преобладает тенденция к накоплению биомассы, так как длительность жизни хищников велика, скорость оборота их генераций, наоборот, мала, и в их теле задерживается значительная часть вещества, поступающего по цепям питания.

3. Пирамида энергии отражает величину потока энергии в цепи питания . На форму этой пирамиды не влияют размеры особей, и она всегда будет иметь треугольную форму с широким основанием внизу, как это диктуется вторым законом термодинамики. Поэтому пирамида энергии дает наиболее полное и точное представление о функциональной организации сообщества, о всех обменных процессах в экосистеме. Если пирамиды чисел и биомасс отражают статику экосистемы (количество и биомассу организмов в данный момент), то пирамида энергии -динамику прохождения массы пищи через цепи питания. Таким образом, основание в пирамидах чисел и биомасс может быть больше или меньше, чем последующие трофические уровни (в зависимости от соотношения продуцентов и консументов в различных экосистемах). Пирамида энергии всегда суживается кверху. Это обусловлено тем, что энергия, затраченная на дыхание, не передается на следующий трофический уровень и уходит из экосистемы. Поэтому каждый последующий уровень всегда будет меньше предыдущего. В наземных экосистемах уменьшение количества доступной энергии обычно сопровождается снижением численности и биомассы особей на каждом трофическом уровне. Вследствие таких больших потерь энергии на построение новых тканей и дыхание организмов цепи питания не могут быть длинными; обычно они состоят из 3-5 звеньев (трофических уровней).


Знание законов продуктивности экосистем, возможность количественного учета потока энергии имеют важное практическое значение, поскольку продукция природных и искусственных сообществ (агроиенозов) является основным источником запасов пищи для человечества. Точные расчеты потока энергии и масштабов продуктивности экосистем позволяют регулировать в них круговорот веществ таким образом, чтобы добиваться наибольшего выхода необходимой для человека продукции.

Сукцессии и их виды.

Процесс, при котором сообщества видов растений и животных замещаются с течением времени другими, обычно более сложными сообществами, называется экологической сукцессией, или просто сукцессией.

Экологическая сукцессия обычно продолжается до тех пор, пока сообщество не станет стабильным и самообеспечивающимся. Экологи выделяют два вида экологических сукцессии: первичные и вторичные.

Первичная сукцессия - это последовательное развитие сообществ на участках, лишенных почв.

1-й этап – возникновение места, лишённого жизни;

2-ой этап – расселение на этом месте первых растительных, животных организмов;

3-ий этап – приживание организмов;

4-ый этап – конкуренция и вытеснение видов;

5-ый этап – преобразование организмами места обитания, постепенная стабилизация условий и отношений.

Широко известным примером первичной сукцессии является заселение застывшей лавыпосле извержения вулкана или склона после схода лавины, уничтожившей весь профиль почвы, участки открытой добычи полезных ископаемых, с которых снят верхний слой почвы и т.п. На таких бесплодных участках первичная сукцессия от голой скальной породы до зрелого леса может занять от сотен до тысяч лет.

Вторичная сукцессия - последовательное развитие сообществ в ареале, в котором естественная растительность была устранена или сильно нарушена, но почва не была уничтожена. Вторичная сукцессия начинается на месте разрушенного биоценоза (лес после пожара). Сукцессия происходит быстро, т.к. в почве сохраняются семена, части пищевых связей и происходит образование биоценоза. Если мы будем рассматривать сукцессию на брошенных землях, которые не используются в сельском хозяйстве, то можно видеть, что бывшие поля быстро покрываются разнообразными однолетними растениями. Сюда же могут попасть, преодолев иногда большие расстояния с помощью ветра или животных, семена древесных пород: сосны, ели, березы, осины. Вначале изменения происходят быстро. Затем, по мере появления растений, растущих более медленно, скорость сукцессии снижается. Всходы березы образуют густую поросль, которая затеняет почву, и даже если вместе с березой прорастают семена ели, ее всходы, оказавшись в весьма неблагоприятных условиях, сильно отстают от березовых. Березу называют «пионером леса», так как она почти всегда первой поселяется на нарушенных землях и обладает широким диапазоном приспособляемости. Березки в возрасте 2-3 лет могут достигать высоты 100-120 см, тогда как елочки в том же возрасте едва дотягивают до 10 см. Изменения касаются и животного компонента рассматриваемого биоценоза. На первых стадиях поселяются майские хрущи, березовые пяденицы, затем появляются многочисленные птицы: зяблики, славки, пеночки. Поселяются мелкие млекопитающие: землеройки, кроты, ежи. Изменение условий освещения начинает благоприятно сказываться на молодых елочках, которые ускоряют свой рост.

Стабильная стадия сукцессии, когда сообщество (биоценоз) сформировалось полностью и находится в равновесии с окружающей средой называется климакс. Климаксное сообщество способно к саморегуляции и может долго находиться в равновесном состоянии.

Таким образом происходит сукцессия, при которой вначале березовый, затем смешанный елово-березовый лес сменяется чистым ельником. Естественный процесс смены березняка ельником длится более 100 лет. Именно поэтому иногда процесс сукцессии называют вековой сменой.

18. Функции живого вещества в биосфере. Живое вещество – это совокупность живых организмов (биомассы Земли). Представляет собой открытую систему для которой характерны рост, размножение, распространение, обмен веществ и энергией с внешней средой, накопление энергии и передача её в цепях питания. Живое вещество выполняет 5 функций:

1. Энергетическая (способность поглощать солнечную энергию, превращать её в энергию химических связей и передавать по пищевым цепям)

2. Газовая (способность поддерживать постоянство газового состава биосферы в результате сбалансированности дыхания и фотосинтеза)

3. Концентрационная (способность живых организмов накапливать в своём теле определённые элементы окружающей среды, благодаря чему произошло перераспределение элементов и образование полезных ископаемых)

4. Окислительно-восстановительная (способность изменять степень окисления элементов и создавать разнообразие соединений в природе для поддержания разнообразия жизни)

5. Деструктивная (способность разлагать отмершее органическое вещество, благодаря чему осуществляется круговорот веществ)

  1. Водная функция живого вещества в биосфере связана с биогенным круговоротом воды, имеющим важное значение в круговороте воды на планете.

Выполняя перечисленные функции, живое вещество адаптируется к окружающей среде и приспосабливает её к своим биологическим (а если речь идёт о человеке, то и социальным) потребностям. При этом живое вещество и среда его обитания развиваются как единое целое, однако контроль над состоянием среды осуществляют живые организмы.

Каждая экосистема состоит из нескольких трофических (пищевых) уровней , слагающихся в определенную структуру. Трофическую структуру принято изображать в видеэкологических пирамид.

В 1927 году американский эколог и зоолог Чарлз Элтон предложил графическую модель экологической пирамиды. Базой пирамиды является первый трофический уровень, состоящий из продуцентов. Выше расположены уровни консументов различных порядков. Иначе говоря, глядя на экологическую пирамиду, мы понимаем, как в данной экосистеме соотносятся все ее члены по нескольким факторам.

Изображаются уровни экологической пирамиды в виде нескольких прямоугольных или трапециевидных ярусов, размер которых соотнесен либо с количеством участников каждого уровня пищевой цепи, либо с их массой, либо с энергией.

Три вида экологических пирамид

1. Пирамида чисел (или численности) сообщает нам количество живых организмов на каждом уровне. Например, для пропитания одной совы необходимо 12 мышей, а им, в свою очередь, требуется 300 колосьев ржи. Нередко случается, что пирамида чисел перевернута (такую пирамиду иначе называют обращенной). Она может описывать, скажем, лесную пищевую цепь, в которой продуцентами выступают деревья, а первичными консументами - насекомые. Одно дерево является пищей для мириадов насекомых.

2. Пирамида биомасс описывает соотношение масс организмов нескольких трофических уровней. Как правило, в биоценозах на суше масса продуцентов значительно больше, нежели в каждом последующем звене пищевой цепи, а масса консументов первого уровня превышает массу консументов второго уровня и т. д.

Водные экосистемы также могут характеризоваться перевернутыми пирамидами биомасс, в которых масса консументов оказывается большей, чем масса продуцентов. Океанический зоопланктон, питающийся фитопланктоном, намного превышает его по совокупной массе. Казалось бы, с такой скоростью поглощения, фитопланктон должен был бы исчезнуть, однако, его спасает высокая скорость роста.

3. Пирамида энергии исследует величину потока энергии, проходящего через пищевую цепь от базового уровня к наивысшему. Структура биоценоза в высокой степени зависит от скорости продуцирования пищи на всех трофических уровнях. Американский ученый Раймонд Линдеман выяснил, что на каждом уровне теряется до 90% поступившей на него энергии (так называемый «Закон 10%»).

Зачем нужны экологические пирамиды?

Пирамиды чисел и биомассописывают экосистему в ее статике, поскольку рассчитывают количество или массу участников экосистемы за фиксированный временной отрезок. Они не призваны давать информацию о трофической структуре экосистемы в динамике, однако же позволяют решать задачи, связанные с сохранением устойчивости экосистемы, и предвидеть возможные опасности.

Классический пример нарушения устойчивости - завоз кроликов на Австралийский континент. Из-за высокой скорости размножения их количество стало столь огромным, что наносило вред сельскому хозяйству, лишая пищи овец и крупный скот - таким образом, только один вид консументов (кролики) монополизировал продуцент (траву) в данной экосистеме.

Пирамида энергии , в отличие от вышеназванных пирамид, динамична, она передает скорость прохождения количества энергии через все трофические уровни. Ее задача - дать представление о функциональной организации экосистемы.