Уравнение стороны вс. Дано координаты вершин треугольника. Примеры решения задач

1. Определите вид треугольника (остроугольный, тупоугольный или прямоугольный) со сторонами 8, 6 и 11 см (рис. 126). (1)


Решение. Обозначим больший угол треугольника через?. Очевидно, что он лежит напротив стороны в 11 см, так как в треугольнике больший угол лежит против большей стороны. По теореме косинусов 112= 82+ 62– 2?8?6?cos ?;

Можно было рассуждать и по-другому. Если бы угол? был равен 90°, то большая сторона по теореме Пифагора равнялась бы

Удлинение стороны на 1 см автоматически увеличивает и лежащий напротив угол – он становится тупым.

Ответ: тупоугольный.


2. Основание треугольника равно 6 см, один из углов при основании равен 105°, другой – 45°. Найдите длину стороны, лежащей против угла в 45° (рис. 127). (1)


Решение. Пусть в треугольнике ABC будут АС = 6 см, ?А = 45°, ?С = 105°. Обозначим длину стороны ВС через х. Её нам и нужно найти. Воспользуемся теоремой синусов по которой:

Учитывая, что сумма углов в треугольнике равна 180°, получим:?В = 180° – ?A – ?C = 180°– 45°– 105° = 30°.



3. Найдите площадь треугольника со сторонами 2, ?5 и 3 (рис. 128). (1)


Решение. Можно воспользоваться формулой Герона:

В нашем случае:

Полупериметр:


Проще решить задачу можно было бы так. По теореме косинусов:

Так как площадь треугольника равна половине произведения двух сторон на синус угла между ними, то:


4. В треугольнике ABC, где?ACB = 120°, проведена медиана СМ. Найдите ее длину, если АС = 6, ВС = 4 (рис. 129). (2)


Решение. Воспользуемся формулой длины медианы

У нас а = ВС = 4, b = АС = 6. Осталось найти с = АВ. Применим к треугольнику АСВ теорему косинусов: с2= АВ2= АС2+ ВС2– 2AC ? BC ? cos(?АСВ) = 62+ 42– 2 ? 6 ? 4 ? cos 120° = 36 + 16–48?(-1/2) = 76.


5. Найдите длины сторон АВ и АС остроугольного треугольника ABC, если ВС = 8, а длины высот, опущенных на стороны АС и ВС, равны 6, 4 и 4 соответственно (рис. 130). (2)


Решение. Единственный угол треугольника, который остался «нетронутым», угол С.

Из прямоугольного треугольника ВМС следует:

А теперь по теореме косинусов, применённой к треугольнику ABC, получаем:

Ответ: AB = ?41; AC = 5.


6. В треугольнике, один из углов которого равен разности двух других, длина меньшей стороны равна 1, а сумма площадей квадратов, построенных на двух других сторонах, в два раза больше площади описанного около треугольника круга. Найти длину большей стороны треугольника (рис. 131). (2)


Решение: Обозначим через? наименьший угол в треугольнике и через? наибольший угол. Тогда третий угол равен? – ? – ?. По условию задачи? – ? = ? – ? – ? (больший угол не может равняться разности двух других углов). Отсюда следует, что 2? = ?; ? = ?/2. Значит, треугольник прямоугольный. Катет ВС, лежащий против меньшего угла?, равен по условию 1, значит, второй катет АВ равен ctg?, а гипотенуза АС равна 1/sin ?. Поэтому сумма площадей квадратов, построенных на гипотенузе и большем катете, равна:

Центр окружности, описанной около прямоугольного треугольника, лежит на середине гипотенузы, и её радиус равен:

а площадь равна:

Пользуясь условием задачи, имеем уравнение:

Длина большей стороны треугольника равна


7. Длины сторон а, b, с треугольника равны 2, 3 и 4. Найти расстояние между центрами описанной и вписанной окружностей. (2)

Решение. Для решения задачи даже чертеж не нужен. Последовательно находим: полупериметр

Расстояние между центрами окружностей:


8. В треугольнике ABC величина угла ВАС равна?/3, длина высоты, опущенной из вершины С на сторону АВ, равна?3 см, а радиус окружности, описанной около треугольника ABC, равен 5 см. Найти длины сторон треугольника ABC (рис. 132). (3)



Решение: Пусть CD – высота треугольника ABC, опущенная из вершины С. Возможны три случая. Основание D высоты CD попадает:

1) на отрезок АВ;

2) на продолжение отрезка АВ за точку В;

3) в точку В.

По условию радиус R окружности, описанной около треугольника ABC, равен 5 см. Следовательно, во всех трех случаях:

Теперь ясно, что точка D не совпадает с точкой В, так как ВС? CD. Применяя теорему Пифагора к треугольникам ACD и BCD, находим, что

Отсюда следует, что точка D лежит между точками А и В, но тогда АВ = AD + BD (1 + 6?2) см.

Ответ: АВ = (6?2 + 1) см, ВС = 5?3 см, АС = 2 см.


9. В треугольниках ABC и A1B1C1 длина стороны АВ равна длине стороны А1В1, длина стороны АС равна длине стороны А1С1, величина угла ВАС равна 60° и величина угла В1А1С1 равна 120°. Известно, что отношение длины В1С1 к длине ВС равно?n (где n – целое число). Найти отношение длины АВ к длине АС. При каких значениях n задача имеет хотя бы одно решение (рис. 133)? (3)


Решение: Пусть ABC и A1B1C1 – данные в условии задачи треугольники. Применяя теорему косинусов к треугольникам ABC и А1В1С1, имеем:

Т. к. по условию задачи В1С1:ВС = ?n, то

Поскольку А1В1 = АВ и А1С1 = АС, то, разделив числитель и знаменатель дроби в левой части равенства (1) на АС2и обозначив АВ: АС через х, получим равенство:

откуда ясно, что искомое отношение длины АВ к длине АС есть корень уравнения

х2(n – 1) – х(n + 1) + n – 1 = 0. (2)

Т. к. В1С1 > ВС, то n > 1. Следовательно, уравнение (2) является квадратным. Его дискриминант равен (n + 1)2– 4(n – 1)2= – 3n2+ 10n – 3.

Уравнение (2) будет иметь решения, если – 3n2+ 10n – 3 ? 0, т. е. при -1/3 ? n ? 3. Т. к. n – натуральное число, большее 1, то уравнение (2) имеет решения при n = 2 и n = 3. При n = 3 уравнение (2) имеет корень х = 1; при n = 2 уравнение имеет корни

Ответ: отношение длины АВ к длине АС равно

при n = 2; равно 1 при n = 3; при остальных n решений нет.

Задача 1 . Даны координаты вершин треугольника АВС: А(4; 3), В(16;-6), С(20; 16). Найти: 1) длину стороны АВ; 2) уравнения сторон АВ и ВС и их угловые коэффициенты; 3) угол В в радианах с точностью до двух знаков; 4) уравнение высоты СD и ее длину; 5) уравнение медианы AE и координаты точки К пересечения этой медианы с высотой CD; 6) уравнение прямой, проходящей через точку К параллельно стороне АВ; 7) координаты точки М, расположенной симметрично точке А относительно прямой СD.

Решение:

1. Расстояние d между точками A(x 1 ,y 1) и B(x 2 ,y 2) определяется по формуле

Применяя (1), находим длину стороны АВ:

2. Уравнение прямой, проходящей через точки A(x 1 ,y 1) и B(x 2 ,y 2) имеет вид

(2)

Подставляя в (2) координаты точек А и В, получим уравнение стороны АВ:

Решив последнее уравнение относительно у, находим уравнение стороны АВ в виде уравнения прямой с угловым коэффициентом:

откуда

Подставив в (2) координаты точек В и С, получим уравнение прямой ВС:

Или

3. Известно, что тангенс угла между двумя прямыми, угловые коэффициенты которых соответственно равны и вычисляется по формуле

(3)

Искомый угол В образован прямыми АВ и ВС, угловые коэффициенты которых найдены: Применяя (3), получим

Или рад.

4. Уравнение прямой, проходящей через данную точку в заданном направлении, имеет вид

(4)

Высота CD перпендикулярна стороне АВ. Чтобы найти угловой коэффициент высоты CD, воспользуемся условием перпендикулярности прямых. Так как то Подставив в (4) координаты точки С и найденный угловой коэффициент высоты, получим

Чтобы найти длину высоты CD, определим сначала координаты точки D- точки пересечения прямых АВ и CD. Решая совместно систему:

находим т.е. D(8;0).

По формуле (1) находим длину высоты CD:

5. Чтобы найти уравнение медианы АЕ, определим сначала координаты точки Е, которая является серединой стороны ВС, применяя формулы деления отрезка на две равные части:

(5)

Следовательно,

Подставив в (2) координаты точек А и Е, находим уравнение медианы:

Чтобы найти координаты точки пересечения высоты CD и медианы АЕ, решим совместно систему уравнений

Находим .

6. Так как искомая прямая параллельна стороне АВ, то ее угловой коэффициент будет равен угловому коэффициенту прямой АВ. Подставив в (4) координаты найденной точки К и угловой коэффициент получим

3x + 4y – 49 = 0 (KF)

7. Так как прямая АВ перпендикулярна прямой CD, то искомая точка М, расположенная симметрично точке А относительно прямой CD, лежит на прямой АВ. Кроме того, точка D является серединой отрезка AM. Применяя формулы (5), находим координаты искомой точки М:

Треугольник ABC, высота CD, медиана АЕ, прямая KF и точка М построены в системе координат хОу на рис. 1.

Задача 2. Составить уравнение геометрического места точек, отношение расстояний которых до данной точки А(4; 0) и до данной прямой х=1 равно 2.

Решение :

В системе координат хОу построим точку А(4;0) и прямую х = 1. Пусть М(х;у) – произвольная точка искомого геометрического места точек. Опустим перпендикуляр MB на данную прямую x = 1 и определим координаты точки В. Так как точка В лежит на заданной прямой, то ее абсцисса равна 1. Ордината точки В равна ординате точки М. Следовательно, В(1;у) (рис. 2).

По условию задачи |МА|: |МВ| = 2. Расстояния |МА| и |MB| находим по формуле (1) задачи 1:

Возведя в квадрат левую и правую части, получим

или

Полученное уравнение представляет собой гипербо­лу, у которой действительная полуось а = 2,а мнимая –

Определим фокусы гиперболы. Для гиперболы выполняется равенство Следовательно, и – фокусы гиперболы. Как видно, заданная точка А(4;0) является правым фокусом гиперболы.

Определим эксцентриситет полученной гиперболы:

Уравнения асимптот гиперболы имеют вид и . Следовательно, или и – асимптоты гиперболы. Прежде чем построить гиперболу, строим ее асимптоты.

Задача 3 . Составить уравнение геометрического места точек, равноудаленных от точки А(4; 3) и прямой у = 1. Полученное уравнение привести к простейшему виду.

Решение: Пусть М(х; у) - одна из точек искомого геометрического места точек. Опустим из точки М перпендикуляр MB на данную прямую у = 1 (рис. 3). Определим координаты точки В. Очевидно, что абсцисса точки В равна абсциссе точки М, а ордината точки В равна 1, т. е. В(х; 1). По условию задачи |МА|=|МВ|. Следовательно, для любой точки М(х;у), принадлежащей искомому геометрическому месту точек, справедливо равенство:

Полученное уравнение определяет параболу с вершиной в точке Чтобы уравнение параболы привести к простейшему виду, положим и y + 2 = Y тогда уравнение параболы принимает вид:

Задание . Точки А (2,1), В (1,-2), С (-1,0) являются вершинами треугольника АВС.
а) Найти уравнения сторон треугольника АВС.
б) Найти уравнение одной из медиан треугольника АВС.
в) Найти уравнение одной из высот треугольника АВС.
г) Найти уравнение одной из биссектрис треугольника АВС.
д) Найти площадь треугольника АВС.

Решение проводим с помощью калькулятора .
Даны координаты треугольника: A(2,1), B(1,-2), C(-1,0).
1) Координаты векторов
Координаты векторов находим по формуле:
X = x j - x i ; Y = y j - y i
здесь X,Y координаты вектора; x i , y i - координаты точки А i ; x j , y j - координаты точки А j
Например, для вектора AB
X = x 2 - x 1 ; Y = y 2 - y 1
X = 1-2 = -1; Y = -2-1 = -3
AB(-1;-3)
AC(-3;-1)
BC(-2;2)
2) Модули векторов
Длина вектора a(X;Y) выражается через его координаты формулой:



3) Угол между прямыми
Угол между векторами a 1 (X 1 ;Y 1), a 2 (X 2 ;Y 2) можно найти по формуле:

где a 1 a 2 = X 1 X 2 + Y 1 Y 2
Найдем угол между сторонами AB и AC

γ = arccos(0.6) = 53.13 0
4) Проекция вектора
Проекцию вектора b на вектор a можно найти по формуле:

Найдем проекцию вектора AB на вектор AC

5) Площадь треугольника
Пусть точки A 1 (x 1 ; y 1), A 2 (x 2 ; y 2), A 3 (x 3 ; y 3) - вершины треугольника, тогда его площадь выражается формулой:

В правой части стоит определитель второго порядка. Площадь треугольника всегда положительна.
Решение . Принимая A за первую вершину, находим:


По формуле получаем:

6) Деление отрезка в данном отношении
Радиус-вектор r точки A, делящий отрезок AB в отношении AA:AB = m 1:m 2 , определяется формулой:

Координаты точки А находятся по формулам:




Уравнение медианы треугольника
Обозначим середину стороны BC буквой М. Тогда координаты точки M найдем по формулам деления отрезка пополам.


M(0;-1)
Уравнение медианы AM найдем, используя формулу для уравнения прямой, проходящей через две заданные точки. Медиана AМ проходит через точки A(2;1) и М(0;-1), поэтому:

или

или
y = x -1 или y -x +1 = 0
7) Уравнение прямой
Прямая, проходящая через точки A 1 (x 1 ; y 1) и A 2 (x 2 ; y 2), представляется уравнениями:

Уравнение прямой AB

или

или
y = 3x -5 или y -3x +5 = 0
Уравнение прямой AC

или

или
y = 1 / 3 x + 1 / 3 или 3y -x - 1 = 0
Уравнение прямой BC

или

или
y = -x -1 или y + x +1 = 0
8) Длина высоты треугольника, проведенной из вершины A
Расстояние d от точки M 1 (x 1 ;y 1) до прямой Ax + By + С = 0 равно абсолютному значению величины:

Найдем расстояние между точкой A(2;1) и прямой BC (y + x +1 = 0)

9) Уравнение высоты через вершину C
Прямая, проходящая через точку M 0 (x 0 ;y 0) и перпендикулярная прямой Ax + By + C = 0 имеет направляющий вектор (A;B) и, значит, представляется уравнениями:


Данное уравнение можно найти и другим способом. Для этого найдем угловой коэффициент k 1 прямой AB.
Уравнение AB: y = 3x -5, т.е. k 1 = 3
Найдем угловой коэффициент k перпендикуляра из условия перпендикулярности двух прямых: k 1 *k = -1.
Подставляя вместо k 1 угловой коэффициент данной прямой, получим:
3k = -1, откуда k = -1 / 3
Так как перпендикуляр проходит через точку C(-1,0) и имеет k = -1 / 3 ,то будем искать его уравнение в виде: y-y 0 = k(x-x 0).
Подставляя x 0 = -1, k = -1 / 3 , y 0 = 0 получим:
y-0 = -1 / 3 (x-(-1))
или
y = -1 / 3 x - 1 / 3
Уравнение биссектрисы треугольника
Найдем биссектрису угла A. Точку пересечения биссектрисы со стороной BC обозначим М.
Воспользуемся формулой:

Уравнение AB: y -3x +5 = 0, уравнение AC: 3y -x - 1 = 0

^A ≈ 53 0
Биссектриса делит угол пополам, следовательно угол NAK ≈ 26.5 0
Тангенс угла наклона AB равен 3 (т.к. y -3x +5 = 0). Угол наклона равен 72
^NKA≈ 180 0 - 72 0 = 108 0
^ANK ≈ 180 0 - (108 0 + 26.5 0) ≈ 45.5 0
tg(45.5 0) = 1
Биссектриса проходит через точку A(2,1), используя формулу, имеем:
y - y 0 = k(x - x 0)
y - 1 = 1(x - 2)
или
y = x -1
Скачать :xml

Пример . Даны координаты вершин треугольника АВС: А(–3; –1), В(4; 6), С(8; –2).
Требуется: 1) вычислить длину стороны ВС; 2) составить уравнение стороны ВС; 3) найти внутренний угол треугольника при вершине В; 4) составить уравнение высоты АК, проведенной из вершины А; 5) найти координаты центра тяжести однородного треугольника (точки пересечения его медиан); 6) сделать чертеж в системе координат.

Задание . Даны координаты вершин треугольника ABC: A(7;4), B(-9;-8), C(-2;16). Требуется:

  1. составить уравнение медианы, проведенной из вершины B, и вычислить ее длину.
  2. составить уравнение высоты, проведенной из вершины A, и вычислить ее длину.
  3. найти косинус внутреннего угла B треугольника ABC.
Сделать чертеж.


Скачать решение

Пример №3 . Даны вершины A(1;1), B(7;4), C(4;5) треугольника. Найти: 1) длину стороны AB ; 2) внутренний угол A в радианах с точностью до 0,001. Сделать чертеж.
Скачать

Пример №4 . Даны вершины A(1;1), B(7;4), C(4;5) треугольника. Найти: 1) уравнение высоты, проведенной через вершину C ; 2) уравнение медианы, проведенной через вершину C ; 3) точку пересечения высот треугольника; 4) длину высоты, опущенной из вершины C. Сделать чертеж.
Скачать

Пример №5 . Даны вершины треугольника ABC: A(-5;0), B(7;-9), C(11;13). Определите: 1) длину стороны AB ; 2) уравнение сторон AB и AC и их угловые коэффициенты; 3) площадь треугольника.

1. Уравнение сторон АВ и ВС и их угловые коэффициенты.
В задании даны координаты точек, через которые проходят эти прямые, поэтому воспользуемся уравнением прямой, проходящей через две заданные точки $$\frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1}$$ подставляем и получаем уравнения
уравнение прямой AB $$\frac{x+6}{6+6}=\frac{y-8}{-1-8} => y = -\frac{3}{4}x + \frac{7}{2}$$ угловой коэффициент прямой AB равен \(k_{AB} = -\frac{3}{4}\)
уравнение прямой BC $$\frac{x-4}{6-4}=\frac{y-13}{-1-13} => y = -7x + 41$$ угловой коэффициент прямой BC равен \(k_{BC} = -7\)


2. Угол В в радианах с точностью до двух знаков
Угол B - угол между прямыми AB и BC, который рассчитывается по формуле $$tg\phi=|\frac{k_2-k_1}{1+k_2*k_1}|$$подставляем значения угловых коэффициентов этих прямых и получаем $$tg\phi=|\frac{-7+\frac{3}{4}}{1+7*\frac{3}{4}}| = 1 => \phi = \frac{\pi}{4} \approx 0.79$$
3.Длину стороны АВ
Длина стороны AB рассчитывается как расстояние между точками и равна \(d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\) => $$d_{AB} = \sqrt{(6+6)^2+(-1-8)^2} = 15$$
4.Уравнение высоты CD и ее длину.
Уравнение высоты будем находить по формуле прямой проходящей через заданную точку С(4;13) в заданном направлении - перпендикулярно прямой AB по формуле \(y-y_0=k(x-x_0)\). Найдем угловой коэффициент высоты \(k_{CD}\) воспользовавшись свойством перпендикулярных прямых \(k_1=-\frac{1}{k_2}\) получим $$k_{CD}= -\frac{1}{k_{AB}} = -\frac{1}{-\frac{3}{4}} = \frac{4}{3}$$ Подставляем в уравнение прямой, получаем $$y - 13 = \frac{4}{3}(x-4) => y = \frac{4}{3}x+\frac{23}{3}$$ Длину высоты будем искать как расстояние от точки С(4;13) до прямой AB по формуле $$d = \frac{Ax_0+By_0+C}{\sqrt{A^2+B^2}}$$ в числителе уравнение прямой AB, приведем его к этому виду \(y = -\frac{3}{4}x + \frac{7}{2} => 4y+3x-14 = 0\) , подставляем полученное уравнение и координаты точки в формулу $$d = \frac{4*13+3*4-14 }{\sqrt{4^2+3^2}} = \frac{50}{5} =10$$


5. Уравнение медианы АЕ и координаты точки К пересечение этой медианы с высотой CD.
Уравнение медианы будем искать как уравнение прямой, проходящей через две заданные точки А(-6;8) и E , где точка E - середина между точками B и C и ее координаты находятся по формуле \(E(\frac{x_2+x_1}{2};\frac{y_2+y_1}{2})\) подставляем координаты точек \(E(\frac{6+4}{2};\frac{-1+13}{2})\) => \(E(5; 6)\), тогда уравнение медианы AE буде следующее $$\frac{x+6}{5+6}=\frac{y-8}{6-8} => y = -\frac{2}{11}x + \frac{76}{11}$$Найдем координаты точки пересечения высот и медианы, т.е. найдем их общую точку Для этого составим систему уравнение $$\begin{cases}y = -\frac{2}{11}x + \frac{76}{11}\\y = \frac{4}{3}x+\frac{23}{3}\end{cases}=>\begin{cases}11y = -2x +76\\3y = 4x+23\end{cases}=>$$$$\begin{cases}22y = -4x +152\\3y = 4x+23\end{cases}=> \begin{cases}25y =175\\3y = 4x+23\end{cases}=> $$$$\begin{cases}y =7\\ x=-\frac{1}{2}\end{cases}$$ Координаты точки пересечения \(K(-\frac{1}{2};7)\)


6.Уравнение прямой что проходит через точку К параллельно к стороне АВ.
Если прямая параллельны, то их угловые коэффициенты равны, т.е. \(k_{AB}=k_{K} = -\frac{3}{4}\) , также известны координаты точки \(K(-\frac{1}{2};7)\), т.е. для нахождения уравнения прямой применим формулу уравнения прямой, проходящей через заданную точку в заданном направлении \(y - y_0=k(x-x_0)\), подставляем данные и получаем $$y - 7= -\frac{3}{4}(x-\frac{1}{2}) => y = -\frac{3}{4}x + \frac{53}{8}$$


8. Координаты точки М которая симметрична точке А относительно прямой CD.
Точка M лежит на прямой AB, т.к. CD - высота к этой стороне. Найдем точку пересечения CD и AB для этого решим систему уравнений $$\begin{cases}y = \frac{4}{3}x+\frac{23}{3}\\y = -\frac{3}{4}x + \frac{7}{2}\end{cases} =>\begin{cases}3y = 4x+23\\4y =-3x + 14\end{cases} => $$$$\begin{cases}12y = 16x+92\\12y =-9x + 42\end{cases} =>
\begin{cases}0= 25x+50\\12y =-9x + 42\end{cases} => $$$$\begin{cases}x=-2\\y=5 \end{cases}$$ Координаты точки D(-2;5). По условию AD=DK, это расстояние между точками находится по формуле Пифагора \(d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\), где AD и DK - гипотенузы равных прямоугольных треугольников, а \(Δx =x_2-x_1\) и \(Δy=y_2-y_1\) - катеты этих треугольников, т.е. найдем катеты найдем и координаты точки M. \(Δx=x_D-x_A = -2+6=4\), а \(Δy=y_D-y_A = 5-8=-3\), тогда координаты точки M будут равны \(x_M-x_D = Δx => x_D +Δx =-2+4=2 \), а \(y_M-y_D = Δy => y_D +Δy =5-3=2 \), получили, что координаты точки \(M(2;2)\)