3 исследовать функцию и построить график. Как исследовать и построить график функции

Инструкция

Найдите область определения функции. Например, функция sin(x) определена на всем интервале от -∞ до +∞, а функция 1/x - от -∞ до +∞ за исключением точки x = 0.

Определите области непрерывности и точки разрыва. Обычно функция непрерывна в той же самой области, где она определена. Чтобы обнаружить разрывы, нужно вычислить при приближении аргумента к изолированным точкам внутри области определения. Например, функция 1/x стремится к бесконечности, когда x→0+, и к минус бесконечности, когда x→0-. Это значит, что в точке x = 0 она имеет разрыв второго рода.
Если пределы в точке разрыва конечны, но не равны, то это разрыв первого рода. Если же они равны, то функция считается непрерывной, хотя в изолированной точке она и не определена.

Найдите вертикальные асимптоты, если они есть. Здесь вам помогут вычисления предыдущего шага, поскольку вертикальная асимптота практически всегда находится в точке разрыва второго рода. Однако иногда из области определения исключены не отдельные точки, а целые интервалы точек, и тогда вертикальные асимптоты могут располагаться на краях этих интервалов.

Проверьте, обладает ли функция особыми свойствами: четностью, нечетностью и периодичностью.
Функция будет четной, если для любого x в области определения f(x) = f(-x). Например, cos(x) и x^2 - четные функции.

Периодичность - свойство, говорящее о том, что есть некое число T, называемое периодом, что для любого x f(x) = f(x + T). Например, все основные тригонометрические функции (синус, косинус, тангенс) - периодические.

Найдите точки . Для этого вычислите производную от заданной функции и найдите те значения x, где она обращается в ноль. Например, функция f(x) = x^3 + 9x^2 -15 имеет производную g(x) = 3x^2 + 18x, которая обращается в ноль при x = 0 и x = -6.

Чтобы определить, какие точки экстремума являются максимумами, а какие минимумами, отследите изменение знаков производной в найденных нулях. g(x) меняет знак с плюса в точке x = -6, а в точке x = 0 обратно с минуса на плюс. Следовательно, функция f(x) в первой точке имеет , а во второй - минимум.

Таким образом, вы нашли и области монотонности: f(x) монотонно возрастает на промежутке -∞;-6, монотонно убывает на -6;0 и снова возрастает на 0;+∞.

Найдите вторую производную. Ее корни покажут, где график заданной функции будет выпуклым, а где - вогнутым. Например, второй производной от функции f(x) будет h(x) = 6x + 18. Она обращается в ноль при x = -3, меняя при этом знак с минуса на плюс. Следовательно, график f(x) до этой точки будет выпуклым, после нее - вогнутым, а сама эта точка будет точкой перегиба.

У функции могут быть и другие асимптоты, кроме вертикальных, но только в том случае, если в ее область определения входит . Чтобы их найти, вычислите предел f(x), когда x→∞ или x→-∞. Если он конечен, то вы нашли горизонтальную асимптоту.

Наклонная асимптота - прямая вида kx + b. Чтобы найти k, вычислите предел f(x)/x при x→∞. Чтобы найти b - предел (f(x) – kx) при том же x→∞.

Опорными точками при исследовании функций и построения их графиков служат характерные точки – точки разрыва, экстремума, перегиба, пересечения с осями координат. С помощью дифференциального исчисления можно установить характерные особенности изменения функций: возрастание и убывание, максимумы и минимумы, направление выпуклости и вогнутости графика, наличие асимптот.

Эскиз графика функции можно (и нужно) набрасывать уже после нахождения асимптот и точек экстремума, а сводную таблицу исследования функции удобно заполнять по ходу исследования.

Обычно используют следующую схему исследования функции.

1. Находят область определения, интервалы непрерывности и точки разрыва функции .

2. Исследуют функцию на чётность или нечётность (осевая или центральная симметрия графика.

3. Находят асимптоты (вертикальные, горизонтальные или наклонные).

4. Находят и исследуют промежутки возрастания и убывания функции, точки её экстремума.

5. Находят интервалы выпуклости и вогнутости кривой, точки её перегиба .

6. Находят точки пересечения кривой с осями координат, если они существуют.

7. Составляют сводную таблицу исследования.

8. Строят график, учитывая исследование функции, проведённое по вышеописанным пунктам.

Пример. Исследовать функцию

и построить её график.

7. Составим сводную таблицу исследования функции, куда внесём все характерные точки и интервалы между ними. Учитывая чётность функции, получаем следующую таблицу:

Особенности графика

[-1, 0[

Возрастает

Выпуклый

(0; 1) – точка максимума

]0, 1[

Убывает

Выпуклый

Точка перегиба, образует с осью Ox тупой угол

С некоторых пор в TheBat (непонятно по какой причине) перестает корректно работать встроенная база сертификатов для SSL.

При проверке посты выскакивает ошибка:

Неизвестный сертификат СА
Сервер не представил корневой сертификат в сессии и соответствующий корневой сертификат не найден в адресной книге.
Это соедининение не может быть секретным. Пожалуйста
свяжитесь с администратором вашего сервера.

И предлагается на выбор ответы - ДА / НЕТ. И так каждый раз когда снимаешь почту.

Решение

В этом случае случае нужно заменить стандарт реализации S/MIME и TLS на Microsoft CryptoAPI в настройках TheBat!

Так как мне надо было все файлы объединить в один, то я сначала преобразовал все doc файлы в единый pdf файл (с помощью программы Acrobat), а затем уже через онлайн-конвертер перевёл в fb2. Можно же конвертировать файлы и по отдельности. Форматы могут быть совершенно любые (исходные) и doc, и jpg, и даже zip архив!

Название сайта соответствующее сути:) Онлайн Фотошоп.

Апдейт май 2015

Я нашел еще один замечательный сайт! Еще удобнее и функциональнее для создания абсолютно произвольного коллажа! Это сайт http://www.fotor.com/ru/collage/ . Пользуйтесь на здоровье. И сам буду пользоваться.

Столкнулся в жизни с ремонтом электроплиты. Уже много что делал, много чему научился, но как-то с плитками дела имел мало. Нужна была замена контактов на регуляторах и конфорок. Возник вопрос - как определить диаметр конфорки у электроплиты?

Ответ оказался прост. Не надо ничего мерить, можно спокойной на глаз определить какой вам нужен размер.

Самая маленькая конфорка - это 145 миллиметров (14,5 сантиметров)

Средняя конфорка - это 180 миллиметров (18 сантиметров).

И, наконец, самая большая конфорка - это 225 миллиметров (22,5 сантиметров).

Достаточно на глаз определить размер и понять какого диаметра вам нужна конфорка. Я когда этого не знал - парился с этими размерами, не знал как измерять, по какому краю ориентироваться и т.д. Теперь я мудр:) Надеюсь и вам помог!

В жизни столкнулся с такой задачей. Думаю, что не я один такой.

Если в задаче необходимо произвести полное исследование функции f (x) = x 2 4 x 2 - 1 с построением его графика, тогда рассмотрим этот принцип подробно.

Для решения задачи данного типа следует использовать свойства и графики основных элементарных функций. Алгоритм исследования включает в себя шаги:

Yandex.RTB R-A-339285-1

Нахождение области определения

Так как исследования проводятся на области определения функции, необходимо начинать с этого шага.

Пример 1

Заданный пример предполагает нахождение нулей знаменателя для того, чтобы исключить их из ОДЗ.

4 x 2 - 1 = 0 x = ± 1 2 ⇒ x ∈ - ∞ ; - 1 2 ∪ - 1 2 ; 1 2 ∪ 1 2 ; + ∞

В результате можно получить корни, логарифмы, и так далее. Тогда ОДЗ можно искать для корня четной степени типа g (x) 4 по неравенству g (x) ≥ 0 , для логарифма log a g (x) по неравенству g (x) > 0 .

Исследование границ ОДЗ и нахождение вертикальных асимптот

На границах функции имеются вертикальные асимптоты, когда односторонние пределы в таких точках бесконечны.

Пример 2

Для примера рассмотрим приграничные точки, равные x = ± 1 2 .

Тогда необходимо проводить исследование функции для нахождения одностороннего предела. Тогда получаем, что: lim x → - 1 2 - 0 f (x) = lim x → - 1 2 - 0 x 2 4 x 2 - 1 = = lim x → - 1 2 - 0 x 2 (2 x - 1) (2 x + 1) = 1 4 (- 2) · - 0 = + ∞ lim x → - 1 2 + 0 f (x) = lim x → - 1 2 + 0 x 2 4 x - 1 = = lim x → - 1 2 + 0 x 2 (2 x - 1) (2 x + 1) = 1 4 (- 2) · (+ 0) = - ∞ lim x → 1 2 - 0 f (x) = lim x → 1 2 - 0 x 2 4 x 2 - 1 = = lim x → 1 2 - 0 x 2 (2 x - 1) (2 x + 1) = 1 4 (- 0) · 2 = - ∞ lim x → 1 2 - 0 f (x) = lim x → 1 2 - 0 x 2 4 x 2 - 1 = = lim x → 1 2 - 0 x 2 (2 x - 1) (2 x + 1) = 1 4 (+ 0) · 2 = + ∞

Отсюда видно, что односторонние пределы являются бесконечными, значит прямые x = ± 1 2 - вертикальные асимптоты графика.

Исследование функции и на четность или нечетность

Когда выполняется условие y (- x) = y (x) , функция считается четной. Это говорит о том, что график располагается симметрично относительно О у. Когда выполняется условие y (- x) = - y (x) , функция считается нечетной. Значит, что симметрия идет относительно начала координат. При невыполнении хотя бы одного неравенства, получаем функцию общего вида.

Выполнение равенства y (- x) = y (x) говорит о том, что функция четная. При построении необходимо учесть, что будет симметричность относительно О у.

Для решениянеравенства применяются промежутки возрастания и убывания с условиями f " (x) ≥ 0 и f " (x) ≤ 0 соответственно.

Определение 1

Стационарные точки – это такие точки, которые обращают производную в ноль.

Критические точки - это внутренние точки из области определения, где производная функции равняется нулю или не существует.

При решении необходимо учитывать следующие замечания:

  • при имеющихся промежутках возрастания и убывания неравенства вида f " (x) > 0 критические точки в решение не включаются;
  • точки, в которых функция определена без конечной производной, необходимо включать в промежутки возрастания и убывания (к примеру, y = x 3 , где точка х = 0 делает функцию определенной, производная имеет значение бесконечности в этой точке, y " = 1 3 · x 2 3 , y " (0) = 1 0 = ∞ , х = 0 включается в промежуток возрастания);
  • во избежание разногласий рекомендовано пользоваться математической литературой, которая рекомендована министерством образования.

Включение критических точек в промежутки возрастания и убывания в том случае, если они удовлетворяют области определения функции.

Определение 2

Для определения промежутков возрастания и убывания функции необходимо найти :

  • производную;
  • критические точки;
  • разбить область определения при помощи критических точек на интервалы;
  • определить знак производной на каждом из промежутков, где + является возрастанием, а - является убыванием.

Пример 3

Найти производную на области определения f " (x) = x 2 " (4 x 2 - 1) - x 2 4 x 2 - 1 " (4 x 2 - 1) 2 = - 2 x (4 x 2 - 1) 2 .

Решение

Для решения нужно:

  • найти стационарные точки, данный пример располагает х = 0 ;
  • найти нули знаменателя, пример принимает значение ноль при x = ± 1 2 .

Выставляем точки на числовой оси для определения производной на каждом промежутке. Для этого достаточно взять любую точку из промежутка и произвести вычисление. При положительном результате на графике изображаем + , что означает возрастание функции, а - означает ее убывание.

Например, f " (- 1) = - 2 · (- 1) 4 - 1 2 - 1 2 = 2 9 > 0 , значит, первый интервал слева имеет знак + . Рассмотрим на числовой прямой.

Ответ:

  • происходит возрастание функции на промежутке - ∞ ; - 1 2 и (- 1 2 ; 0 ] ;
  • происходит убывание на промежутке [ 0 ; 1 2) и 1 2 ; + ∞ .

На схеме при помощи + и - изображается положительность и отрицательность функции, а стрелочки – убывание и возрастание.

Точки экстремума функции – точки, где функция определена и через которые производная меняет знак.

Пример 4

Если рассмотреть пример, где х = 0 , тогда значение функции в ней равняется f (0) = 0 2 4 · 0 2 - 1 = 0 . При перемене знака производной с + на - и прохождении через точку х = 0 , тогда точка с координатами (0 ; 0) считается точкой максимума. При перемене знака с - на + получаем точку минимума.

Выпуклость и вогнутость определяется при решении неравенств вида f "" (x) ≥ 0 и f "" (x) ≤ 0 . Реже используют название выпуклость вниз вместо вогнутости, а выпуклость вверх вместо выпуклости.

Определение 3

Для определения промежутков вогнутости и выпуклости необходимо:

  • найти вторую производную;
  • найти нули функции второй производной;
  • разбить область определения появившимися точками на интервалы;
  • определить знак промежутка.

Пример 5

Найти вторую производную из области определения.

Решение

f "" (x) = - 2 x (4 x 2 - 1) 2 " = = (- 2 x) " (4 x 2 - 1) 2 - - 2 x 4 x 2 - 1 2 " (4 x 2 - 1) 4 = 24 x 2 + 2 (4 x 2 - 1) 3

Находим нули числителя и знаменателя, где на примере нашего примера имеем, что нули знаменателя x = ± 1 2

Теперь необходимо нанести точки на числовую ось и определить знак второй производной из каждого промежутка. Получим, что

Ответ:

  • функция является выпуклой из промежутка - 1 2 ; 1 2 ;
  • функция является вогнутой из промежутков - ∞ ; - 1 2 и 1 2 ; + ∞ .

Определение 4

Точка перегиба – это точка вида x 0 ; f (x 0) . Когда в ней имеется касательная к графику функции, то при ее прохождении через x 0 функция изменяет знак на противоположный.

Иначе говоря, это такая точка, через которую проходит вторая производная и меняет знак, а в самих точках равняется нулю или не существует. Все точки считаются областью определения функции.

В примере было видно, что точки перегиба отсутствуют, так как вторая производная изменяет знак во время прохождения через точки x = ± 1 2 . Они, в свою очередь, в область определения не входят.

Нахождение горизонтальных и наклонных асимптот

При определении функции на бесконечности нужно искать горизонтальные и наклонные асимптоты.

Определение 5

Наклонные асимптоты изображаются при помощи прямых, заданных уравнением y = k x + b , где k = lim x → ∞ f (x) x и b = lim x → ∞ f (x) - k x .

При k = 0 и b , не равному бесконечности, получаем, что наклонная асимптота становится горизонтальной .

Иначе говоря, асимптотами считают линии, к которым приближается график функции на бесконечности. Это способствует быстрому построению графика функции.

Если асимптоты отсутствуют, но функция определяется на обеих бесконечностях, необходимо посчитать предел функции на этих бесконечностях, чтобы понять, как себя будет вести график функции.

Пример 6

На примере рассмотрим, что

k = lim x → ∞ f (x) x = lim x → ∞ x 2 4 x 2 - 1 x = 0 b = lim x → ∞ (f (x) - k x) = lim x → ∞ x 2 4 x 2 - 1 = 1 4 ⇒ y = 1 4

является горизонтальной асимптотой. После исследования функции можно приступать к ее построению.

Вычисление значения функции в промежуточных точках

Чтобы построение графика было наиболее точным, рекомендовано находить несколько значений функции в промежуточных точках.

Пример 7

Из рассмотренного нами примера необходимо найти значения функции в точках х = - 2 , х = - 1 , х = - 3 4 , х = - 1 4 . Так как функция четная, получим, что значения совпадут со значениями в этих точках, то есть получим х = 2 , х = 1 , х = 3 4 , х = 1 4 .

Запишем и решим:

F (- 2) = f (2) = 2 2 4 · 2 2 - 1 = 4 15 ≈ 0 , 27 f (- 1) - f (1) = 1 2 4 · 1 2 - 1 = 1 3 ≈ 0 , 33 f - 3 4 = f 3 4 = 3 4 2 4 3 4 2 - 1 = 9 20 = 0 , 45 f - 1 4 = f 1 4 = 1 4 2 4 · 1 4 2 - 1 = - 1 12 ≈ - 0 , 08

Для определения максимумов и минимумов функции, точек перегиба, промежуточных точек необходимо строить асимптоты. Для удобного обозначения фиксируются промежутки возрастания, убывания, выпуклость, вогнутость. Рассмотрим на рисунке, изображенном ниже.

Необходимо через отмеченные точки проводить линии графика, что позволит приблизить к асимптотам, следуя стрелочкам.

На этом заканчивается полное исследование функции. Встречаются случаи построения некоторых элементарных функций, для которых применяют геометрические преобразования.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Исследуем функцию \(y= \frac{x^3}{1-x} \) и построим ее график.


1. Область определения.
Областью определения рациональной функции (дробь) будет: знаменатель не равен нулю, т.е. \(1 -x \ne 0 => x \ne 1\). Область определения $$D_f= (-\infty; 1) \cup (1;+\infty)$$


2. Точки разрыва функции и их классификация.
Функция имеет одну точку разрыва x = 1
исследуем точку x= 1. Найдем предел функции справа и слева от точки разрыва, справа $$ \lim_{x \to 1+0} (\frac{x^3}{1-x}) = -\infty $$ и слева от точки $$ \lim_{x \to 1-0}(\frac{x^3}{1-x}) = +\infty $$ Это точка разрыва второго рода т.к. односторонние пределы равны \(\infty\).


Прямая \(x = 1\) является вертикальной асимптотой.


3. Четность функции.
Проверяем на четность \(f(-x) = \frac{(-x)^3}{1+x} \) функция не является ни четной ни нечетной.


4. Нули функции (точки пересечения с осью Ox). Интервалы знакопостоянства функции .
Нули функции (точка пересечения с осью Ox) : приравняем \(y=0\), получим \(\frac{x^3}{1-x} = 0 => x=0 \). Кривая имеет одну точку пересечения с осью Ox с координатами \((0;0)\).


Интервалы знакопостоянства функции.
На рассматриваемых интервалах \((-\infty; 1) \cup (1;+\infty)\) кривая имеет одну точку пересечения с осью Ox , поэтому будем рассматривать на трех интервалах области определения.


Определим знак функции на интервалах области определения:
интервал \((-\infty; 0) \) найдем значение функции в любой точке \(f(-4) = \frac{x^3}{1-x} < 0 \), на этом интервале функция отрицательная \(f(x) < 0 \), т.е. находится ниже оси Ox
интервал \((0; 1) \) найдем значение функции в любой точке \(f(0.5) = \frac{x^3}{1-x} > 0 \), на этом интервале функция положительная \(f(x) > 0 \), т.е. находится выше оси Ox.
интервал \((1;+\infty) \) найдем значение функции в любой точке \(f(4) = \frac{x^3}{1-x} < 0 \), на этом интервале функция отрицательная \(f(x) < 0 \), т.е. находится ниже оси Ox


5. Точки пересечения с осью Oy : приравняем \(x=0 \), получаем \(f(0) = \frac{x^3}{1-x} = 0\). Координаты точки пересечения с осью Oy \((0; 0)\)


6. Интервалы монотонности. Экстремумы функции.
Найдем критические (стационарные) точки, для этого найдем первую производную и приравняем ее к нулю $$ y" = (\frac{x^3}{1-x})" = \frac{3x^2(1-x) +x^3}{ (1-x)^2} = \frac{x^2(3-2x)}{ (1-x)^2} $$ приравняем к 0 $$ \frac{x^2(3-2x)}{ (1-x)^2} = 0 => x_1 = 0 \quad x_2= \frac{3}{2}$$ Найдем значение функции в этой точке \(f(0) = 0\) и \(f(\frac{3}{2}) = -6.75\). Получили две критические точки с координатами \((0;0)\) и \((1.5;-6.75)\)


Интервалы монотонности.
Функция имеет две критические точки (точек возможного экстремума), поэтому монотонность будем рассматривать на четырех интервалах:
интервал \((-\infty; 0) \) найдем значение первой производной в любой точке интервала \(f(-4) = \frac{x^2(3-2x)}{ (1-x)^2} >
интервал \((0;1)\) найдем значение первой производной в любой точке интервала \(f(0.5) = \frac{x^2(3-2x)}{ (1-x)^2} > 0\), на этом интервале функция возрастает.
интервал \((1;1.5)\) найдем значение первой производной в любой точке интервала \(f(1.2) = \frac{x^2(3-2x)}{ (1-x)^2} > 0\), на этом интервале функция возрастает.
интервал \((1.5; +\infty)\) найдем значение первой производной в любой точке интервала \(f(4) = \frac{x^2(3-2x)}{ (1-x)^2} < 0\), на этом интервале функция убывает.


Экстремумы функции.


При исследовании функции получили на интервале области определения две критические (стационарные) точки. Определим, являются ли они экстремумами. Рассмотрим изменение знака производной при переходе через критические точки:


точка \(x = 0\) производная меняет знак с \(\quad +\quad 0 \quad + \quad\) - точка экстремумом не является.
точка \(x = 1.5\) производная меняет знак с \(\quad +\quad 0 \quad - \quad\) - точка является точкой максимума.


7. Интервалы выпуклости и вогнутости. Точки перегиба.


Для нахождения интервалов выпуклости и вогнутости найдем вторую производную функции и приравняем ее к нулю $$y"" = (\frac{x^2(3-2x)}{ (1-x)^2})"= \frac{2x(x^2-3x+3)}{(1-x)^3} $$Приравняем к нулю $$ \frac{2x(x^2-3x+3)}{(1-x)^3}= 0 => 2x(x^2-3x+3) =0 => x=0$$ Функция имеет одну критическую точку второго рода с координатами \((0;0)\).
Определим выпуклость на интервалах области определения с учетом критической точки второго рода (точки возможного перегиба).


интервал \((-\infty; 0)\) найдем значение второй производной в любой точке \(f""(-4) = \frac{2x(x^2-3x+3)}{(1-x)^3} < 0 \), на этом интервале вторая производная функции отрицательная \(f""(x) < 0 \) - функция выпуклая вверх (вогнутая).
интервал \((0; 1)\) найдем значение второй производной в любой точке \(f""(0.5) = \frac{2x(x^2-3x+3)}{(1-x)^3} > 0 \), на этом интервале вторая производная функции положительная \(f""(x) > 0 \) функция выпуклая вниз (выпуклая).
интервал \((1; \infty)\) найдем значение второй производной в любой точке \(f""(4) = \frac{2x(x^2-3x+3)}{(1-x)^3} < 0 \), на этом интервале вторая производная функции отрицательная \(f""(x) < 0 \) - функция выпуклая вверх (вогнутая).


Точки перегиба.


Рассмотрим изменение знака второй производной при переходе через критическую точку второго рода:
В точке \(x =0\) вторая производная меняет знак с \(\quad - \quad 0 \quad + \quad\), график функции меняет выпуклость, т.е. это точка перегиба с координатами \((0;0)\).


8. Асимптоты.


Вертикальная асимптота . График функции имеет одну вертикальную асимптоту \(x =1\) (см. п.2).
Наклонная асимптота.
Для того, чтобы график функции \(у= \frac{x^3}{1-x} \) при \(x \to \infty\) имел наклонную асимптота \(y = kx+b\), необходимо и достаточно, чтобы существовали два предела $$\lim_{x \to +\infty}=\frac{f(x)}{x} =k $$находим его $$ \lim_{x \to \infty} (\frac{x^3}{x(1-x)}) = \infty => k= \infty $$ и второй предел $$ \lim_{x \to +\infty}(f(x) - kx) = b$$, т.к. \(k = \infty\) - наклонной асимптоты нет.


Горизонтальная асимптота: для того, чтобы существовала горизонтальная асимптота, необходимо, чтобы существовал предел $$\lim_{x \to \infty}f(x) = b$$ найдем его $$ \lim_{x \to +\infty}(\frac{x^3}{1-x})= -\infty$$$$ \lim_{x \to -\infty}(\frac{x^3}{1-x})= -\infty$$
Горизонтальной асимптоты нет.


9. График функции.