Формула вычисления объема призмы. Объем призмы. Решение задач. Подготовка к единому госэкзамену вместе со «Школково» - залог вашего успеха

Тип задания: 8
Тема: Призма

Условие

В правильной треугольной призме ABCA_1B_1C_1 стороны основания равны 4 , а боковые рёбра равны 10 . Найдите площадь сечения призмы плоскостью, проходящей через середины рёбер AB, AC, A_1B_1 и A_1C_1.

Показать решение

Решение

Рассмотрим следующий рисунок.

Отрезок MN является средней линией треугольника A_1B_1C_1, поэтому MN = \frac12 B_1C_1=2. Аналогично, KL=\frac12BC=2. Кроме того, MK = NL = 10. Отсюда следует, что четырёхугольник MNLK является параллелограммом. Так как MK\parallel AA_1, то MK\perp ABC и MK\perp KL. Следовательно, четырёхугольник MNLK является прямоугольником. S_{MNLK} = MK\cdot KL = 10\cdot 2 = 20.

Ответ

Тип задания: 8
Тема: Призма

Условие

Объём правильной четырёхугольной призмы ABCDA_1B_1C_1D_1 равен 24 . Точка K — середина ребра CC_1 . Найдите объём пирамиды KBCD .

Показать решение

Решение

Согласно условию, KC является высотой пирамиды KBCD . CC_1 является высотой призмы ABCDA_1B_1C_1D_1 .

Так как K является серединой CC_1 , то KC=\frac12CC_1. Пусть CC_1=H , тогдаKC=\frac12H . Заметим также, что S_{BCD}=\frac12S_{ABCD}. Тогда, V_{KBCD}= \frac13S_{BCD}\cdot\frac{H}{2}= \frac13\cdot\frac12S_{ABCD}\cdot\frac{H}{2}= \frac{1}{12}\cdot S_{ABCD}\cdot H= \frac{1}{12}V_{ABCDA_1B_1C_1D_1}. Следовательно, V_{KBCD}=\frac{1}{12}\cdot24=2.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 8
Тема: Призма

Условие

Найдите площадь боковой поверхности правильной шестиугольной призмы, сторона основания которой равна 6 , а высота — 8 .

Показать решение

Решение

Площадь боковой поверхности призмы находим по формуле S бок. = P осн. · h = 6a\cdot h, где P осн. и h — соответственно периметр основания и высота призмы, равная 8 , и a — сторона правильного шестиугольника, равная 6 . Следовательно, S бок. = 6\cdot 6\cdot 8 = 288.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 8
Тема: Призма

Условие

В сосуд, имеющий форму правильной треугольной призмы, налили воду. Уровень воды достигает 40 см. На какой высоте будет находиться уровень воды, если её перелить в другой сосуд такой же формы, у которого сторона основания в два раза больше, чем у первого? Ответ выразите в сантиметрах.

Показать решение

Решение

Пусть a — сторона основания первого сосуда, тогда 2 a — сторона основания второго сосуда. По условию объём жидкости V в первом и втором сосуде один и тот же. Обозначим через H уровень, на который поднялась жидкость во втором сосуде. Тогда V= \frac12\cdot a^2\cdot\sin60^{\circ}\cdot40= \frac{a^2\sqrt3}{4}\cdot40, и, V=\frac{(2a)^2\sqrt3}{4}\cdot H. Отсюда \frac{a^2\sqrt3}{4}\cdot40=\frac{(2a)^2\sqrt3}{4}\cdot H, 40=4H, H=10.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 8
Тема: Призма

Условие

В правильной шестиугольной призме ABCDEFA_1B_1C_1D_1E_1F_1 все рёбра равны 2 . Найдите расстояние между точками A и E_1 .

Показать решение

Решение

Треугольник AEE_1 — прямоугольный, так как ребро EE_1 перпендикулярно плоскости основания призмы, прямым углом будет угол AEE_1.

Тогда по теореме Пифагора AE_1^2 = AE^2 + EE_1^2. Найдём AE из треугольника AFE по теореме косинусов. Каждый внутренний угол правильного шестиугольника равен 120^{\circ}. Тогда AE^2= AF^2+FE^2-2\cdot AF\cdot FE\cdot\cos120^{\circ}= 2^2+2^2-2\cdot2\cdot2\cdot\left (-\frac12 \right).

Отсюда, AE^2=4+4+4=12,

AE_1^2=12+4=16,

AE_1=4.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 8
Тема: Призма

Условие

Найдите площадь боковой поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными 4\sqrt5 и 8 , и боковым ребром, равным 5 .

Показать решение

Решение

Площадь боковой поверхности прямой призмы находим по формуле S бок. = P осн. · h = 4a\cdot h, где P осн. и h соответственно периметр основания и высота призмы, равная 5 , и a — сторона ромба. Найдём сторону ромба, пользуясь тем, что диагонали ромба ABCD взаимно перпендикулярны и точкой пересечения делятся пополам.

Чему равен объем призмы и как его найти

Объём призмы - это произведение площади ее основания на высоту.

Однако нам известно, что у основания призмы может быть треугольник, квадрат или какой-либо другой многогранник.

Следовательно, для нахождения объема призмы, необходимо просто вычислить площадь основания призмы, а потом эту площадь умножить на ее высоту.

То есть, если у основания призмы треугольник, то значит вначале нужно найти площадь треугольника. Если же основанием призмы является квадрат или другой многоугольник, то значит вначале нужно искать площадь квадрата или же другого многоугольника.

Следует помнить, что высотой призмы является перпендикуляр, проведенный к основаниям призмы.

Что такое призма

А теперь давайте вспомним определение призмы.

Призма – это многоугольник, две грани (основания) которого, находятся в параллельных плоскостях, а все ребра, находящиеся вне этих граней параллельны.

Если говорить проще, то:

Призма – это любая геометрическая фигура, которая имеет два основания, равных между собой и плоские грани.

Название призмы зависит от формы ее основания. Когда основанием призмы является треугольник, то такую призму называют треугольной. Многогранной призмой называют геометрическую фигуру, основанием которой является многогранник. Также призма - это разновидность цилиндра.

Каких видов бывают призмы

Если мы посмотрим на рисунок вверху, то увидим, что призмы бывают прямыми, правильными и наклонными.

Задание

1. Какую призму называют правильной?
2. Почему она так называется?
3. Какое носит название призма, основаниями которой являются правильные многоугольники?
4. Что является высотой этой фигуры?
5. Как называют призму, ребра которой не являются перпендикулярными?
6. Дайте определение треугольной призме.
7. Может ли призма быть параллелепипедом?
8. Какая геометрическая фигура называется полуправильным многоугольником?

Из каких элементов состоит призма



Призма состоит из таких элементов, как нижнее и верхнее основание, боковые грани, ребра и вершины.

Оба основания призмы лежат в плоскостях и параллельны друг другу.
Боковые грани пирамиды – это параллелограммы.
Боковая поверхность пирамиды является суммой боковых граней.
Общие стороны боковых граней, есть не что иное, как боковые ребра данной фигуры.
Высотой пирамиды является отрезок, соединяющий плоскости оснований и перпендикулярен им.

Свойства призмы

Геометрическая фигура, как призма, обладает рядом свойств. Давайте более подробно рассмотрим эти свойства:

Во-первых, основаниями призмы называются равные многоугольники;
Во-вторых, у призмы боковые грани представлены в виде параллелограмма;
В-третьих, у этой геометрической фигуры ребра параллельны и равны;
В-четвертых, площадью полной поверхности призмы является:



А теперь рассмотрим теорему, которая предоставляет формулу, с помощью которой вычисляют площадь боковой поверхности и доказательство.



Задумывались ли вы над таким интересным фактом, что призмой может быть не только, геометрическое тело, но и другие окружающие нас предметы. Даже обычная снежинка в зависимости от температурного режима может превратиться в ледяную призму, приняв форму шестигранной фигуры.

А вот кристаллы кальцита обладают таким уникальным явлением, как распадаться на осколки и приобретать форму параллелепипеда. И что самое удивительное, на какие бы мелкие части не дробили кристаллы кальцита, результат всегда одинаковый, они превращаются в махонькие параллелепипеды.

Оказывается, призма получила популярность не только в математике, демонстрируя свое геометрическое тело, но и в области искусства, так как она является основой картин, созданных такими великими художниками, как П.Пикассо, Брак, Грисс и других.

Пусть требуется найти объём прямой треугольной призмы, площадь основания которой равна S, а высота равна h = AA’ = BB’ = CC’ (рис. 306).

Начертим отдельно основание призмы, т. е. треугольник АBС (рис. 307, а), и достроим его до прямоугольника, для чего через вершину В проведём прямую КМ || АС и из точек A и С опустим на эту прямую перпендикуляры АF и СЕ. Получим прямоугольник АСЕF. Проведя высоту ВD треугольника АBС, увидим, что прямоугольник АСЕF разбился на 4 прямоугольных треугольника. Причём \(\Delta\)ВСЕ = \(\Delta\)BCD и \(\Delta\)BAF = \(\Delta\)BAD. Значит, площадь прямоугольника АСЕF вдвое больше площади треугольника АBС, т. е. равна 2S.

К данной призме с основанием АBС пристроим призмы с основаниями ВСЕ и BАF и высотой h (рис. 307, б). Получим прямоугольный параллелепипед с основанием АСЕF.

Если этот параллелепипед рассечём плоскостью, проходящей через прямые BD и BB’, то увидим, что прямоугольный параллелепипед состоит из 4 призм с основаниями BCD, ВСЕ, BАD и BAF.

Призмы с основаниями BCD и ВСЕ могут быть совмещены, так как основания их равны (\(\Delta\)BCD = \(\Delta\)BСЕ) и также равны их боковые рёбра, являющиеся перпендикулярами к одной плоскости. Значит, объёмы этих призм равны. Также равны объёмы призм с основаниями BАD и BАF.

Таким образом, оказывается, что объём данной треугольной призмы с основанием АBС вдвое меньше объёма прямоугольного параллелепипеда с основанием АСЕF.

Нам известно, что объём прямоугольного параллелепипеда равен произведению площади его основания на высоту, т. е. в данном случае равен 2Sh . Отсюда объём данной прямой треугольной призмы равен Sh .

Объём прямой треугольной призмы равен произведению площади её основания на высоту.

2. Объём прямой многоугольной призмы.

Чтобы найти объём прямой многоугольной призмы, например пятиугольной, с площадью основания Sи высотой h , разобьём её на треугольные призмы (рис. 308).

Обозначив площади основания треугольных призм через S 1 , S 2 и S 3 , а объём данной многоугольной призмы через V, получим:

V = S 1 h + S 2 h + S 3 h , или

V = (S 1 + S 2 + S 3)h .

И окончательно: V = Sh .

Таким же путём выводится формула объема прямой призмы, имеющей в основании любой многоугольник.

Значит, объём любой прямой призмы равен произведению площади её основания на высоту.

Объём призмы

Теорема. Объём призмы равен произведению площади основания на высоту.

Сначала докажем эту теорему для треугольной призмы, а потом и для многоугольной.

1) Проведём (черт. 95) через ребро AA 1 треугольной призмы АВСА 1 В 1 С 1 плоскость, параллельную грани ВВ 1 С 1 С, а через ребро СС 1 - плоскость, параллельную грани AA 1 B 1 B; затем продолжим плоскости обоих оснований призмы до пересечения с проведёнными плоскостями.

Тогда мы получим параллелепипед BD 1 , который диагональной плоскостью АА 1 С 1 С делится на две треугольные призмы (из них одна есть данная). Докажем, что эти призмы равновелики. Для этого проведём перпендикулярное сечение abcd . В сечении получится параллелограмм, который диагональю ас делится на два равных треугольника. Данная призма равновелика такой прямой призме, у которой основание есть \(\Delta\)аbc , а высота - ребро АА 1 . Другая треугольная призма равновелика такой прямой, у которой основание есть \(\Delta\)аdс , а высота - ребро АА 1 . Но две прямые призмы с равными основаниями и равными высотами равны (потому что при вложении они совмещаются), значит, призмы АВСА 1 В 1 С 1 и ADCA 1 D 1 C 1 равновелики. Из этого следует, что объём данной призмы составляет половину объёма параллелепипеда BD 1 ; поэтому, обозначив высоту призмы через H, получим:

$$ V_{\Delta пр.} = \frac{S_{ABCD}\cdot H}{2} = \frac{S_{ABCD}}{2}\cdot H = S_{ABC}\cdot H $$

2) Проведём через ребро АА 1 многоугольной призмы (черт. 96) диагональные плоскости АА 1 С 1 С и AA 1 D 1 D.

Тогда данная призма рассечётся на несколько треугольных призм. Сумма объёмов этих призм составляет искомый объём. Если обозначим площади их оснований через b 1 , b 2 , b 3 , а общую высоту через Н, то получим:

объём многоугольной призмы = b 1 H +b 2 H + b 3 H =(b 1 + b 2 + b 3) H =

= (площади ABCDE) H.

Следствие. Если V, В и Н будут числа, выражающие в соответствующих единицах объём, площадь основания и высоту призмы, то, по доказанному, можно написать:

Другие материалы

Школьникам, которые готовятся к сдаче ЕГЭ по математике, обязательно стоит научиться решать задачи на нахождение площади прямой и правильной призмы. Многолетняя практика подтверждает тот факт, что подобные задания по геометрии многие учащиеся считают достаточно сложными.

При этом уметь находить площадь и объем правильной и прямой призмы должны старшеклассники с любым уровнем подготовки. Только в этом случае они смогут рассчитывать на получение конкурентных баллов по итогам сдачи ЕГЭ.

Основные моменты, которые стоит запомнить

  • Если боковые ребра призмы перпендикулярны основанию, она называется прямой. Все боковые грани этой фигуры являются прямоугольниками. Высота прямой призмы совпадает с ее ребром.
  • Правильной является призма, боковые ребра которой перпендикулярны основанию, в котором находится правильный многоугольник. Боковые грани этой фигуры - равные прямоугольники. Правильная призма всегда является прямой.

Подготовка к единому госэкзамену вместе со «Школково» - залог вашего успеха!

Чтобы занятия проходили легко и максимально эффективно, выбирайте наш математический портал. Здесь представлен весь необходимый материал, который поможет подготовиться к прохождению аттестационного испытания.

Специалисты образовательного проекта «Школково» предлагают пойти от простого к сложному: сначала мы даем теорию, основные формулы, теоремы и элементарные задачи с решением, а затем постепенно переходим к заданиям экспертного уровня.

Базовая информация систематизирована и понятно изложена в разделе «Теоретическая справка». Если вы уже успели повторить необходимый материал, рекомендуем вам попрактиковаться в решении задач на нахождение площади и объема прямой призмы. В разделе «Каталог» представлена большая подборка упражнений различной степени сложности.

Попробуйте рассчитать площадь прямой и правильной призмы или прямо сейчас. Разберите любое задание. Если оно не вызвало сложностей, можете смело переходить к упражнениям экспертного уровня. А если определенные трудности все же возникли, рекомендуем вам регулярно готовиться к ЕГЭ в онлайн-режиме вместе с математическим порталом «Школково», и задачи по теме «Прямая и правильная призма» будут даваться вам легко.

Объём призмы. Решение задач

Геометрия является самым могущественным средством для изощрения наших умственных способностей и дает нам возможность правильно мыслить и рассуждать.

Г.Галилей

Цель урока:

  • обучить решению задач на вычисление объема призм, обобщить и систематизировать имеющиеся у учащихся сведения о призме и ее элементах, формировать умения решать задачи повышенной сложности;
  • развивать логическое мышление, умение самостоятельно работать, навыки взаимоконтроля и самоконтроля, умение говорить и слушать;
  • выработать привычку к постоянной занятости, каким- либо полезным делом, воспитание отзывчивости, трудолюбия, аккуратности.

Тип урока: урок применения знаний, умений и навыков.

Оборудование: карточки контроля,медиапроектор, презентация “Урок. Объем Призмы”, компьютеры.

Ход урока

  • Боковые ребра призмы (рис 2).
  • Боковую поверхность призмы (рис 2, рис 5).
  • Высоту призмы (рис 3, рис 4).
  • Прямую призму (рис 2,3,4).
  • Наклонную призму (рис 5).
  • Правильную призму (рис 2, рис 3).
  • Диагональное сечение призмы (рис 2).
  • Диагональ призмы (рис 2).
  • Перпендикулярное сечение призмы (ри3, рис4).
  • Площадь боковой поверхности призмы.
  • Площадь полной поверхности призмы.
  • Объем призмы.

    1. ПРОВЕРКА ДОМАШНЕГО ЗАДАНИЯ (8 мин)
    2. Обменяйтесь тетрадями, проверьте решение на слайдах и выставьте отметку (отметка 10 если составлена задача)

      Составьте по рисунку задачу и решите её. Ученик защищает составленную им задачу у доски. Рис 6 и рис 7.

      Глава 2,§3
      Задача.2. Длины всех ребер правильной треугольной призмы равны между собой. Вычислите объем призмы, если площадь ее поверхности равна cм 2 (рис8)

      Глава 2,§3
      Задача 5. Основание прямой призмы АВСА 1В 1С1 есть прямоугольный треугольник АВС (угол АВС=90°), АВ=4см. Вычислите объем призмы, если радиус окружности, описанной около треугольника АВС, равен 2,5см, а высота призмы равна 10см. (рис 9).

      Глава2,§3
      Задача 29.Длина стороны основания правильной четырехугольной призмы равна 3см. Диагональ призмы образует с плоскостью боковой грани угол 30°. Вычислить объем призмы (рис 10).

    3. Совместная работа учителя с классом (2-3мин.).
    4. Цель: подведение итогов теоретической разминки (учащиеся проставляют оценки друг другу), изучение способов решения задач по теме.

    5. ФИЗКУЛЬТМИНУТКА (3 мин)
    6. РЕШЕНИЕ ЗАДАЧ (10 мин)
    7. На данном этапе учитель организует фронтальную работу по повторению способов решения планиметрических задач, формул планиметрии. Класс делится на две группы, одни решают задачи, другие работают за компьютером. Затем меняются. Учащимся предлагается решить всем № 8 (устно), № 9 (устно). После делятся на группы и преступают к решению задач № 14, № 30, № 32.

      Глава 2, §3, страница 66-67

      Задача 8. Все ребра правильной треугольной призмы равны между собой. Найдите объём призмы, если площадь сечения плоскостью, проходящей через ребро нижнего основания и середину стороны верхнего основания, равна см (рис.11).

      Глава 2,§3, страница 66-67
      Задача 9. основание прямой призмы – квадрат, а ее боковые ребра в два раза больше стороны основания. Вычислите объем призмы, если радиус окружности, описанной около сечения призмы плоскостью, проходящей через сторону основания и середину противолежащего бокового ребра, равен см. (рис.12)

      Глава 2,§3, страница 66-67
      Задача 14 .Основание прямой призмы – ромб, одна из диагоналей которого равна его стороне. Вычислите периметр сечения плоскостью проходящей через большую диагональ нижнего основания, если объем призмы равен и все боковые грани квадраты (рис.13).

      Глава 2,§3, страница 66-67
      Задача 30 .АВСА 1 В 1 С 1 –правильная треугольная призма, все ребра которой равны между собой, точка о середина ребра ВВ 1 . Вычислите радиус окружности, вписанной в сечение призмы плоскостью АОС, если объем призмы равен (рис.14).

      Глава 2,§3, страница 66-67
      Задача 32 .В правильной четырех угольной призме сумма площадей оснований равна площади боковой поверхности. Вычислите объем призмы, если диаметр окружности, описанной около сечения призмы плоскостью, проходящей через две вершины нижнего основания и противолежащую вершину верхнего основания, равен 6 см (рис15).

      В ходе решения задач ученики сопоставляют свои ответы с теми, что показывает учитель. Это образец решения задачи с подробными комментариями … Индивидуальная работа учителя с “сильными” учениками (10мин.).

    8. Самостоятельная работа учащихся над тестом за компьютером
    9. 1. Сторона основания правильной треугольной призмы равна , а высота-5. Найдите объем призмы.

      1) 152) 45 3) 104) 125) 18

      2. Выберите верное утверждение.

      1)Объем прямой призмы, основанием которой является прямоугольный треугольник, равен произведению площади основания на высоту.

      2) Объем правильной треугольной призмы вычисляется по формулеV=0,25а 2 h -где а- сторона основания,h-высота призмы.

      3)Объем прямой призмы равен половине произведения площади основания на высоту.

      4)Объем правильной четырехугольной призмы вычисляется по формуле V=a 2 h-где а- сторона основания,h-высота призмы.

      5)Объем правильной шестиугольной призмы вычисляется по формуле V=1.5а 2 h, где а- сторона основания,h-высота призмы.

      3.Сторона основания правильной треугольной призмы равна . Через сторону нижнего основания и противоположную вершину верхнего основания проведена плоскость, которая проходит под углом 45° к основанию. Найдите объем призмы.

      1) 92) 9 3) 4,54) 2,255) 1,125

      4. Основанием прямой призмы является ромб, сторона которого равна 13, а одна из диогоналей-24. Найдите объем призмы, если диагональ боковой грани равна 14.