Главный комплекс гистосовместимости человека (HLA). Главный комплекс генов гистосовместимости Главный комплекс гистосовместимости mhc

Для реализации корректного иммунного ответа необходимо отличать «свое» от «чужого». Это свойство связано с системой генов, которые детерминируют синтез специфических для каждого организма молекул. Такие молекулы были открыты в конце 50-х годов прошлого века французским исследователем Жаном Доссе благодаря их способности вызывать реакцию отторжения трансплантата при пересадке ткани в пределах одного вида животных. Поэтому они были на-званы антигенами гистосовместимости, или трансплантационными антигенами. Поскольку у человека такие молекулы были впервые выявлены на лейкоцитах крови , система человеческих антигенов гистосовместимости получила название лейкоцитарных антигенов человека (Human Leukocyte Antigens), сокращенно — HLA. Соответствующий участок на 6-й хромосоме, где расположены гены, ко-дирующие антигены гистосовместимости, называется HLA-комплексом. У всех млекопитающих главный комплекс гистосовместимости называется MHC (англ. — Major Histocompatibility Complex).

Различают три класса генов главного комплекса гистосовместимости (рис. 25). Антигены HLA I и II классов отличаются по структуре., но в дальнейшем имеют разную судьбу.

I класс HLA

I класс включает локусы А, В, С, Е, О, F. Локусы А, В и С называются «клас-сическими», поскольку кодируют хорошо изученные антигены гистосовместимости. Классические антигены I класса размещены на поверхности всех клеток организма, кроме нитей трофобласта. Именно они свидетельствуют об организменной принадлежности клеток. Для генов I класса присущ огромный поли-морфизм. Так, локус А содержит 40 аллелей, В — 60 аллелей, а С — около 20. С этим связана беспрецедентная уникальность набора HLA у каждого человека.

Роль антигенов I класса, которые кодируются локусами Е, G и F, полностью не изучена. Известно, что на клетках трофобласта присутствуют молекулы, ко-дируемые только локусом G. Это считается одним из механизмов поддержания иммунной толерантности организма матери к антигенам фетоплацентарного комплекса.

Структура

Молекулы 1 класса состоят из одной тяжелой пели, которая содержит 3 до-мена, и одной легкой, образованной лишь одним доменом. При этом только тяжелая цепь имеет цитоплазматический участок и формирует пептидсвязывающую бороздку.

Синтез

Молекулы HLA I класса синтезируются на гранулярном эндоплазма-тическом ретикулуме.

HLA 1 поступа-ют в протеосомы, где пептиды, сформированные за счет деятельности LMP, загружаются в их пептидсвязывающую борозду молекулами-транспортерами (ТАР). После этого комплекс HLA-пептид по внутриклеточным коммуника-циям поступает в комплекс Гольджи и в везикулах, которые отшнуровываются от этой органеллы, перемещается в сторону внешней плазматической мемб-раны. Содержимое везикулы высвобождается наружу (экзоцитоз), а фрагмент мембраны, в который встроены новообразованные HLA I, входит в состав цитолеммы. Следует отметить, что пептиды для молекул гистосовместимости I класса всегда есть в наличии, поскольку формируются они из аутоантигенов, часть которых расщепляется LMP еще до начала выполнения своих функцио-нальных обязанностей в клетке.

II класс HLA

II класс содержит «классические» локусы DR, DQ, DP, кодирующие синтез соответствующих по названию молекул. Обычно антигены II класса находят-ся только на мембранах профессиональных антигенпрезентирующих клеток, к которым принадлежат дендритные клетки , макрофаги и В-лимфоциты. Но под влиянием интерлейкина-2 и γ-интерферона они могут дополнительно по-являться и на других клетках (в частности, на Т-лимфоцит ах и клетках эндотелия сосудов). Антигены II класса также довольно полиморфны, особенно кодируемые локусом DR. Кроме перечисленных «классических» локусов, ге-ны II класса включают еще 3 других — LMP (Large multifunctional proteasa, большая многофункциональная протеаза), ТАР (Transporter for antigen presentation, транспортер для антигенной презентации; и локус DM. Локусы LMP кодируют протеазы, осуществляющие «разрезание» макромолекулы антигена и опреде-ляющие тем самым размер образованных иммуногенных пептидов. Локус ТАР обеспечивает синтез транспортных белков, которые осуществляют доставку и «загрузку» таких иммуногенных пептидов в пептидсвязывающую бороздку молекулы HLA (в так называемый карман Беркмана). Интересно, что оба гена обслуживают синтез молекул HLA 1 класса. Локус DM кодирует синтез бел-ков, катализирующих замену «временного пептида» на специфический пептид, загружаемый в пептидсвязывающую бороздку HLA II класса в случае захвата антигенпрезентирующей клеткой антигена.

Структура

HLA II класса формируют две одинаковые по молекулярной массе цепи, каждая из которых имеет контакт с цитоплазмой и принимает учас-тие в формировании общей пептидсвязывающей борозды.

Синтез

Молекулы HLA II класса синтезируются на гранулярном эндоплазма-тическом ретикулуме.

Молекулы HLA II синтезируются в комплексе с так называемой инвариант-ной цепью, которая образует «временный пептид» (без пептида любая молеку-ла гистосовместимости нежизнеспособна). В дальнейшем образованный ком-плекс поступает в лизосомы, где разрушается гидролитическими ферментами, а сформированные мономеры используются для повторного синтеза HLA II. Так происходит до тех пор, пока антигенпрезентирующая клетка (АПК) не за-хватит антиген. В таком случае образуется фаголизосома и именно сюда пос-тупает комплекс HLA II — временный пептид. Под влиянием активированных белков DM временный пептид оставляет молекулу гистосовместимости, а на его место загружается иммуногенный пептид, образованный путем процес-синга захваченного антигена. В дальнейшем фрагменты разрушенного антиге-на удаляются из клетки путем экзоцитоза. При этом мембрана экзоцитарной вакуоли, в которую встроены комплексы HLA II — иммуногенный пептид, сливается с цитолеммой и указанные комплексы оказываются на поверхности клетки. В таком состоянии АПК готова к осуществлению антигенной презен-тации. Материал с сайта

Описанные постоянное разрушение и ресинтез молекул HLA II класса про-исходят в дендритных клетках. Хотя последние тратят энергию на, казалось бы, бессмысленную рециркуляцию HLA, они в любой момент времени пребывают в полной готовности к презентации антигена . Учитывая это, дендритные клет-ки можно сравнить с автомобилем с включенным мотором — следует лишь нажать на газ и он сразу же тронется. Макрофаги, в отличие от дендритных клеток, начинают синтез HLA II только после фагоцитоза объекта, поэто-му они более медленно включаются в процесс антигенной презентации. Сэкономленную энергию макрофаг использует для синтеза целого ряда белков, необходимых для выполнения эффекторных функций. Напомним, что макро-фаги совмещают функции антигенпрезентирующей клетки, фагоцита и клет-ки-эффектора в реакциях антителозависимой клеточно-опосредованной цито-токсичности.

1877 0

Структура молекул главного комплекса гистосовместимости I класса

На рис. 9.3, А показана общая схема молекулы главного комплекса гистосовместимости (МНС) I класса человека или мыши. Каждый ген МНС I класса кодирует трансмембранный гликопротеин, молекулярной массой около 43 кДа, который обозначается как α или тяжелая цепь. Он включает три внеклеточных домена: α1, α2 и α3. Каждая молекула МНС I класса экспрессируется на клеточной поверхности в нековалентной связи с инвариантным полипептидом , называемым β2-микроглобулином (β2-m молекулярная масса 12 кДа), который кодируется на другой хромосоме.

Рис. 9.3. Разные изображения молекулы главного комплекса гистосовместимости I класса

Он имеет структуру, гомологичную единичному домену Ig, и в самом деле является представителем этого суперсемейства. Таким образом, на клеточной поверхности структура МНС I класса плюс β2m имеет вид четырехдоменнои молекулы, в которой к мембране примыкают домен α3 молекулы МНС I класса и β2m.

Последовательности различных аллельных форм молекул главного комплекса гистосовместимости I класса очень схожи. Различия аминокислотных последовательностей среди молекул МНС сосредоточены на ограниченном участке их внеклеточных доменов α1 и α2. Таким образом, индивидуальная молекула МНС I класса может быть разделена на неполиморфную, или инвариантную, область (одинаковую для всех аллельных форм 1 класса) и полиморфную, или вариабельную, область (уникальную последовательность для данного аллеля). Т-клеточные молекулы CD8 связываются с инвариантными областями всех молекул главного комплекса гистосовместимости I класса.

Все молекулы МНС I класса, подвергнутые рентгеновской кристаллографии, имеют одинаковую общую структуру, изображенную на рис. 9.3, Б и В. Наиболее интересной особенностью строения молекулы является то, что максимально удаленная от мембраны часть молекулы, состоящая из доменов α1 и α2, имеет глубокую бороздку или полость. Эта полость в молекуле МНС I класса является местом связывания пептидов. Полость напоминает корзину с неровным дном (сплетенную из аминокислотных остатков в виде плоской β-складчатой структуры), а окружающие стенки представлены α-спиралями. Полость закрыта с обоих концов, поэтому в нее вмещается цепочка, состоящая из восьми или девяти аминокислотных последовательностей.

Сравнивая последовательности и структуру полости у разных молекул главного комплекса гистосовместимости I класса, можно обнаружить, что дно каждой из них различно и состоит из нескольких карманов, специфичных для каждого аллеля (рис. 9.3, Г). Форма и заряд этих карманов на дне полости помогают определить, какие пептиды связываются с каждой аллельной формой молекулы МНС. Карманы также помогают закрепить пептиды в таком положении, в котором они могут распознаваться специфичными TCR. На рис. 9.3, Г и 8.2 показано взаимодействие пептида, размещенного в полости, и участков молекулы МНС I класса с Т-клеточным рецептором.

Центр связанного пептида - единственная часть белка, не спрятанная внутри молекулы главного комплекса гистосовместимости, - взаимодействует с CDR3-TCR α и β, которые являются наиболее вариабельными в Т-клеточном рецепторе. Это означает, что для распознавания пептида TCR необходим контакт с небольшим количеством аминокислот центра пептидной цепочки.

Отдельная молекула МНС I класса может связываться с разными пептидами, но преимущественно с теми, которые обладают определенными (специфичными) мотивами (последовательностями). Такими специфичными последовательностями являются инвариантно расположенные 8 - 9 аминокислотных остатков (якорные последовательности), обладающие высоким сродством к аминокислотным остаткам в пептидсвязывающей полости данной молекулы МНС. При этом аминокислотные последовательности в позициях, не являющихся якорными, могут быть представлены любым набором аминокислотных остатков.

Так, например, человеческая молекула I класса HLA-А2 связывается с пептидами, имеющими во второй позиции лейцин, а в девятой - валин; в отличие от нее другая молекула HLA-A связывает только белки, у которых в якорную последовательность входят фенилаланин или тирозин в позиции 5 и лейцин в позиции 8. Другие позиции в связываемых пептидах могут быть заполнены любыми аминокислотами.

Таким образом, каждая из молекул главного комплекса гистосовместимости может связываться с большим количеством пептидов, обладающих различными аминокислотными последовательностями. Это помогает объяснить, почему ответы, опосредованные Т-клетками, могут развиться, за редким исключением, по меньшей мере к одному эпитопу почти всех белков и почему случаи отсутствия иммунного ответа на белковый антиген очень редки.

Структура молекул главного комплекса гистосовместимости II класса

Гены α и β МНС II класса кодируют цепи массой около 35000 и 28000 Да соответственно. На рис. 9.4, А показано, что молекулы МНС II класса, как и I класса, являются трансмембранными гликопротеинами с цитоплазматическими «хвостами» и внеклеточными доменами, похожими на Ig; домены обозначают α1, α2, β1, и β2.

Молекулы главного комплекса гистосовместимости II класса также являются членами суперсемейства иммуноглобулинов. Как и у молекул МНС I класса, в состав молекулы МНС II класса входят вариабельные, или полиморфные (различные у разных аллелей), и инвариабельные, или неполиморфные (общие для всех аллелей), области. T-клеточная молекула CD4 прикрепляется к неизменяемой части всех молекул главного комплекса гистосовместимости II класса.


Рис. 9.4. Разные изображения молекулы главного комплекса гистосовместимости II класса

На вершине молекулы МНС II класса также есть выемка или полость, способная связываться с пептидами (рис. 9.4, Б и В), которая структурно аналогична полости молекулы МНС I класса. Однако в молекуле главного комплекса гистосовместимости II класса полость формируется путем взаимодействия доменов разных цепочек, а и р. На рис. 9.4, В показано, что дно полости молекулы МНС II класса состоит из восьми β-складок, причем домены α1 и β1 образуют по четыре из них каждый; спиральные фрагменты доменов α1 и β1 формируют каждый по одной стенке полости.

В отличие от полости молекулы МНС I класса полость молекулы главного комплекса гистосовместимости II класса открыта с обеих сторон, что позволяет связывать более крупные белковые молекулы. Таким образом, полость молекулы МНС II класса может связывать пептиды, длина которых варьирует от 12 до 20 аминокислот в линейной цепочке, при этом концы пептида оказываются за пределами полости. На рис. 9.4, Г показано, что TCR взаимодействует не только с пептидом, связанным с молекулой МНС II класса, но и с фрагментами самой молекулы главного комплекса гистосовместимости II класса.

Пептиды, которые связываются с различными молекулами МНС II класса, также должны обладать определенными мотивами (последовательностями); поскольку длина пептидов в этом случае более вариабельна, чем у пептидов, которые могут прикрепляться к молекуле МНС I класса, мотивы чаше располагаются в центральной области пептида, т.е. в том месте, которое соответствует внутренней поверхности полости молекулы главного комплекса гистосовместимости II класса.

Р.Койко, Д.Саншайн, Э.Бенджамини

Главный комплекс гистосовместимости………………………………………...3

Строение главного комплекса гистосовместимости……………………………6

Молекулы главного комплекса гистосовместимости…………………………..8

Функции Главного комплекса гистосовместимости…………………………..14

Антигены MHC: история исследований………………………………………16

Список использованной литературы…………………………………………...18
Главный комплекс гистосовместимости.

Главный комплекс гистосовместимости – это группа генов и кодируемых ими антигенов клеточной поверхности , которые играют важнейшую роль в распознавании чужеродного и развитии иммунного ответа.

Антигены, обеспечивающие внутривидовые различия особей, обозначаются как аллоантигены, а когда они включаются в процесс отторжения аллогенных тканевых трансплантатов, то приобретают название антигенов тканевой совместимости (гистосовместимости). Эволюция закрепила единичный участок тесно сцепленных генов гистосовместимости, продукты которых на поверхности клеток обеспечивают сильный барьер при аллотрансплантации. Термины «major histocompatibility antigens» (главные антигены гистосовместимости) и «major histocompatibility gene complex» (MHC) (главный генный комплекс гистосовместимости) относятся соответственно к продуктам генов и генам этого хромосомного участка. Многочисленные минорные антигены гистосовместимости, наоборот, кодируются множественными участками генома. Им соответствуют более слабые аллоантигенные различия молекул, выполняющих разнообразные функции.


Открытие MHC произошло при исследовании вопросов внутривидовой пересадки тканей.

Затем, первоначально в гипотетической, на основании клеточной феноменологии, а затем в экспериментально хорошо документированной форме с использованием методов молекулярной биологии было установлено, что Т-клеточный рецептор распознает не собственно чужеродный антиген, а его комплекс с молекулами, контролируемыми генами главного комплекса гистосовместимости. При этом и молекула MHC и фрагмент антигена контактируют с Т - клеточным рецептором.

MHC кодирует два набора высокополиморфных клеточных белков, названных молекулами MHC класса I и класса II. Молекулы класса I способны связывать пептиды из 8-9 аминокислотных остатков, молекулы класса II - несколько более длинные.

Высокий полиморфизм молекул MHC, а также способность каждой антигенпрезентирующей клетки (АПК) экспрессировать несколько разных молекул MHC обеспечивают возможность презентации T-клеткам множества самых различных антигенных пептидов.

Следует отметить, что хотя молекулы MHC и называются обычно антигенами, они проявляют антигенность только в том случае, когда распознаются иммунной системой не собственного, а генетически иного организма, например, при аллотрансплантации органов.

Наличие в МНС генов, большинство из которых кодирует иммунологически значимые полипептиды , заставляет думать, что этот комплекс эволюционно возник и развивался специально для осуществления иммунных форм защиты.

Существуют еще и молекулы MHC класса III , но молекулы MHC класса I и молекулы MHC класса II являются наиболее важными в иммунологическом смысле.

Главный комплекс гистосовместимости характеризуется крайне выраженным полиморфизмом . Ни одна другая генетическая система организма не имеет такого количества аллельных форм как гены МНС .

Долгое время биологический смысл столь выраженного полиморфизма оставался непонятным, хотя какое-то селективное значение такой аллельной изменчивости было очевидным. Впоследствии было доказано, что подобный полиморфизм прямо связан с процессом презентации антигенных детерминант Т-клеткам .

С полиморфизмом антигенов МНС связано такое явление, как генетический контроль иммунного ответа. В тех случаях, когда аминокислотные остатки, образующие антигенсвязывающую щель у молекул II класса , не в состоянии связать пептидный фрагмент чужеродного антигена, T-хелперы остаются ареактивными, и их помощь В-клеткам не реализуется. Это обстоятельство и является причиной генетически детерминированного дефекта в иммунном реагировании.

Основные события, которые привели к формированию разнообразия генов МНС в процессе эволюции связаны с тандемными дупликациями, точечными мутациями, рекомбинациями и конверсией генетического материала. Тандемные дупликации (процесс повторения исходного гена на той же самой хромосоме) хорошо известны для многих генетических систем, контролирующих синтез белков, например, иммуноглобулинов . Именно в результате этого процесса возникло несколько полигенных форм молекул MHC. Спонтанные замены отдельных нуклеотидов в процессе редупликации ДНК (точечные мутации) также хорошо известны, они приводят к формированию аллельных генов, которые также определяют полиморфизм белков. Рекомбинации между отдельными участками гомологичных хромосом в процессе мейоза могут привести к обмену как целых участков этих хромосом, так и отдельных генов и даже частей генов. В последнем случае процесс называется генной конверсией . Мутации, рекомбинации и конверсия генов создают многообразие их аллельных форм и определяют полиморфизм антигенов МНС.

Такая высокая степень полиморфизма имеет потенциальную ценность для выживания вида, и именно благодаря ей весь вид не становится жертвой мимикрии микробов, при которой они экспрессируют структуры, близкие по конформации к продуктам MHC . T-клетки , способные распознать неповторимую индивидуальную комбинацию специфичностей собственного организма, оказываются в состоянии реагировать на продукты такой мимикрии, как на чужеродные. Кроме того, возможно, что столь высокий сбалансированный полиморфизм продуктов MHC обеспечивает более широкое разнообразие антигенов, распознаваемых иммунной системой данного вида, а также гетерозиса (гибридной силы), поскольку у гетерозигот возникает максимальная комбинаторика аллелей. Братья и сестры имеют один шанс из четырех быть идентичными по антигенам MHC.
Строение главного комплекса гистосовместимости.

Методом хромосомной гибридизации установлено, что система МНС локализуется на коротком плече 6 аутосомной хромосомы человека, а у мышей – на 17 хромосоме.

Р
ис. 1. Схематическое изображение хромосомы 6.
Главный комплекс гистосовместимости занимает значительный участок ДНК, включающий до 4*106 пар оснований или около 50 генов. Основной особенностью комплекса является значительная полигенность (наличие нескольких неаллельных близкосцепленных генов, белковые продукты которых сходны в структурном отношении и выполняют идентичные функции) и ярковыраженный полиморфизм - присутствие многих аллельных форм одного и того же гена. Все гены комплекса наследуются по кодоминантному типу .

Полигенность и полиморфизм (структурная вариабельность) определяют антигенную индивидуальность особей данного вида.

Все гены MHC делятся на три группы. Каждая группа включает гены, контролирующие синтез полипептидов одного из трех классов MHC (I, II и III) ( рис. 3.5 ). Между молекулами первых двух классов имеются выраженные структурные различия , но при этом по общему плану строения все они однотипны. В то же время между продуктами генов класса III, с одной стороны, и классов I и II, с другой стороны, не найдено никакого функционального или структурного сходства. Группа из более чем 20 генов класса III вообще функционально обособлена - некоторые из этих генов кодируют, например, белки системы комплемента ( C4 , C2 , фактор B ) или молекулы, участвующие в процессинге антигена .

Область локализации генов, кодирующих комплекс молекул MHC мыши, обозначается как H-2 , для человека - HLA .

HLA-A , HLA-B и HLA-С - локусы хромосомы, гены которых контролируют синтез "классических" молекул (антигенов) I класса MHC человека и кодируют тяжелую цепь (альфа-цепь). Область этих локусов занимает участок длиной более 1500 т.п.н.

Синтез молекул (антигенов) II класса MHC человека контролируют гены области HLA-D , которые кодируют не менее шести вариантов альфа- и десяти вариантов бета-цепей ( рис.3.5 ). Эти гены занимают три локуса HLA-DP , HLA-DQ и HLA-DR . К продуктам их экспрессии относится большинство молекул II класса.

Кроме того, к области HLA-D относятся гены HLA-LMP и HLA-TAP . Низкомолекулярные белки, контролируемые этими генами, принимают участие в подготовке чужеродного антигена к презентации Т-клеткам.

Гены локусов человека HLA-A , HLA-B и HLA-С кодируют тяжелую цепь (альфа-цепь) "классических" молекул I класса MHC. Кроме того, найдены многочисленные дополнительные гены вне этих локусов, кодирующие "неклассические" молекулы MHC класса I и расположенные в таких локусах HLA , как HLA-X HLA-F, HLA-E, HLA-J, HLA-H, HLA-G, HLA-F.

Молекулы главного комплекса гистосовместимости.

Методами рентгеноструктурного анализа выяснена пространственная организация молекул MHC:

Молекулы MHC класса I (аллельные варианты HLA : HLA-A , HLA-B , HLA-С ) экспрессируются на клеточной поверхности и представляют собой гетеродимер, состоящий из одной тяжелой альфа-цепи (45 кДа), нековалентно связанной с однодоменным бета2-микроглобулином (12 кДа), который встречается также в свободной форме в сыворотке крови их называют классическими трансплатационными антигенами .

Тяжелая цепь состоит из внеклеточной части (образующей три домена : альфа1-, альфа2- и альфа3-домены), трансмембранного сегмента и цитоплазматического хвостового домена. Каждый внеклеточный домен содержит примерно 90 аминокислотных остатков, и все их вместе можно отделить от клеточной поверхности путем обработки папаином.

В альфа2- и альфа3-доменах имеется по одной внутрицепочечной дисульфидной связи, замыкающей в петлю 63 и 68 аминокислотных остатков, соответственно.

Домен альфа3 гомологичен по аминокислотной последовательности C-доменам иммуноглобулинов , и конформация альфа3-домена напоминает складчатую структуру доменов иммуноглобулинов .

Бета2-микроглобулин (бета2-m) необходим для экспрессии всех молекул MHC класса I и имеет неизменную последовательность , но у мыши встречается в двух формах, различающихся заменой одной аминокислоты в позиции 85. По структуре этот белок соответствует C-домену иммуноглобулинов . Бета2-микроглобулин способен также нековалентно взаимодействовать с неклассическими молекулами класса I , например, с продуктами генов CD1 .

В зависимости от вида и гаплотипа внеклеточная часть тяжелых цепей MHC класса I в разной степени гликозилирована.

Трансмембранный сегмент MHC I класса состоит из 25 преимущественно гидрофобных аминокислотных остатков и пронизывает липидный бислой, вероятнее всего, в альфа-спиральной конформации.

Основное свойство молекул I класса - связывание пептидов (антигенов) и представление их в иммуногенной форме для Т-клеток - зависит от доменов альфа1 и альфа2. Эти домены имеют значительные альфа- спиральные участки, которые при взаимодействии между собой образуют удлиненную полость (щель), служащую местом связывания процессированного антигена . Образовавшийся комплекс антигена с альфа1- и альфа2-доменами и определяет его иммуногенность и возможность взаимодействовать с антигенраспознающими рецепторами Т-клеток .

К классу I относятся антигены A , антигены AB и антигены AC .

Антигены класса I присутствуют на поверхности всех ядросодержащих клеток и тромбоцитов .

Молекулы MHC класса II являются гетеродимерами, построенными из нековалентно сцепленных тяжелой альфа- и легкой бета-цепей.

Ряд фактов указывает на близкое сходство альфа- и бета-цепей по общему строению. Внеклеточная часть каждой из цепей свернута в два домена (альфа1, альфа2 и бета1, бета2, соответственно) и соединена коротким пептидом с трансмембранным сегментом (длиной примерно 30 аминокислотных остатков). Трансмембранный сегмент переходит в цитоплазматический домен, содержащий примерно 10-15 остатков.

Антигенсвязывающая область молекул MHC класса II формируется альфа-спиральными участками взаимодействующих цепей подобно молекулам I класса , но при одном существенном отличии: антигенсвязывающая полость молекул MHC класса II формируется не двумя доменами одной альфа-цепи, а двумя доменами разных цепей - доменами альфа1 и бета1.

Общее структурное сходство между двумя классами молекул MHC очевидно. Это - однотипность пространственной организации всей молекулы, количество доменов (четыре), конформационное строение антигенсвязывающего участка.

В структуре молекул II класса антигенсвязывающая полость открыта больше, чем у молекул I класса, поэтому в ней могут поместиться более длинные пептиды.

Важнейшая функция антигенов MHC (HLA) класса II - обеспечение взаимодействия между Т-лимфоцитами и макрофагами в процессе иммунного ответа. Т-хелперы распознают чужеродный антиген лишь после его переработки макрофагами , соединения с антигенами HLA класса II и появления этого комплекса на поверхности макрофага.

Антигены класса II присутствуют на поверхности В-лимфоцитов , активированных Т-лимфоцитов , моноцитов , макрофагов и дендритных клеток .

Гены MHC класса II кодируют связанные с мембраной трансмембранные пептиды (гликопротеины). Молекулы антигенов гистосовместимости класса II ( DR , DP , DQ ) также как и класса I являются гетеродимерными белками, состоящими из тяжелой альфа-цепи (33 кДа) и легкой бета-цепи (26 кДа), кодируемые генами HLA -комплекса. Обе цепи формируют по два домена: альфа1 и альфа2, а также бета1 и бета2.

Продукты MHC класса II ассоциированы, главным образом, с B- лимфоцитами и макрофагами и служат распознаваемыми структурами для T- хелперов .

Гены MHC класса III, расположенные в пределах группы генов MHC или тесно сцепленные с ней, контролируют некоторые компоненты комплемента : C4 и C2 , а также фактор B , находящиеся скорее в плазме крови, чем на поверхности клеток. И в отличие от молекул MHC классаI и класса II не не участвуют в контроле иммунного ответа.

Термин MHC класса IV употребляется для описания некоторых локусов, сцепленных с MHC.

Изучение экспрессии молекул I и II классов MHC на различных типах клеток выявило более широкое тканевое распространение молекул I класса в сравнении с молекулами II класса. Если молекулы I класса экспрессируются практически на всех изученных клетках, то молекулы II класса экспрессируются, в основном, на иммунокомпетентных клетках или клетках, принимающих относительно неспецифическое участие в формировании иммунного ответа, таких, как клетки эпителия.

В табл. 1 представлены данные о характере тканевого распределения молекул МНС у мышей и человека.

табл. 1 Тканевое распределение молекул I и II классов МНС у мышей и человека


Тип клеток

Н-2 коплекс мышей

HLA комплекс человека

Класс I

Класс II

Класс I

Класс II

В-клетки

+

+

+

+

Т-клетки

+

(+)

+

(+)

Тимоциты

+

(+)

+

(+)

Макрофаги

+

+

+

+

Гранулоциты

.

.

+

-

Ретикулоциты

+

.

+

.

Эритроциты

+

-

-

-

Тромбоциты

+

-

+

-

Фибробласты

+

-

+

-

Эпителиальные клетки

+

.

+

+

Эпидермальные клетки

+

+

+

+

Печень

+

-

+

-

Почка

+

-

+

-

Сердечная мышца

+

-

+

-

Скелетная мышца

+

-

+

-

Мозг

+

-

(+)

.

Плацента

+

.

+

.

Сперматозоиды

+

+

+

+

Яйцеклетки

(+)

.

.

.

Трофобласт

-

.

(+)

.

Бластоциты

+

.

.

.

Эмбриональная ткань

+

.

+

.

Представительство молекул I класса почти на всех типах клеток коррелирует с доминирующей ролью этих молекул в отторжении аллогенного трансплантата. Молекулы II класса менее активны в процессе тканевого отторжения. Сравнительные данные о степени участия молекул I и II классов MHC в некоторых иммунных реакциях демонстрируют, что некоторые свойства МНС в большей степени связаны с одним из классов, тогда как другие являются характерной особенностью обоих классов(табл. 2)

Табл. 2 Участие молекул I и II классов МНС в некоторых иммунных реакциях

Функции Главного комплекса гистосовместимости.

Хотя молекулы MHC первоначально идентифицировали по их способности вызывать отторжение трансплантата, они выполняют в организме и другие биологически важные функции. Во-первых, они принимают непосредственное участие в инициации иммунного ответа, контролируя молекулы, представляющие антиген в иммуногенной форме для его распознавания цитотоксическими T-клетками и хелперными T-клетками. Во-вторых, в МНС локализованы гены, контролирующие синтез иммунорегуляторных и эффекторных молекул - цитокинов ФНО-альфа, ФНО-бета, а также некоторых компонентов комплемента.

Следует отметить их роль в качестве поверхностных клеточных маркеров, распознаваемых цитотоксическими T- лимфоцитами и T-хелперами в комплексе с антигеном. Молекулы, кодируемые комплексом Tla (область части генов MHC), вовлечены в процессы дифференцировки, особенно у эмбриона, а возможно, и в плаценте. MHC принимает участие в самых разных неиммунологических процессах, многие из которых опосредованы гормонами, например, регуляция массы тела у мышей или яйценоскости кур. Молекулы MHC класса I могут входить в состав гормональных рецепторов. Так, связывание инсулина заметно снижается, если с поверхности клетки удалить антигены MHC класса I, но не класса II. Кроме того, описаны случаи ассоциации продуктов MHC с рецепторами глюкагона, эпидермального фактора роста и гамма-эндорфина. На рис. 3 представлены функции продуктов MHC, а основные иммунологические свойства, связанные с MHC, перечислены в табл. 3 .

рис. 3 im MHC: функции


Табл. 3 Иммунологические свойства, связанные с MHC

Приведенные факты заставляют думать, что MHC эволюционно возник и развивался специально для осуществления иммунологических функций.

Особое место занимает вопрос о связи молекул MHC с заболеваниями. При некоторых формах неинфекционных заболеваний частота отдельных антигенов среди больных значительно выше, чем в популяции здоровых людей. Четких механизмов подобной корреляции установить не удается. Однако ясно, что при разных формах заболевания механизмы скорее всего различны. С помощью HLA-типирования удалось подтвердить общность некоторых расстройств или по-новому подойти к вопросу их классификации. Сделан важный вывод, что в организме имеются различные группы антигенов МНС ассоциируемых с заболеваниями. Одни из них связаны с резистентностью или, наоборот, с восприимчивостью, а , другие с остротой их течения и, наконец, третьи – с продолжительностью жизни больных.

В настоящее время стало очевидно, что продукты MHC класса II имеют решающее значение в патогенезе аутоиммунных заболеваний . В связи с этим неизбежно возникло стремление связать аутоиммунные заболевания с генами иммунореактивности, контролирующими ответ на соответствующий аутоантиген или на какой-либо вероятный этиологический агент.

Антигены MHC: история исследований.

В истории изучения антигенов гистосовместимости наиболее существенными являются следующие этапы:

1958 г. - открыт первый антиген гистосовместимости человека Mac (HLA-A2, Дж.Дассэ);

1966 г. - доказана ведущая роль HLA антигенов в развитии реакции отторжения трансплантата (Дж. ван Рууд и др.);

1972 г. - установлена корреляция между аллельными вариантами HLA антигенов и определенными заболеваниями (З.Фалчук и др.);

1973 г. - установлена структура HLA антигенов класса I (К.Накамура и др.);

1974 г. - показана роль антигенов гистосовместимости в ограничении иммунного ответа (двойное распознавание, Р.Цинкернагель, П.Доэрти);

1981 г. - осуществлено выделение и определение аминокислотной последовательности антигенов HLA класса II (Г.Кратцин и др.);

1983 г. - продемонстрирован биохимический полиморфизм HLA антигенов (Р.Василов и др.);

1987 г. - определена пространственная структура HLA-A2 антигена (П.Бeркман и др.);

1991-1993 г. - установлен характер распределения HLA антигенов в большинстве этнических групп планеты

Список использованной литературы.

Иммунология, под ред. Е. С. Воронина, М.: Колос –Пресс, 2002
Я. Кольман, К.- Г. Рем, Наглядная биохимия, М.: Мир 2000
Сочнев А.М. ,Алексеев Л.П. ,Тананов А.Т. Антигены системы HLA при различных заболеваниях и трансплантации. – Рига, 1987
www.humbio.ru
www.rusmedserver.ru/med/haris/60.html

ГЕНЕТИКА ГЛАВНОГО КОМПЛЕКСА ГИСТОСОВМЕСТИМОСТИ

МНС (Major Histocompatibility Complex) - главный комплекс гистосовместимости - система генов, кодирующих антигены, определяющих функционирование иммунной системы

HLA (Human Leucocyte Antigen) - главный комплекс гистосовместимости человека

История открытия

Открытие МНС.

Нобелевская премия 1980 г.

Жан Доссе

Открыл первый антиген гистосовместимости человека (HLA)

Джордж Снелл

Открыл антигены гистосовместимости у мыши (комплекс Н-2)

Барух Бенацерраф

Открыл гены иммунного ответа (Ir-гены)

Функции МНС

  • · Распознавание «свой - чужой» - реакция отторжения трансплантата, РТПХ (реакция трансплантат против хозяина)
  • · Регуляция взаимодействий клеток иммунной системы - рестрикция вовлечения в иммунный ответ лимфоцитов, через презентацию АГ
  • · Регуляция силы иммунного ответа на антиген - гены иммунного ответа (Ir) - от англ. immune response

ХАРАКТЕРИСТИКИ МНС

Гены комплекса MHC (в отличие от генов TCR и Ig) не подвергаются рекомбинации.

Механизм их приспособления к вариабельности (неограниченному множеству потенциальных АГ) заключается в их генетическом полиморфизме, полигенности и кодоминантном типе наследования

ПОЛИМОРФИЗМ

Существование большого количества различных специфичностей HLA-генов в пределах каждого локуса. Гены отличаются между собой по нуклеотидным последовательностям, входящим в вариабельный участок ДНК

ПОЛИГЕННОСТЬ

Наличие нескольких неаллельных близкосцепленных генов, белковые продукты которых сходны в структурном отношении и выполняют идентичные функции

ПОЛИГЕННОСТЬ и ПОЛИМОРФИЗМ

Система HLA, включает гены

1 класса: А, В, С; 2 класса: DR, DP, DG

ГЕНЕТИЧЕСКАЯ КАРТА МНС

Номер хромосомы человек - 6р 21.1-21.3

Гены MHC делятся на три группы.

Каждая группа включает гены, контролирующие синтез полипептидов одного из трех классов MHC

· MHC-I класс

Гены групп HLA-A, HLA-B и HLA-C кодируют молекулы MHC класса I.

· MHC-II класс

Гены групп HLA-DP, HLA-DQ и HLA-DR кодируют молекулы MHC класса II. гистосовместимость генетический полиморфизм вирусный

  • · MHC-III обозначает область между MHC-I и MHC-II, здесь картированы гены, кодирующие некоторые компоненты системы комплемента (C4a и C4b, С2, фактора В), цитокинов - (TNF-б и лимфотоксина), 21-гидроксилазы (фермента, участвующего в биосинтезе стероидных гормонов) и др.
  • · Неклассические гены не принадлежат ни к одному из классов MHC. Описано 6 таких генов в области расположения генов MHC-I (Е, F, G, Н, J, X), и 6 - в области MHC-II (DM, DO, CLIP, TAP, LMP, LNA)

НАСЛЕДОВАНИЕ МНС

Гены MHC кодоминантны, т.е. одновременно экспрессируются гены материнской и отцовской хромосом. Генов MHC-I по 3 (А, В, С) в каждой из гомологичных хромосом, генов MHC-II - также по 3 (DP, DQ, DR); следовательно, если у матери и отца нет одинаковых аллелей, то каждый человек имеет как минимум 12 различных основных аллелей каждого гена MHC классов I и II, вместе взятых.

Кодоминантность

Известно около 2000 аллельных генов.

Аллели HLA I класса - более 900

Аллели HLA II класса - более 600

Продукты генов МНС играют центральную роль в распознавании «свой-чужой» при иммунном реагировании

СТРОЕНИЕ

классических МНС

Класс I

Класс II

ЛОКУСЫ ЛОКУСЫ

А, В, С DP, DQ, DR

МНС I класса

Молекула I класса состоит из 2-х цепей. Тяжелой б-цепи и легкой в2-микроглобулина

б-цепь, включает три фрагмента: внеклеточный, трансмембранный и цитоплазматический.

Внеклеточный содержит 3 домена - б1, б2 и б3. Связывание антигенного пептида происходит в щели, образованной б1- и б2-доменами.

Экзонная организация генов, кодирующих б-цепь молекул I класса

  • 1 экзон, кодирующий сигнальный пептид,
  • 4 экзона, кодирующие 3 внешних и трансмембранный домены,
  • 2 экзона, кодирующие небольшой цитоплазматический домен

Экспрессия и функции МНС 1 класса

Экспрессия антигены представлены на всех клетках, тканях и органах, поэтому они являются главными трансплантационными антигенами.

  • · Реакция отторжения трансплантата;
  • · Рестрикция активности цитотоксических реакций Т-киллеров.

Презентация АГ

MHC-I «обслуживают» зону цитозоля, сообщающегося через ядерные поры с содержимым ядра. Здесь происходит фолдинг синтезированных белковых молекул.

При возникновении ошибок (в том числе и при синтезе вирусных белков) белковые продукты расщепляются в мультипротеазных комплексах (протеосомы). Образующиеся пептиды связываются с молекулами MHC-I, которые представляют T-лимфоцитам внутриклеточно образующиеся пептидные АГ. Поэтому CD8+ T-лимфоциты, которые распознают комплексы АГ с MHC-I, участвуют в первую очередь в защите от вирусных, а также внутриклеточных бактериальных инфекций

Этапы подготовки вирусных белков к взаимодействию с молекулами I класса главного комплекса гистосовместимости

I этап - разрушение вирусных белков, находящихся в цитозоле, с помощью протеазного комплекса - протеосомы.

II этап - транспорт образовавшихся пептидов во внутреннее пространство эндоплазматического ретикулума с помощью ТАР-1 и ТАР-2, образующих гетеродимер на эндоплазматической мембране.

III этап - встреча транспортируемых пептидов с молекулами I класса МНС. Взаимодействие пептида с молекулой I класса приводит к отсоединению калнексина. Образовавшийся комплекс пептид: молекула I класса готов к дальнейшему транспорту к плазматической мембране.

IV этап - комплекс через аппарат Гольджи транспортируется к клеточной поверхности, вирусный пептид в комплексе с молекулой I класса МНС становится доступным (иммуногенным) для его распознавания TCR

МНС II класса

Молекула II класса гетеродимер из двух нековалентно связанных цепей б и в, каждая из которых включает два домена: б1, б2 и в1, в2 (соответственно). Антигенсвязывающую областьобразуют б1- и в1-домены.

Экзонная организация генов, кодирующих б и в-цепи молекул II класса

  • 1 экзон кодирует лидерную последовательность.
  • 2 и 3 экзоны - первые (б-1 или в-1) и вторые (б-2 или в-2) внешние домены соответственно.
  • 4 экзон кодирует трансмембранный участок и часть цитоплазматического фрагмента.
  • 5 и 6 экзон - цитоплазматический «хвост»

Экспрессия и функции МНС II класса

Экспрессия антигены представлены на макрофагах, В-лимфоцитах и активированных Т-лимфоцитах.

Реакция трансплантат против хозяина

Рестрикция взаимодействий:

  • · Т-h1
  • · Т-h2

MHC-II. Зона «обслуживания» связана с внеклеточной средой и с клеточными органоидами (аппарат Гольджи, ЭПС, лизосомы, эндосомы и фагосомы).

Пептиды, образующиеся в данной зоне, имеют внеклеточное происхождение - это продукты протеолиза белков, захваченных клеткой посредством эндоцитоза или фагоцитоза. Молекулы MHC-II с помощью кальнексина экспонируются внутрь везикул (эндосом или фаголизосом) и только здесь, связавшись с пептидным АГ, принимают необходимую конформацию для дальнейшей экспрессии на мембране клетки.

Таким образом, молекулы MHC-II осуществляют представление АГ при развитии иммунных реакций на внеклеточные инфекции. Главную роль в этих реакциях играют CD4+ T-лимфоциты, распознающие АГ в комплексе с MHC-II. Этапы подготовки вирусных белков к взаимодействию с молекулами II класса главного комплекса гистосовместимости.

I этап - поглощение бактерий или их токсинов фагоцитирующей, способной к презентации антигена клеткой и разрушение захваченного материала до отдельных пептидов в фаголизосомах.

II этап - во внутреннем пространстве ЭПР происходит сборка молекул II класса, которые до встречи с пептидом комплексированы со с инвариантной цепью (Ii). Этот белок защищает молекулу II класса от случайной встречи с бактериальными пептидами в эндоплазматическом ретикулуме. Комплекс молекулы II класса с Ii покидает эндоплазматический ретикулум в составе вакуоли.

III этап - вакуоль, содержащая комплекс молекулы II класса с Ii, сливается с фаголизосомой. Протеазы разрушают Ii белок и снимают запрет на взаимодействие МНС II с бактериальными пептидами. Комплекс пептид + МНС II в составе секреторной вакуоли перемещается к мембране. Результат - экспрессия АГ пептида в комплексе с МНС II класса на клеточной поверхности.

Это обеспечивает доступность АГ пептида для TCR Т-клеток.

СРАВНЕНИЕ МНС I и II класса

Строение молекул HLA класса II принципиально сходно со строением молекул I класса, несмотря на различие в составе образующих их субъединиц.

ТМ - трансмембранный домен, ЦИТ - цитоплазматический домен, ВК - внеклеточный домен

Экспрессия на клеточной мембране

Главный комплекс гистосовместимости………………………………………...3

Строение главного комплекса гистосовместимости……………………………6

Молекулы главного комплекса гистосовместимости…………………………..8

Функции Главного комплекса гистосовместимости…………………………..14

Антигены MHC: история исследований………………………………………16

Список использованной литературы…………………………………………...18

Главный комплекс гистосовместимости.

Главный комплекс гистосовместимости – это группа генов и кодируемых ими антигенов клеточной поверхности, которые играют важнейшую роль в распознавании чужеродного и развитии иммунного ответа.

Антигены, обеспечивающие внутривидовые различия особей, обозначаются как аллоантигены, а когда они включаются в процесс отторжения аллогенных тканевых трансплантатов, то приобретают название антигенов тканевой совместимости (гистосовместимости). Эволюция закрепила единичный участок тесно сцепленных генов гистосовместимости, продукты которых на поверхности клеток обеспечивают сильный барьер при аллотрансплантации. Термины «major histocompatibility antigens» (главные антигены гистосовместимости) и «major histocompatibility gene complex» (MHC) (главный генный комплекс гистосовместимости) относятся соответственно к продуктам генов и генам этого хромосомного участка. Многочисленные минорные антигены гистосовместимости, наоборот, кодируются множественными участками генома. Им соответствуют более слабые аллоантигенные различия молекул, выполняющих разнообразные функции.

Открытие MHCпроизошло при исследовании вопросов внутривидовой пересадки тканей.

Затем, первоначально в гипотетической, на основании клеточной феноменологии, а затем в экспериментально хорошо документированной форме с использованием методов молекулярной биологии было установлено, что Т-клеточный рецепторраспознает не собственно чужеродныйантиген, а его комплекс с молекулами, контролируемыми генамиглавного комплекса гистосовместимости. При этом и молекула MHC и фрагмент антигена контактируют с Т - клеточным рецептором.

MHC кодирует два набора высокополиморфных клеточных белков, названных молекулами MHC класса I и класса II. Молекулы класса Iспособны связывать пептиды из 8-9 аминокислотных остатков,молекулы класса II- несколько более длинные.

Высокий полиморфизм молекул MHC, а также способность каждой антигенпрезентирующей клетки (АПК)экспрессировать несколько разных молекул MHC обеспечивают возможность презентации T-клеткам множества самых различных антигенных пептидов.

Следует отметить, что хотя молекулы MHCи называются обычно антигенами, они проявляют антигенность только в том случае, когда распознаются иммунной системой не собственного, а генетически иного организма, например, при аллотрансплантации органов.

Наличие в МНС генов, большинство из которых кодирует иммунологически значимые полипептиды, заставляет думать, что этот комплекс эволюционно возник и развивался специально для осуществления иммунных форм защиты.

Существуют еще и молекулы MHC класса III, номолекулы MHC класса Iимолекулы MHC класса IIявляются наиболее важными в иммунологическом смысле.

Главный комплекс гистосовместимости характеризуется крайне выраженным полиморфизмом. Ни одна другая генетическая система организма не имеет такого количества аллельных форм как гены МНС.

Долгое время биологический смысл столь выраженного полиморфизма оставался непонятным, хотя какое-то селективное значение такой аллельной изменчивости было очевидным. Впоследствии было доказано, что подобный полиморфизм прямо связан с процессом презентации антигенных детерминант Т-клеткам.

С полиморфизмом антигенов МНС связано такое явление, как генетический контроль иммунного ответа. В тех случаях, когда аминокислотные остатки, образующие антигенсвязывающую щель у молекул II класса, не в состоянии связать пептидный фрагмент чужеродного антигена, T-хелперы остаются ареактивными, и их помощь В-клеткам не реализуется. Это обстоятельство и является причиной генетически детерминированного дефекта в иммунном реагировании.

Основные события, которые привели к формированию разнообразия генов МНС в процессе эволюции связаны с тандемными дупликациями, точечными мутациями, рекомбинациями и конверсией генетического материала. Тандемные дупликации (процесс повторения исходного гена на той же самой хромосоме) хорошо известны для многих генетических систем, контролирующих синтез белков, например, иммуноглобулинов. Именно в результате этого процесса возникло несколько полигенных форм молекул MHC. Спонтанные замены отдельных нуклеотидов в процессе редупликации ДНК (точечные мутации) также хорошо известны, они приводят к формированию аллельных генов, которые также определяют полиморфизм белков. Рекомбинации между отдельными участками гомологичных хромосом в процессе мейоза могут привести к обмену как целых участков этих хромосом, так и отдельных генов и даже частей генов. В последнем случае процесс называется генной конверсией. Мутации, рекомбинации и конверсия генов создают многообразие их аллельных форм и определяют полиморфизм антигенов МНС.

Такая высокая степень полиморфизма имеет потенциальную ценность для выживания вида, и именно благодаря ей весь вид не становится жертвой мимикрии микробов, при которой они экспрессируют структуры, близкие по конформации к продуктам MHC . T-клетки, способные распознать неповторимую индивидуальную комбинацию специфичностей собственного организма, оказываются в состоянии реагировать на продукты такой мимикрии, как на чужеродные. Кроме того, возможно, что столь высокий сбалансированный полиморфизм продуктов MHC обеспечивает более широкое разнообразие антигенов, распознаваемых иммунной системой данного вида, а также гетерозиса (гибридной силы), поскольку у гетерозигот возникает максимальная комбинаторика аллелей. Братья и сестры имеют один шанс из четырех быть идентичными по антигенам MHC.