Как называются точки пересечения эклиптики и экватора. Углы наклона орбит планет Солнечной системы к плоскости эклиптики. Смотреть что такое "эклиптика" в других словарях

Эклиптика

ЭКЛИ́ПТИКА -и; ж. [от лат. linea ecliptica из греч. ekleipsis - затмение] Астрон. Большой круг небесной сферы, по которому совершается видимое годичное движение Солнца.

Эклипти́ческий, -ая, -ое. Э-ая плоскость.

экли́птика

(от греч. ékleipsis - затмение), большой круг небесной сферы, по которому происходит видимое годичное движение Солнца; пересекается с небесным экватором в точках весеннего и осеннего равноденствия. Плоскость эклиптики наклонена к плоскости небесного экватора под углом 23°27\".

ЭКЛИПТИКА

ЭКЛИ́ПТИКА (от греч. ekleipsis - затмение), большой круг небесной сферы, по которому происходит видимое годичное движение Солнца; пересекается с небесным экватором в точках весеннего и осеннего равноденствия. Плоскость эклиптики наклонена к плоскости небесного экватора под углом 23°27".


Энциклопедический словарь . 2009 .

Синонимы :
  • эклиметр
  • эклампсия

Смотреть что такое "эклиптика" в других словарях:

    ЭКЛИПТИКА - (греч. ekliptike). Круг на небе, по которому происходит воображаемое годовое движение солнца; круг, который описывает земля в своем годовом движении. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ЭКЛИПТИКА… … Словарь иностранных слов русского языка

    ЭКЛИПТИКА - (Ecliptic) большой круг сферы небесной, наклоненной к экватору под углом в 23° 27 ,3, по которому происходит видимое собственное годовое перемещение Солнца. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ… … Морской словарь

    ЭКЛИПТИКА - ЭКЛИПТИКА, БОЛЬШОЙ КРУГ на НЕБЕСНОЙ СФЕРЕ, наклоненный под углом 23,5° к НЕБЕСНОМУ ЭКВАТОРУ. Эклиптика представляет собою путь, проходимый Солнцем на протяжении года, при наблюдении с Земли, или орбиту Земли при наблюдении со стороны Солнца.… … Научно-технический энциклопедический словарь

    эклиптика - большой круг небесной сферы, по которому происходит видимое годичное движение Солнца (его центра). Плоскость эклиптики наклонена к плоскости небесного экватора под углом около 23°27 и пересекает 12 созвездий называемых созвездиями зодиака.… … Морской биографический словарь

    ЭКЛИПТИКА - (от греч. ekleipsis затмение) большой круг небесной сферы, по которому происходит видимое годичное движение Солнца; пересекается с небесным экватором в точках весеннего и осеннего равноденствия. Плоскость эклиптики наклонена к плоскости небесного … Большой Энциклопедический словарь

    ЭКЛИПТИКА - ЭКЛИПТИКА, эклиптики, жен. (греч. ekleiptike затмение) (астр.). Воображаемая линия на небесном своде, по которой перемещается солнце в его видимом годичном движении (иначе круг, описываемый землею около солнца). || Видимый путь солнца среди звезд … Толковый словарь Ушакова

    ЭКЛИПТИКА - жен., греч. солнопутье; воображаемый на земле нашей круг, ограничивающий уклоненье солнца от равноденника. тический, солнопутный. Толковый словарь Даля. В.И. Даль. 1863 1866 … Толковый словарь Даля

    эклиптика - сущ., кол во синонимов: 1 круг (58) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    эклиптика - и, ж. écliptique f., нем. Ekliptik <гр. ekleiptike < ekleipsis затмение. астр. Большой круг небесной сферы (наклоненный к экватору под углом 23гр. 27), по которому перемещается центр Солнца в его видимом годичном движении, отражающем… … Исторический словарь галлицизмов русского языка

    эклиптика - Большой круг небесной сферы, по которому происходит видимое годичное движение центра Солнца среди звезд, плоскость эклиптики наклонена к плоскости небесного экватора под углом 23°27′, пересекая его в двух точках, что определяет смену времен года … Словарь по географии

    Эклиптика - Плоскость эклиптики хорошо заметна на этом изображении, полученном в 1994 году космическим кораблём лунной разведки Клементина. Камера Клементины показывает (справа налево) Луну освещённую Землёй, блики Солнца, восходящего над тёмно … Википедия

Книги

  • Elementa Astrologica. Начала астрологии для "почемучек" , В.В.Г.. Книга посвящена последовательному изложению основных понятий, образующих фундамент астрологии. Она написана для тех читателей, кто задает много вопросов и хотел бы услышать на них… Купить за 777 руб
  • Расчет и построение гороскопа при помощи таблиц. Таблицы эфемерид Михельсена, РПЭ, таблицы домов Плацидуса , А. Э. Галицкая. Космограмма - это мгновенный снимок эклиптики с обозначенными на ней знаками Зодиака и проекциями положений планет и фиктивных точек. Важно помнить, что на космограмме мы указываем положения…

Изначально эклиптикой называлась окружность, которая обозначает траекторию движения Солнца на земном небе.

С древних времен человек с большим интересом наблюдал за небом. Научные знания древних людей были крайне фрагментарны, в связи с этим у первобытных людей сильно развилась вера в сверхъестественные силы, представления о том, что силами природы на земле и в небе управляют высшие существа (боги). Изображения небесных тел, таких как Солнце, Луна и яркие звезды (в том числе и возможные сверхновые) часто встречаются в наскальных рисунках первобытных людей. на этих рисунках каменного и бронзового века часто изображается в виде диска, диска с точкой, диска с расходящимися лучами или креста, заключенного в круг. Кроме того, знание объектов неба упрощало древним людям ориентирование на местности. С переходом человеческой цивилизации от охоты и собирательства к земледелию и скотоводству возникла большая потребность в создании календарей. Человеку было необходимо знать, когда проводить различные сельскохозяйственные работы, к примеру, посев или жатву. С древнейших времен человек заметил, что погода подвержена циклическим изменениям – к примеру, зима сменяет лето и т.д. С другой стороны первые земледельческие цивилизации возникли в долинах крупных рек (Нила, Евфрата, Тигра, Инда, Ганга, Хуанхэ и Янцзы). Первые земледельческие цивилизации активно использовали систему ирригационных каналов для орошения своих полей. Каждый год уровень воды в этих реках испытывал циклические колебания. Для решения задачи предсказания погодных условий и времени наступления разливов рек очень пригодились знания о движении Солнца. Древние люди достаточно быстро отметили, что движение Солнца по небу повторяется примерно через 365 земных суток (земной год). Первые свидетельства о создании солнечного календаря относятся к 5 тысячелетию до нашей эры (Древний Египет). Результатом создания годичного календаря стало внедрение системы летосчисления. Примечательным доказательством того, что уже в Древнем мире понимали важность наблюдения за Солнцем, является т.н. Стоунхендж в современной Великобритании. Предполагается, что сооружение, строительство которого датируется примерно третьим тысячелетием до нашей эры, было построено таким образом, чтобы тщательно отслеживать Солнце в день летнего солнцестояния (примерно 22 июня). Днем солнечного солнцестояния называется время года, с максимальной длительностью светового дня, и соответственно с самым коротким темным временем (продолжительностью ночи). Наиболее примечательные камни Стоунхенджа расположены оптимальным образом для наблюдения восхода и заката Солнца именно в день зимнего солнцестояния. С другой стороны отмечено неслучайное расположение камней древнего сооружения для наблюдения Солнца в день зимнего солнцестояния – времени максимальной длительности темного времени суток и минимальной длительности светлого времени суток.

С другой стороны отмечено, что отверстия в камнях Стоунхенджа были установлены таким неслучайным образом, чтобы проводить наблюдения закатов Луны во время максимального удаления от траектории Солнца (эклиптики). Такие события называются “верхняя Луна” и “нижняя Луна”. Во время них Луна отдаляется от эклиптики примерно на 5 градусов. Данные события вызваны тем, что орбиты Луны отличаются друг от друга на 5.1 градусов.

Плоскости орбит объектов Солнечной Системы

По современным теоретическим представлениям Солнечная Система образовалась в протопланетном газопылевом облаке. В связи с этим изначально большинство орбит образовавшихся объектов находилось в одной плоскости. Исключение составляли лишь кометные орбиты (большинство комет образовались в протозвездной туманности или были гравитационно захвачены Солнцем в межзвездном пространстве). В частности чаще всего “чужие“ кометы (пришельцы из межзвездной среды) встречаются на ретроградных орбитах. Такими орбитами называют орбиты с обратным (ретроградным) движением. Их наклонение заключено между 90 и 180 градусов.

После образования Солнечной Системы по причине постоянных гравитационных возмущений между объектами Солнечной Система, а так же от близких пролетов звезд происходило постоянное изменение орбит объектов Солнечной Системы (планет, астероидов). В частности орбиты становились более эксцентричными (менее круговыми), а их наклонение стало отличаться от изначальной плоскости протопланетного диска. Максимальное отличие наклонения планет Солнечной Системы от наклонения земной орбиты наблюдается у (7 градусов), а минимальное отличие у (меньше одного градуса).

В частности у наиболее крупной карликовой планеты Солнечной Системы (Эриды) наклонение орбиты достигает 44 градуса.

В целом большинство орбит объектов Солнечной Системы находится вблизи эклиптики. В связи с этим поиски околоземных астероидов и комет, которые могут столкнуться с Землей, практически не ведутся в районе эклиптических полюсов.

Предполагается, что гравитационные возмущения между объектами Солнечной Системы и близкими звездами привели не только к изменению орбит объектов Солнечной Системы, но и изменили наклонения осей вращения планет от изначального перпендикулярного направления к плоскости эклиптики. Как известно ось вращения Земли наклонена к эклиптике на 24 градуса. Из планет Солнечной Системы этот наклон является минимальным у (0.01 градусов), а максимальным у (177 градусов) и (98 градусов). Интересно отметить, что и у Солнца ось вращения не является строго перпендикулярной эклиптике. Её наклон составляет примерно 6 градусов. В последние годы теоретики объясняют существование этого наклона влиянием не открытой девятой планеты, масса которой в 5-10 раз превышает массу Земли, а период обращения составляет 10-20 тысяч лет.

Кроме планет, астероидов и комет в Солнечной Системе можно наблюдать т.н. , скопления пыли, которые расположены преимущественно в плоскости эклиптики. Этот свет можно увидеть даже невооруженным глазом при полном отсутствии ночного освещения. Предполагается, что источником этой пыли являются столкновения между астероидами. Прогнозируется, что данная пыль не может оставаться долгое время в Солнечной Системе по причине выдувания её солнечным светом.

Наклонения орбит планет у других звезд

В последние десятилетия появилась возможность наблюдать чужие планетные системы у других звезд, а так же их протопланетные диски. Нынешние наблюдения показали, что практически у каждой звезды могут существовать хотя бы маленькие планеты на небольшом расстоянии от звезды (внутри земной орбиты). Примерно в шести сотнях случаев открыты планетные системы с несколькими планетами (до восьми в системе Кеплер-90). Открытие систем вроде Кеплер-90 с восьмью транзитными планетами и TRAPPIST-1 с семью транзитными планетами хорошо доказывает, что большинство случаев наклонения орбит близки к друг другу (как и в Солнечной Системе). С другой стороны подробное изучение планетных систем с открытыми транзитными планетами привело к обнаружению многочисленных случаев нетранзитных планет. То есть эти системы отличаются большой разницей между наклонениями орбит экзопланет.

С другой стороны измерения лучевых скоростей звезд с известными транзитными планетами позволяют определить угол между экватором звезды и плоскостью орбиты транзитной планеты (т.н. Rossiter–McLaughlin(RM)-эффект). К настоящему времени этот эффект измерен для 134 транзитных планет.

В то же время, как следует из вышеприведенных схем, у некоторых транзитных планет наблюдается даже ретроградное вращение. Теоретики предполагают, что такие необычные орбиты связаны с наличием в системе других массивных объектов (к примеру, планет или звезд).

Понравилась запись? Расскажи о ней друзьям!

Исследование свойств межпланетного пространства вдали от плоскости эклиптики представляет большой научный интерес. Отклонение от плоскости эклиптики требует дополнительных энергетических затрат. Эти затраты резко различаются между собой в зависимости от того, какой район вне плоскости эклиптики мы желаем исследовать.

Легче всего проникнуть в районы, отдаленные от плоскости эклиптики, совершив это на окраине Солнечной системы. Для этого достаточно вывести искусственную планету на внешнюю эллиптическую орбиту, наклоненную на небольшой угол к плоскости эклиптики. Даже слабый наклон удалит космический аппарат на больших

расстояниях от Солнца на десятки миллионов километров от плоскости эклиптики.

Гораздо труднее проникнуть в пространство «над» и «под» Солнцем. Предположим, что мы стремимся запустить искусственную планету на круговую орбиту, перпендикулярную к плоскости эклиптики. Двигаясь по такой орбите, искусственная планета через полгода после старта должна встретить Землю.

Рис. 134. Искусственные планеты на круговых орбитах радиуса 1 а. е. при наклонениях:

Гелиоцентрическая скорость выхода из сферы действия Земли должна быть равна по величине скорости Земли Построение на рис. 134, а показывает, что геоцентрическая скорость выхода Отсюда начальная скорость отлета Мы получили еще большую величину, чем четвертая космическая скорость.

Полет по эллиптической орбите, лежащей в плоскости, перпендикулярной к эклиптике, с перигелием, находящимся за Солнцем вблизи его поверхности, потребовал бы начальной скорости, лишь немного превышающей четвертую космическую, но максимальное удаление космического аппарата от плоскости эклиптики (на полпути от Земли до Солнца) было бы равно 0,068 а. е., т. е. 10 млн. км. Слишком небольшая величина в масштабах Солнечной системы, а скорость старта почти недостижима!

Но совсем просто оказывается исследовать районы, лежащие на многие миллионы километров «выше» и «ниже» орбиты Земли. Чтобы вывести искусственную планету на круговую орбиту радиуса 1 а. е., плоскость которой наклонена на угол к плоскости эклиптики, нужна геоцентрическая скорость выхода Для угла найдем откуда Как видим, скорость отлета с Земли оказалась небольшой, а между тем она позволяет искусственной планете через 3 месяца после старта удалиться от Земли на максимальное расстояние 26 млн. (рис. 134, б). Заметим, что такая искусственная планета, двигаясь бок о бок с Землей (хотя и за пределами сферы действия),

должна подвергаться заметному возмущающему влиянию нашей планеты.

Запуск с начальной скоростью, равной третьей космической ( позволяет вывести космический аппарат на круговую орбиту радиуса 1 а. наклоненную к плоскости эклиптики на угол 24°. Максимальное расстояние аппарата от Земли (через 3 месяца) составит 60 млн.

С точки зрения исследования Солнца представляет интерес достижение высоких гелиографических широт, т. е. возможно большее отклонение от плоскости солнечного экватора, а не от эклиптики. Но эклиптика уже наклонена к солнечному экватору на угол 7,2°. Поэтому выход из плоскости эклиптики желательно совершить в узле эклиптики - точке пересечения орбиты Земли с плоскостью солнечного экватора, чтобы отклонение орбиты зонда от плоскости эклиптики прибавилось к уже имеющемуся естественному наклону самой эклиптики. Поскольку ось Солнца наклонена в сторону точки осеннего равноденствия, старт должен осуществляться в середине лета или в середине зимы, когда ось Солнца видна «сбоку».

Плоскость эклиптики

Плоскость эклиптики хорошо заметна на этом изображении, полученном в 1994 году космическим кораблём лунной разведки Клементина. Камера Клементины показывает (справа налево) Луну освещённую Землёй , блики Солнца , восходящего над тёмной частью поверхности Луны, и планеты Сатурн , Марс и Меркурий (три точки в нижнем левом углу)

Название «эклиптика» связано с известным с древних времён фактом, что солнечные и лунные затмения происходят только тогда, когда Луна находится вблизи точек пересечения её орбиты с эклиптикой. Эти точки на небесной сфере носят название лунных узлов. Эклиптика проходит по зодиакальным созвездиям и Змееносцу . Плоскость эклиптики служит основной плоскостью в эклиптической системе небесных координат .

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "Плоскость эклиптики" в других словарях:

    Плоскость Лапласа плоскость, проходящая через центр масс Солнечной системы перпендикулярно вектору момента количества движения, иначе говоря она перпендикулярна вектору суммарного орбитального момента всех планет и вращательному моменту… … Википедия

    Небесная сфера разделена небесным экватором. Небесная сфера воображаемая вспомогательная сфера произвольного радиуса, на которую проецируются небесные светила: служит для решения различных астрометрических задач. За центр небесной сферы, как… … Википедия

    Небесная сфера разделена небесным экватором. Небесная сфера воображаемая вспомогательная сфера произвольного радиуса, на которую проецируются небесные светила: служит для решения различных астрометрических задач. За центр небесной сферы, как… … Википедия

    Фундаментальная плоскость плоскость, выбором которой (как, впрочем, и началом координат в заданной точке этой плоскости) определяются различные системы сферических, географических, геодезических и астрономических координат (включая небесные … Википедия

    Плоскость, проходящая через центр масс Солнечной системы перпендикулярно вектору момента количества движения. Понятие Л. н. п. было введено в 1789 П. Лапласом, указавшим на преимущества её использования в качестве основной координатной… … Большая советская энциклопедия

    - (англ. Deep Ecliptic Survey) проект по поиску объектов пояса Койпера, с использованием средств Национальной оптической астрономической обсерватории (NOAO) в Национальной обсерватории Китт Пик. Глава проекта Боб Миллис. Проект действовал с… … Википедия

    Плоскость эклиптики хорошо заметна на этом изображении, полученном в 1994 году космическим кораблём лунной разведки Клементина. Камера Клементины показывает (справа налево) Луну освещённую Землёй, блики Солнца, восходящего над тёмно … Википедия

    Небесная сфера разделена небесным экватором. Небесная сфера воображаемая вспомогательная сфера произвольного радиуса, на которую проецируются небесные светила: служит для решения различных астрометрических задач. За центр небесной сферы, как… … Википедия

    Небесная сфера разделена небесным экватором. Небесная сфера воображаемая вспомогательная сфера произвольного радиуса, на которую проецируются небесные светила: служит для решения различных астрометрических задач. За центр небесной сферы, как… … Википедия