Как решить уравнение в целых числах. Уравнения в целых числах

Задачи с целочисленными неизвестными

Павловская Нина Михайловна,

учитель математики МБОУ «СОШ № 92

г. Кемерово


Алгебраические уравнения или системы алгебраических уравнений с целыми коэффициентами, имеющими число неизвестных, превосходящее число уравнений, и у которых разыскиваются целые или рациональные решения получили название диофантовых уравнений .

Проблема решения уравнений в целых числах решена до конца только для уравнений с одним неизвестным, для уравнений первой степени и для уравнений второй степени с двумя неизвестными. Для уравнений выше второй степени с двумя или более неизвестными трудной является даже задача доказательства существования целочисленных решений. Более того, доказано, что не существует единого алгоритма, позволяющего за конечное число шагов решать в целых числах произвольные диофантовы уравнения.


  • Простейшими диофантовыми уравнениями являются уравнения вида

ax + by = c , a ≠ 0; b ≠ 0

Если с = 0 , то решение очевидно х = 0, у = 0.

Если с ≠ 0 , и решение 0 ; у 0 ) , то целое число

ax 0 + by 0 делится на d = (a ; b) , поэтому с так же должно делиться на общий делитель a и b .

Например: 3х + 6у = 5 не имеет целых решений, так как (3; 6) = 3, а с = 5 не делится на 3 без остатка.

  • Если уравнение ax + by = c имеет решение 0 ; у 0 ) , и (a ; b) = 1 , то все решения уравнения задаются формулами х = х 0 + bn; y = у 0 – an, где nлюбое целое решение.

Например: 3х + 5у = 13, (3; 5) = 1, значит уравнение имеет бесконечно много решений, х 0 =1; у 0 =2


Большая (великая) теорема Ферма гласит: уравнение вида не имеет решений в натуральных числах.

Эта теорема была сформулирована итальянским математиком Пьером Ферма более 300 лет назад, а доказана лишь в 1993 году.


Метод разложения на множители .

1) Решить в целых числах уравнение

x + y = xy.

Решение. Запишем уравнение в виде

(x - 1)(y - 1) = 1.

Произведение двух целых чисел может равняться 1 только в том случае, когда оба они равны 1. Т. е. исходное уравнение равносильно совокупности

с решениями (0,0) и (2,2).


2. Решите в целых числах уравнение:

3х² + 4ху – 7у²= 13.

Решение: 3х² - 3ху + 7ху – 7у²= 13,

3х(х – у) +7у(х – у) = 13,

(х – у)(3х + 7у) = 13.

Так как 13 имеет целые делители ±1 и ±13,

1. х – у = 1, 7х – 7у = 7, х = 2,

3х + 7у= 13; 3х + 7у = 13; откуда у = 1

2. х – у = 13, 7х – 7у = 91, х = 9,2,

3х + 7у= 1; 3х + 7у =1; откуда у=- 3,8.

3 . х – у = -1, 7х – 7у = -7, х = -2,

3х + 7у= -13; 3х + 7у = -13; откуда у = -1.

4. х – у = -13, 7х – 7у = -91, х = -9,2,

3х + 7у= -1; 3х +7у= -1; откуда у =3,8.

Следовательно уравнение имеет два решения в целых числах: (2;1) и (-2;-1)


3 . Решите в целых числах уравнение:

9х² + 4х – ху +3у = 88.

Решение: 9х² + 4х – 88 = ху – 3у,

9х² + 4х – 88 = у(х – 3)

так как 5 имеет целые делители ± 1и ± 5, то

Муниципальное общеобразовательное учреждение

Саврушская средняя общеобразовательная школа

Похвистневский район Самарская область

Реферат по математике на тему:

«Уравнения с двумя

неизвестными

в целых числах »

Выполнили: Колесова Татьяна

Староверова Нина

у ченицы 10 класса

МОУ Саврушская СОШ

Похвистневского района

Самарской области.

Руководитель: Ятманкина Галина Михайловна

учитель математики.

Савруха 2011

Введение._______________________________________________3

1. Историческая справка _______________________________________5

1.1 Теоремы о числе решений линейных диофантовых уравнений___6

1.2 Алгоритм решения уравнения в целых числах_________________ 6

1.3 Способы решения уравнений_______________________________ 7

Глава 2. Применение способов решения уравнений.

1. Решение задач_____________________________________________ 8

2.1 Решение задач с помощью алгоритма Евклида________________ 8

2.2 Способ перебора вариантов________________________________ 9

2.3 Метод разложения на множители___________________________ 9

2.4 Метод остатков__________________________________________ 12

2. Задачи экзаменационного уровня___________________________ 13

Заключение________________________________________________ 16

Список используемой литературы_____________________________ 17

« Кто управляет числами,

Тот управляет миром»

Пифагор.

Введение.

Анализ ситуации: Диофантовы уравнения это актуальная в наше время тема, т. к. решение уравнений, неравенств, задач, сводящихся к решению уравнений в целых числах с помощью оценок для переменных, встречается в различных математических сборниках и сборниках ЕГЭ.

Изучив разные способы решения квадратного уравнения с одной переменной на уроках, нам было интересно разобраться, а как решаются уравнения с двумя переменными. Такие задания встречаются на олимпиадах и в материалах ЕГЭ.

В этом учебном году одиннадцатиклассникам предстоит сдавать Единый государственный экзамен по математике, где КИМы составлены по новой структуре. Нет части «А», но добавлены задания в часть «В» и часть «С». Составители объясняют добавление С6 тем, что для поступления в технический ВУЗ нужно уметь решать задания такого высокого уровня сложности.

Проблема : Решая примерные варианты заданий ЕГЭ, мы заметили, что чаще всего встречаются в С6 задания на решение уравнений первой и второй степени в целых числах. Но мы не знаем способы решения таких уравнений. В связи с этим возникла необходимость изучить теорию таких уравнений и алгоритм их решения.

Цель: Освоить способ решения уравнений с двумя неизвестными первой и второй степени в целых числах.

Задачи: 1) Изучить учебную и справочную литературу;

2) Собрать теоретический материал по способам решения уравнений;

3) Разобрать алгоритм решения уравнений данного вида;

4) Описать способ решения.

5) Рассмотреть ряд примеров с применением данного приема.

6) Решить уравнения с двумя переменными в целых числах из

материалов ЕГЭ-2010 С6.

Объект исследования : Решение уравнений

Предмет исследования : Уравнения с двумя переменными в целых числах.

Гипотеза: Данная тема имеет большое прикладное значение. В школьном курсе математики подробно изучаются уравнения с одной переменной и различные способы их решения. Потребности учебного процесса требуют, чтобы ученики знали и умели решать простейшие уравнения с двумя переменными. Поэтому повышенное внимание к этой теме не только оправдано, но и является актуальной в школьном курсе математики.

Данная работа может быть использована для изучения данной темы на факультативных занятиях учениками, при подготовке к выпускным и вступительным экзаменам. Мы надеемся, что наш материал поможет старшеклассникам научиться решать уравнения такого вида.

Глава 1. Теория уравнений с двумя переменными в целых числах.

1. Историческая справка.

Диофант и история диофантовых уравнений .

Решение уравнений в целых числах является одной из древнейших математических задач. Наибольшего расцвета эта область математики достигла в Древней Греции. Основным источником, дошедшим до нашего времени, является произведение Диофанта – «Арифметика». Диофант суммировал и расширил накопленный до него опыт решения неопределенных уравнений в целых числах.

История сохранила нам мало черт биографии замечательного александрийского ученого-алгебраиста Диофанта. По некоторым данным Диофант жил до 364 года н.э. Достоверно известно лишь своеобразное жизнеописание Диофанта, которое по преданию было высечено на его надгробии и представляло задачу-головоломку:

«Бог ниспослал ему быть мальчиком шестую часть жизни; добавив к сему двенадцатую часть, Он покрыл его щеки пушком; после седьмой части Он зажег ему свет супружества и через пять лет после вступления в брак даровал ему сына. Увы! Несчастный поздний ребенок, достигнув меры половины полной жизни отца, он был унесен безжалостным роком. Через четыре года, утешая постигшее его горе наукой о числах, он [Диофант] завершил свою жизнь» (примерно 84 года).

Эта головоломка служит примером тех задач, которые решал Диофант. Он специализировался на решении задач в целых числах. Такие задачи в настоящее время известны под названием диофантовых.

Наиболее известной, решенной Диофантом, является задача «о разложении на два квадрата». Ее эквивалентом является известная всем теорема Пифагора. Эта теорема была известна в Вавилонии, возможно ее знали и в Древнем Египте, но впервые она была доказана, в пифагорейской школе. Так называлась группа интересующихся математикой философов по имени основателя школы Пифагора (ок. 580-500г. до н.э.)

Жизнь и деятельность Диофанта протекала в Александрии, он собирал и решал известные и придумывал новые задачи. Позднее он объединил их в большом труде под названием «Арифметика». Из тринадцати книг, входивших в состав «Арифметики», только шесть сохранились до Средних веков и стали источником вдохновения для математиков эпохи Возрождения.

1.1 Теоремы о числе решений линейного диофантового уравнения.

Приведем здесь формулировки теорем, на основании которых может быть составлен алгоритм решения неопределенных уравнений первой степени от двух переменных в целых числах.

Теорема 1. Если в уравнении , , то уравнение имеет, по крайней мере, одно решение.

Теорема 2. Если в уравнении , и с не делится на , то уравнение целых решений не имеет.

Теорема 3. Если в уравнении , и , то оно равносильно уравнению , в котором .

Теорема 4. Если в уравнении , , то все целые решения этого уравнения заключены в формулах:

где х 0 , у 0

1.2. Алгоритм решения уравнения в целых числах.

Сформулированные теоремы позволяют составить следующий алгоритм решения в целых числах уравнения вида .

1. Найти наибольший общий делитель чисел a и b ,

если и с не делится на , то уравнение целых решений не имеет;

если и , то

2. Разделить почленно уравнение на , получив при этом уравнение , в котором .

3. Найти целое решение (х 0 , у 0 ) уравнения путем представления 1 как линейной комбинации чисел и ;

4. Составить общую формулу целых решений данного уравнения

где х 0 , у 0 – целое решение уравнения , - любое целое число.

1.3 Способы решения уравнений

При решении уравнений в целых и натуральных числах можно условно выделить следующие методы:

1. Способ перебора вариантов.

2. Алгоритм Евклида.

3. Цепные дроби.

4. Метод разложения на множители.

5. Решение уравнений в целых числах как квадратных относительно какой-либо переменной.

6. Метод остатков.

7. Метод бесконечного спуска.

Глава 2. Применение способов решения уравнений

1. Примеры решения уравнений.

2.1 Алгоритм Евклида.

Задача 1 . Решить уравнение в целых числах 407х – 2816y = 33.

Воспользуемся составленным алгоритмом.

1. Используя алгоритм Евклида, найдем наибольший общий делитель чисел 407 и 2816:

2816 = 407·6 + 374;

407 = 374·1 + 33;

374 = 33·11 + 11;

Следовательно (407,2816) = 11, причем 33 делится на 11

2. Разделим обе части первоначального уравнения на 11, получим уравнение 37х – 256y = 3, причем (37, 256) = 1

3. С помощью алгоритма Евклида найдем линейное представление числа 1 через числа 37 и 256.

256 = 37·6 + 34;

Выразим 1 из последнего равенства, затем последовательно поднимаясь по равенствам будем выражать 3; 34 и полученные выражения подставим в выражение для 1.

1 = 34 – 3·11 = 34 – (37 – 34·1) ·11 = 34·12 – 37·11 = (256 – 37·6) ·12 – 37·11 =

– 83·37 – 256·(–12)

Таким образом, 37·(– 83) – 256·(–12) = 1, следовательно пара чисел х 0 = – 83 и у 0 = – 12 есть решение уравнения 37х – 256y = 3.

4. Запишем общую формулу решений первоначального уравнения

где t - любое целое число.

2.2 Способ перебора вариантов.

Задача 2. В клетке сидят кролики и фазаны, всего у них 18 ног. Узнать, сколько в клетке тех и других?

Решение: Составляется уравнение с двумя неизвестными переменными, в котором х – число кроликов, у – число фазанов:

4х + 2у = 18, или 2х + у = 9.

Выразим у через х : у = 9 – 2х.

Таким образом, задача имеет четыре решения.

Ответ: (1; 7), (2; 5), (3; 3), (4; 1).

2.3 Метод разложения на множители.

Перебор вариантов при нахождении натуральных решений уравнения с двумя переменными оказывается весьма трудоемким. Кроме того, если уравнение имеет целые решения, то перебрать их невозможно, так как таких решений бесконечное множество. Поэтому покажем еще один прием - метод разложения на множители.

Задача 3. Решить уравнение в целых числах y 3 - x 3 = 91.

Решение. 1) Используя формулы сокращенного умножения, разложим правую часть уравнения на множители:

(y - x )(y 2 + xy + x 2) = 91……………………….(1)

2) Выпишем все делители числа 91: ± 1; ± 7; ± 13; ± 91

3) Проводим исследование. Заметим, что для любых целых x и y число

y 2 + yx + x 2 ≥ y 2 - 2|y ||x | + x 2 = (|y | - |x |) 2 ≥ 0,

следовательно, оба сомножителя в левой части уравнения должны быть положительными. Тогда уравнение (1) равносильно совокупности систем уравнений:

; ; ;

4) Решив системы, получим: первая система имеет решения (5; 6), (-6; -5); третья (-3; 4),(-4;3); вторая и четвертая решений в целых числах не имеют.

Ответ: уравнение (1) имеет четыре решения (5; 6); (-6; -5); (-3; 4); (-4;3).

Задача 4. Найти все пары натуральных чисел, удовлетворяющих уравнению

Решение. Разложим левую часть уравнения на множители и запишем уравнение в виде

.

Т.к. делителями числа 69 являются числа 1, 3, 23 и 69, то 69 можно получить двумя способами: 69=1·69 и 69=3·23. Учитывая, что , получим две системы уравнений, решив которые мы сможем найти искомые числа:

Первая система имеет решение , а вторая система имеет решение .

Ответ: .

Задача 5.

Решение. Запишем уравнение в виде

.

Разложим левую часть уравнения на множители. Получим

.

Произведение двух целых чисел может равняться 1 только в двух случаях: если оба они равны 1 или -1. Получим две системы:

Первая система имеет решение х=2, у=2, а вторая система имеет решение х=0, у=0.

Ответ: .

Задача 6. Решить в целых числах уравнение

.

Решение . Запишем данное уравнение в виде

Разложим левую часть уравнения на множители способом группировки, получим

.

Произведение двух целых чисел может равняться 7 в следующих случаях:

7=1· 7=7·1=-1·(-7)=-7·(-1).Таким образом, получим четыре системы:

Или , или , или .

Решением первой системы является пара чисел х = - 5, у = - 6. Решая вторую систему, получим х = 13, у = 6.Для третьей системы решением являются числа х = 5, у = 6. Четвёртая система имеет решение х = - 13, у = - 6.

Задача 7. Доказать, что уравнение (x - y ) 3 + (y - z ) 3 + (z - x ) 3 = 30 не

имеет решений в целых числах.

Решение. 1) Разложим левую часть уравнения на множители и обе части уравнения разделим на 3, в результате получим уравнение:

(x - y )(y - z )(z - x ) = 10…………………………(2)

2) Делителями 10 являются числа ±1, ±2, ±5, ±10. Заметим также, что сумма сомножителей левой части уравнения (2) равна 0. Нетрудно проверить, что сумма любых трех чисел из множества делителей числа 10, дающих в произведении 10, не будет равняться 0. Следовательно, исходное уравнение не имеет решений в целых числах.

Задача 8. Решить уравнение: х 2 - у 2 =3 в целых числах.

Решение:

1. применим формулу сокращенного умножения х 2 - у 2 =(х-у)(х+у)=3

2. найдем делители числа 3 = -1;-3;1;3

3. Данное уравнение равносильно совокупности 4 систем:

Х-у=1 2х=4 х=2, у=1

Х-у=3 х=2, у=-1

Х-у=-3 х=-2, у=1

Х-у=-1 х=-2, у=-1

Ответ: (2;1), (2;-1), (-2;1), (-2,-1)

2.4 Метод остатков.

Задача 9 . Решить уравнение: х 2 +ху=10

Решение:

1. Выразим переменную у через х: у= 10-х 2

У = - х

2. Дробь будет целой, если х Є ±1;±2; ±5;±10

3. Найдем 8 значений у.

Если х=-1, то у= -9 х=-5, то у=3

Х=1, то у=9 х=5, то у=-3

Х=-2 ,то у=-3 х=-10, то у=9

Х=2, то у=3 х=10, то у=-9

Задача 10. Решить уравнение в целых числах:

2х 2 -2ху +9х+у=2

Решение:

выразим из уравнения то неизвестное, которое входит в него только в первой степени - в данном случае у:

2х 2 +9х-2=2ху-у

У =

выделим у дроби целую часть с помощью правила деления многочлена на многочлен «углом». Получим:

Следовательно, разность 2х-1 может принимать только значения -3,-1,1,3.

Осталось перебрать эти четыре случая.

Ответ : (1;9), (2;8), (0;2), (-1;3)

2. Задачи экзаменационного уровня

Рассмотрев несколько способов решения уравнений первой степени с двумя переменными в целых числах, мы заметили, что чаще всего применяются метод разложения на множители и метод остатков.

Уравнения, которые даны в вариантах ЕГЭ -2011, в основном решаются методом остатков.

1. Решить в натуральных числах уравнение: , где т>п

Решение:

Выразим переменную п через переменную т

(у+10) 2 < 6 -2 ≤ у+10 ≤ 2 -12 ≤ у ≤ -8

(у+6) 2 < 5 -2 ≤ у+6 ≤ 2 -8 ≤ у ≤ -4 у=-8

Ответ: (12; -8)

Заключение.

Решение различного вида уравнений является одной из содержательных линий школьного курса математики, но при этом методы решения уравнений с несколькими неизвестными практически не рассматриваются. Вместе с тем, решение уравнений от нескольких неизвестных в целых числах является одной из древнейших математических задач. Большинство методов решения таких уравнений основаны на теории делимости целых чисел, интерес к которой в настоящее время определяется бурным развитием информационных технологий. В связи с этим, учащимся старших классов будет небезынтересно познакомиться с методами решения некоторых уравнений в целых числах, тем более что на олимпиадах разного уровня очень часто предлагаются задания, предполагающие решение какого-либо уравнения в целых числах, а в этом году такие уравнения включены еще и в материалы ЕГЭ.

В своей работе мы рассматривали только неопределенные уравнения первой и второй степени. Уравнения первой степени, как мы увидели, решаются довольно просто. Мы выделили виды таких уравнений и алгоритмы их решений. Также было найдено общее решение таких уравнений.

С уравнениями второй степени сложнее, поэтому мы рассмотрели лишь частные случаи: теорему Пифагора и случаи, когда одна часть уравнения имеет вид произведения, а вторая раскладывается на множители.

Уравнениями третьей и больше степеней занимаются великие математики, потому что их решения слишком сложны и громоздки

В дальнейшем мы планируем углубить свое исследование в изучении уравнений с несколькими переменными, которые применяются в решении задач

Литература.

1. Березин В.Н. Сборник задач для факультативных и внеклассных занятий по математике. Москва « Просвещение» 1985г.

2. Галкин Е.Г. Нестандартные задачи по математике. Челябинск «Взгляд» 2004г.

3. Галкин Е.Г. Задачи с целыми числами. Челябинск «Взгляд» 2004г.

4. Глейзер Е.И. История математики в школе. Москва «Просвещение» 1983г.

5. Мордкович А.Г. Алгебра и начала анализа 10-11 класс. Москва 2003г.

6. Математика. ЕГЭ 2010. Федеральный институт

педагогических измерений.

7. Шарыгин И. Ф. Факультативный курс по математике. Решение

задач. Москва 1986г.

Уравнения в целых числах – это алгебраические уравнения с двумя или более неизвестными переменными и целыми коэффициентами. Решениями такого уравнения являются все целочисленные (иногда натуральные или рациональные) наборы значений неизвестных переменных, удовлетворяющих этому уравнению. Такие уравнения ещё называют диофантовыми , в честь древнегреческого математика , который исследовал некоторые типы таких уравнений ещё до нашей эры.

Современной постановкой диофантовых задач мы обязаны французскому математику . Именно он поставил перед европейскими математиками вопрос о решении неопределённых уравнений только в целых числах. Наиболее известное уравнение в целых числах – великая теорема Ферма: уравнение

не имеет ненулевых рациональных решений для всех натуральных n > 2.

Теоретический интерес к уравнениям в целых числах достаточно велик, так как эти уравнения тесно связаны со многими проблемами теории чисел.

В 1970 году ленинградский математик Юрий Владимирович Матиясевич доказал, что общего способа, позволяющего за конечное число шагов решать в целых числах произвольные диофантовы уравнения, не существует и быть не может. Поэтому следует для разных типов уравнений выбирать собственные методы решения.

При решении уравнений в целых и натуральных числах можно условно выделить следующие методы:

    способ перебора вариантов;

    применение алгоритма Евклида;

    представление чисел в виде непрерывных (цепных) дробей;

    разложения на множители;

    решение уравнений в целых числах как квадратных (или иных) относительно какой-либо переменной;

    метод остатков;

    метод бесконечного спуска.

Задачи с решениями

1. Решить в целых числах уравнение x 2 – xy – 2y 2 = 7.

Запишем уравнение в виде (x – 2y)(x + y) = 7.

Так как х, у – целые числа, то находим решения исходного уравнения, как решения следующих четырёх систем:

1) x – 2y = 7, x + y = 1;

2) x – 2y = 1, x + y = 7;

3) x – 2y = –7, x + y = –1;

4) x – 2y = –1, x + y = –7.

Решив эти системы, получаем решения уравнения: (3; –2), (5; 2), (–3; 2) и (–5; –2).

Ответ: (3; –2), (5; 2), (–3; 2), (–5; –2).

а) 20х + 12у = 2013;

б) 5х + 7у = 19;

в) 201х – 1999у = 12.

а) Поскольку при любых целых значениях х и у левая часть уравнения делится на два, а правая является нечётным числом, то уравнение не имеет решений в целых числах.

Ответ: решений нет.

б) Подберём сначала некоторое конкретное решение. В данном случае, это просто, например,

x 0 = 1, y 0 = 2.

5x 0 + 7y 0 = 19,

5(х – x 0) + 7(у – y 0) = 0,

5(х – x 0) = –7(у – y 0).

Поскольку числа 5 и 7 взаимно простые, то

х – x 0 = 7k, у – y 0 = –5k.

Значит, общее решение:

х = 1 + 7k, у = 2 – 5k,

где k – произвольное целое число.

Ответ: (1+7k; 2–5k), где k – целое число.

в) Найти некоторое конкретное решение подбором в данном случае достаточно сложно. Воспользуемся алгоритмом Евклида для чисел 1999 и 201:

НОД(1999, 201) = НОД(201, 190) = НОД(190, 11) = НОД(11, 3) = НОД(3 , 2) = НОД(2, 1) = 1.

Запишем этот процесс в обратном порядке:

1 = 2 – 1 = 2 – (3 – 2) = 2·2 – 3 = 2· (11 – 3·3) – 3 = 2·11 – 7·3 = 2·11 – 7(190 – 11·17) =

121·11 – 7·190 = 121(201 – 190) – 7·190 = 121·201 – 128·190 =

121·201 – 128(1999 – 9·201) = 1273·201 – 128·1999.

Значит, пара (1273, 128) является решением уравнения 201х – 1999у = 1. Тогда пара чисел

x 0 = 1273·12 = 15276, y 0 = 128·12 = 1536

является решением уравнения 201х – 1999у = 12.

Общее решение этого уравнения запишется в виде

х = 15276 + 1999k, у = 1536 + 201k, где k – целое число,

или, после переобозначения (используем, что 15276 = 1283 + 7·1999, 1536 = 129 + 7·201),

х = 1283 + 1999n, у = 129 + 201n, где n – целое число.

Ответ: (1283+1999n, 129+201n), где n – целое число.

3. Решить в целых числах уравнение:

а) x 3 + y 3 = 3333333;

б) x 3 + y 3 = 4(x 2 y + xy 2 + 1).

а) Так как x 3 и y 3 при делении на 9 могут давать только остатки 0, 1 и 8 (смотрите таблицу в разделе ), то x 3 + y 3 может давать только остатки 0, 1, 2, 7 и 8. Но число 3333333 при делении на 9 даёт остаток 3. Поэтому исходное уравнение не имеет решений в целых числах.

б) Перепишем исходное уравнение в виде (x + y) 3 = 7(x 2 y + xy 2) + 4. Так как кубы целых чисел при делении на 7 дают остатки 0, 1 и 6, но не 4, то уравнение не имеет решений в целых числах.

Ответ: целочисленных решений нет.

а) в простых числах уравнение х 2 – 7х – 144 = у 2 – 25у;

б) в целых числах уравнение x + y = x 2 – xy + y 2 .

а) Решим данное уравнение как квадратное относительно переменной у. Получим

у = х + 9 или у = 16 – х.

Поскольку при нечётном х число х + 9 является чётным, то единственной парой простых чисел, которая удовлетворяет первому равенству, является (2; 11).

Так как х, у – простые, то из равенства у = 16 – х имеем

2 х 16, 2 у 16.

С помощью перебора вариантов находим остальные решения: (3; 13), (5; 11), (11; 5), (13; 3).

Ответ: (2; 11), (3; 13), (5; 11), (11; 5), (13; 3).

б) Рассмотрим данное уравнение как квадратное уравнение относительно x:

x 2 – (y + 1)x + y 2 – y = 0.

Дискриминант этого уравнения равен –3y 2 + 6y + 1. Он положителен лишь для следующих значений у: 0, 1, 2. Для каждого из этих значений из исходного уравнения получаем квадратное уравнение относительно х, которое легко решается.

Ответ: (0; 0), (0; 1), (1; 0), (1; 2), (2; 1), (2; 2).

5. Существует ли бесконечное число троек целых чисел x, y, z таких, что x 2 + y 2 + z 2 = x 3 + y 3 + z 3 ?

Попробуем подбирать такие тройки, где у = –z. Тогда y 3 и z 3 будут всегда взаимно уничтожаться, и наше уравнение будет иметь вид

x 2 + 2y 2 = x 3

или, иначе,

x 2 (x–1) = 2y 2 .

Чтобы пара целых чисел (x; y) удовлетворяла этому условию, достаточно, чтобы число x–1 было удвоенным квадратом целого числа. Таких чисел бесконечно много, а именно, это все числа вида 2n 2 +1. Подставляя в x 2 (x–1) = 2y 2 такое число, после несложных преобразований получаем:

y = xn = n(2n 2 +1) = 2n 3 +n.

Все тройки, полученные таким образом, имеют вид (2n 2 +1; 2n 3 +n; –2n 3 – n).

Ответ: существует.

6. Найдите такие целые числа x, y, z, u, что x 2 + y 2 + z 2 + u 2 = 2xyzu.

Число x 2 + y 2 + z 2 + u 2 чётно, поэтому среди чисел x, y, z, u чётное число нечётных чисел.

Если все четыре числа x, y, z, u нечётны, то x 2 + y 2 + z 2 + u 2 делится на 4, но при этом 2xyzu не делится на 4 – несоответствие.

Если ровно два из чисел x, y, z, u нечётны, то x 2 + y 2 + z 2 + u 2 не делится на 4, а 2xyzu делится на 4 – опять несоответствие.

Поэтому все числа x, y, z, u чётны. Тогда можно записать, что

x = 2x 1 , y = 2y 1 , z = 2z 1 , u = 2u 1 ,

и исходное уравнение примет вид

x 1 2 + y 1 2 + z 1 2 + u 1 2 = 8x 1 y 1 z 1 u 1 .

Теперь заметим, что (2k + 1) 2 = 4k(k + 1) + 1 при делении на 8 даёт остаток 1. Поэтому если все числа x 1 , y 1 , z 1 , u 1 нечётны, то x 1 2 + y 1 2 + z 1 2 + u 1 2 не делится на 8. А если ровно два из этих чисел нечётно, то x 1 2 + y 1 2 + z 1 2 + u 1 2 не делится даже на 4. Значит,

x 1 = 2x 2 , y 1 = 2y 2 , z 1 = 2z 2 , u 1 = 2u 2 ,

и мы получаем уравнение

x 2 2 + y 2 2 + z 2 2 + u 2 2 = 32x 2 y 2 z 2 u 2 .

Снова повторив те же самые рассуждения, получим, что x, y, z, u делятся на 2 n при всех натуральных n, что возможно лишь при x = y = z = u = 0.

Ответ: (0; 0; 0; 0).

7. Докажите, что уравнение

(х – у) 3 + (y – z) 3 + (z – x) 3 = 30

не имеет решений в целых числах.

Воспользуемся следующим тождеством:

(х – у) 3 + (y – z) 3 + (z – x) 3 = 3(х – у)(y – z)(z – x).

Тогда исходное уравнение можно записать в виде

(х – у)(y – z)(z – x) = 10.

Обозначим a = x – y, b = y – z, c = z – x и запишем полученное равенство в виде

Кроме того очевидно, a + b + c = 0. Легко убедиться, что с точностью до перестановки из равенства abc = 10 следует, что числа |a|, |b|, |c| равны либо 1, 2, 5, либо 1, 1, 10. Но во всех этих случаях при любом выборе знаков a, b, c сумма a + b + c отлична от нуля. Таким образом, исходное уравнение не имеет решений в целых числах.

8. Решить в целых числах уравнение 1! + 2! + . . . + х! = у 2 .

Очевидно, что

если х = 1, то у 2 = 1,

если х = 3, то у 2 = 9.

Этим случаям соответствуют следующие пары чисел:

х 1 = 1, у 1 = 1;

х 2 = 1, у 2 = –1;

х 3 = 3, у 3 = 3;

х 4 = 3, у 4 = –3.

Заметим, что при х = 2 имеем 1! + 2! = 3, при х = 4 имеем 1! + 2! + 3! + 4! = 33 и ни 3, ни 33 не являются квадратами целых чисел. Если же х > 5, то, так как

5! + 6! + . . . + х! = 10n,

можем записать, что

1! + 2! + 3! + 4! + 5! + . . . + х! = 33 + 10n.

Так как 33 + 10n – число, оканчивающееся цифрой 3, то оно не является квадратом целого числа.

Ответ: (1; 1), (1; –1), (3; 3), (3; –3).

9. Решите следующую систему уравнений в натуральных числах:

a 3 – b 3 – c 3 = 3abc, a 2 = 2(b + c).

3abc > 0, то a 3 > b 3 + c 3 ;

таким образом имеем

Складывая эти неравенства, получим, что

С учётом последнего неравенства, из второго уравнения системы получаем, что

Но второе уравнение системы также показывает, что а – чётное число. Таким образом, а = 2, b = c = 1.

Ответ: (2; 1; 1)

10. Найти все пары целых чисел х и у, удовлетворяющих уравнению х 2 + х = у 4 + у 3 + у 2 + у.

Разложив на множители обе части данного уравнения, получим:

х(х + 1) = у(у + 1)(у 2 + 1),

х(х + 1) = (у 2 + у)(у 2 + 1)

Такое равенство возможно, если левая и правая части равны нулю, или представляют собой произведение двух последовательных целых чисел. Поэтому, приравнивая к нулю те или иные множители, получим 4 пары искомых значений переменных:

х 1 = 0, у 1 = 0;

х 2 = 0, у 2 = –1;

х 3 = –1, у 3 = 0;

х 4 = –1, у 4 = –1.

Произведение (у 2 + у)(у 2 + 1) можно рассматривать как произведение двух последовательных целых чисел, отличных от нуля, только при у = 2. Поэтому х(х + 1) = 30, откуда х 5 = 5, х 6 = –6. Значит, существуют ещё две пары целых чисел, удовлетворяющих исходному уравнению:

х 5 = 5, у 5 = 2;

х 6 = –6, у 6 = 2.

Ответ: (0; 0), (0; –1), (–1; 0), (–1; –1), (5; 2), (–6; 2.)

Задачи без решений

1. Решить в целых числах уравнение:

а) ху = х + у + 3;

б) х 2 + у 2 = х + у + 2.

2. Решить в целых числах уравнение:

а) х 3 + 21у 2 + 5 = 0;

б) 15х 2 – 7у 2 = 9.

3. Решить в натуральных числах уравнение:

а) 2 х + 1 = у 2 ;

б) 3·2 х + 1 = у 2 .

4. Доказать, что уравнение х 3 + 3у 3 + 9z 3 = 9xyz в рациональных числах имеет единственное решение

5. Доказать, что уравнение х 2 + 5 = у 3 в целых числах не имеет решений.

Задача 62:

Решите уравнение 3x + 5y = 7 в целых числах. Решение:

Найдем сначала какое-нибудь конкретное решение (эта идея, кстати, часто помогает и при решении других задач). Так как 3 • 2 + 5 • (- 1) = 1, то 3 • 14 + 5 • (- 7) = 7 и, следовательно, x 0 = 14, y 0 = - 7 - это решение нашего уравнения (одно из многих, не более!). Итак,

Вычтем одно уравнение из другого, обозначим x - x 0 и y - y 0 через a и b, и получим 3a + 5b = 0. Отсюда мы видим, что b делится на 3, а a - на 5. Положим a = 5k, тогда b = - 3k - здесь k, очевидно, может быть любым целым числом. Итак, мы получаем набор решений:

Где k может быть любым целым числом. Других решений, конечно, нет.Задача 63:

Найдите все целые решения уравнения 3x - 12y = 7. Решение:

Это уравнение не имеет целых решений. Левая часть делится на 3, в то время как правая часть не делится на 3.

Задача 64:

Решите уравнение 1990x - 173y = 11. Решение:

Числа, участвующие в формулировке, так велики, что подбором здесь конкретного решения не найти. Однако нам поможет то, что числа 1990 и 173 взаимно просты (проверьте это).

Лемма. Их НОД, равный 1, можно представить в виде 1990m - 173n, где m и n - некоторые целые числа.

Доказательство этой леммы следует из того факта, что все числа, которые получаются в процессе алгоритма Евклида, представимы в указанном виде.

Конкретно, в данном случае, используя алгоритм Евклида, можно получить m = 2, n = 23. Итак, при помощи такого мощного оружия, как алгоритм Евклида, мы получаем конкретное решение вспомогательного уравнения 1990m - 173n = 1: пару (2, 23). Следовательно, x 0 = 22, y 0 = 253 - решение уравнения 1990x - 173y = 11. Дальше получаем, что

K - любое целое число.Задача 65:

Найдите все целые решения уравнения 21x + 48y = 6. Решение:

x = 16k - 2, y = - 7k + 1; k - любое целое число.

Задача 66:

Решите уравнение 2x + 3y + 5z = 11 в целых числах. Решение:

x = 5p + 3q - 11, y = 11 - 5p - 2q, z = p; p, q - любые целые числа.

Задача 67:

Фишка стоит на одном из полей бесконечной в обе стороны клетчатой полоски бумаги. Она может сдвигаться на m полей вправо или на n полей влево. При каких m и n она сможет переместиться в соседнюю справа клетку? За какое наименьшее число ходов она сможет это сделать? Решение:

При взаимно простых m и n.

Задача 68:

(2x + y)(5x + 3y) = 7. Решение:

(- 4,9), (14, - 21), (4, - 9), (- 14,21).

Задача 69:

xy = x + y + 3. Решение:

Так как xy - x - y = 3, то (x - 1)(y - 1) = 4. Осталось только перебрать возможные разложения числа 4 в произведение двух целых множителей. Ответ: (x = 5,y = 2), (2,5), (0, - 3), (- 3,0), (3,3), (- 1, - 1).

Задача 70:

x² = 14 + y². Решение:

Решений в целых числах нет.

Задача 71:

x² + y² = x + y + 2. Решение:

(2,0), (2,1), (- 1,0), (- 1,1), (0,2), (1,2), (0, - 1), (1, - 1).

Вот как решается задача 69. Так как xy - x - y = 3, то (x - 1)(y - 1) = 4. Осталось только перебрать возможные разложения числа 4 в произведение двух целых множителей. Ответ: (x = 5,y = 2), (2,5), (0, - 3), (- 3,0), (3,3), (- 1, - 1).

Задача 72:

x² + y² = 4z - 1.

В самом деле, посмотрим, какие остатки могут давать точные квадраты по модулю 4 (выбор модуля 4 подсказан нам самим видом правой части уравнения). Недолгий перебор показывает, что это остатки 0 и 1. Так как сумма двух остатков такого вида не может давать остаток - 1, то мы получаем, что решений данное уравнение не имеет.

Задача 73:

x² - 7y = 10. Решение:

Решений в целых числах нет (модуль 7).

Задача 74:

x³ + 21y² + 5 = 0. Решение:

Так как x³ может по модулю 7 быть сравнимым лишь с 0, 1 и - 1, то выражение x³ + 21y² + 5 сравнимо (mod %)%7 с 5, 6 или с 4, и, следовательно, не может быть равным нулю.

Задача 75:

15x² - 7y² = 9. Решение:

Решений в целых числах нет (модуль 5).

Задача 76:

x² + y² + z² = 8t - 1. Решение:

Решений в целых числах нет (модуль 8).

Задача 77:

3 m + 7 = 2 n . Решение:

По модулю 3 левая часть сравнима с 1, и отсюда мы делаем вывод, что n - четно, т.е. n = 2k. Уравнение преобразуется к виду 3 m + 7 = 4 k . Теперь в игру включается модуль 4. 4 k - 7 = 1 (mod %)%4, и мы видим, что и m четно, т.е. m = 2p. Итак, мы имеем уравнение 3 2p + 7 = 2 2k . Преобразуем уравнение: 7 = 2 2k - 3 2p = (2 k - 3 p )(2 k + 3 p ). Отсюда 2 k + 3 p = 7, 2 k - 3 p = 1, и мы получаем единственное решение k = 2, p = 1, т.е. m = 2, n = 4.

Задача 78:

3 • 2 m + 1 = n². Решение:

Сразу ясно, что n не делится на 3 и, значит, n = 3k + 1 или n = 3k + 2. Разберем оба случая.

а) n = 3k + 2, 3 • 2 m + 1 = 9k² + 12k + 4. Сокращая, получаем 2 m = 3k² + 4k + 1 = (3k + 1)(k + 1). Следовательно, и k + 1 и 3k + 1 - степени двойки. Видно, что и k = 0 и k = 1 подходят, и мы получаем решения n = 2, m = 1 и n = 5, m = 3. Но при k ≥ 2 4(k + 1) > 3k + 1 > 2(k + 1) и, следовательно, k + 1 и 3k + 1 не могут одновременно быть степенями двойки.

б) n = 3k + 1. Разбирая этот случай аналогичным образом, мы получаем еще одно решение n = 7, m = 4.

Задача 79:

1/a + 1/b + 1/c = 1. Решение:

a = b = c = 3; a,b,c = 1,2,3 или 2,4,4; одно из чисел равно 1, а сумма двух других равна 0, например, a = 1, b = - c = 13.

Задача 80:

x² - y² = 1988. Решение:

x = ± 498, y = ± 496 или x = ± 78, y = ± 64, причем знаки выбираются независимо.

Задача 81:

Докажите, что уравнение 1/x - 1/y = 1/n имеет единственное решение в натуральных числах тогда и только тогда, когда n - простое число. Решение:

Если n = pq (p, q > 1), то 1/n = 1/(n - 1) - 1/n(n - 1) и 1/n = 1/p(q - 1) - 1/pq(q - 1). Если же n - простое, то n(y - x) = xy, и значит, xy делится на n, т.е. x или y делится на n. Ясно, что именно y делится на n: y = kn. Тогда x = kn/(n + 1), откуда k = n - 1, т.е. есть ровно одно представление 1/n = 1/(n - 1) - 1/n(n - 1).

Задача 82:

Решите уравнение в целых числах: x³ + 3 = 4y(y + 1).

Задача 83:

Решите уравнение в целых числах: x² + y² = z².

Задача 84:

Решите уравнение в целых числах: x² - 5y² = 1.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение.

Объект исследования.

Исследования касаются одного из наиболее интересных разделов теории чисел - решения уравнений в целых числах.

Предмет исследования.

Решение в целых числах алгебраических уравнений с целыми коэффициентами более чем с одним неизвестным представляет собой одну из труднейших и древнейших математических задач и не достаточно глубоко представлена в школьном курсе математики. В своей работе я представлю достаточно полный анализ уравнений в целых числах, классификацию данных уравнений по способам их решения, описание алгоритмов их решения, а также практические примеры применения каждого способа для решения уравнений в целых числах.

Цель.

Познакомиться со способами решения уравнений в целых числах.

Задачи:

    Изучить учебную и справочную литературу;

    Собрать теоретический материал по способам решения уравнений;

    Разобрать алгоритмы решения уравнений данного вида;

    Описать способы решения;

    Рассмотреть примеры решения уравнений с применением данных способов.

Гипотеза:

Столкнувшись с уравнениями в целых числах в олимпиадных заданиях, я предположила, что трудности в их решении обусловлены тем, что далеко не все способы их решения мне известны.

Актуальность:

Решая примерные варианты заданий ЕГЭ, я заметила, что часто встречаются задания на решение уравнений первой и второй степени в целых числах. Кроме того олимпиадные задания различных уровней также содержат уравнения в целых числах или задачи, которые решаются с применением умений решать уравнения в целых числах. Важность знания способов решения уравнений в целых числах и определяет актуальность моих исследований.

Методы исследования

Теоретический анализ и обобщение сведений научной литературы об уравнениях в целых числах.

Классификация уравнений в целых числах по методам их решения.

Анализ и обобщение методов решения уравнений в целых числах.

Результаты исследования

В работе описаны способы решений уравнений, рассмотрен теоретический материал теоремы Ферма, теорема Пифагора, алгоритма Евклида, представлены примеры решений задач и уравнений различных уровней сложности.

2.История уравнений в целых числах

Диофант - ученый - алгебраист Древней Греции, по некоторым данным он жил до 364 года н. э. Он специализировался на решении задач в целых числах. Отсюда и пошло название Диофантовы уравнения. Наиболее известной, решенной Диофантом, является задача «о разложении на два квадрата». Ее эквивалентом является известная всем теорема Пифагора. Жизнь и деятельность Диофанта протекала в Александрии, он собирал и решал известные и придумывал новые задачи. Позднее он объединил их в большом труде под названием «Арифметика». Из тринадцати книг, входивших в состав «Арифметики», только шесть сохранились до Средних веков и стали источником вдохновения для математиков эпохи Возрождения.«Арифметика» Диофанта — это сборник задач, каждая включает в себя решение и необходимое пояснение. В собрание входят разнообразные задачи, а их решение часто в высшей степени остроумно. Диофанта интересуют только положительные целые и рациональные решения. Иррациональные решения он называет «невозможными» и тщательно подбирает коэффициенты так, чтобы получились искомые положительные, рациональные решения.

Для решения уравнений в целых числах применяется теорема Ферма. История доказательства которой достаточно интересная. Над полным доказательством Великой теоремы работало немало выдающихся математиков, и эти усилия привели к получению многих результатов современной теории чисел. Считается, что теорема стоит на первом месте по количеству неверных доказательств.

Замечательный французский математик Пьер Ферма высказал утверждение, что уравнение при целом n ≥ 3 не имеет решений в целых положительных числах x, y, z (xyz = 0 исключается положительностью x, y, z.Для случая n = 3 эту теорему в X веке пытался доказать среднеазиатский математик ал-Ходжанди, но его доказательство не сохранилось. Несколько позже сам Ферма опубликовал доказательство частного случая для n = 4.

Эйлер в 1770 доказал теорему для случая n = 3, Дирихле и Лежандр в 1825 — для n = 5,Ламе — для n = 7. Куммер показал, что теорема верна для всех простых n, меньших 100, за возможным исключением 37, 59, 67.

В 1980-х годах появился новый подход к решению проблемы. Из гипотезы Морделла, доказанной Фальтингсом в 1983 году, следует, что уравнение

при n > 3 может иметь лишь конечное число взаимно простых решений.

Последний, но самый важный, шаг в доказательстве теоремы был сделан в сентябре 1994 года Уайлсом. Его 130-страничное доказательство было опубликовано в журнале «AnnalsofMathematics». Доказательство основано на предположении немецкого математика Герхарда Фрая о том, что Великая теорема Ферма является следствием гипотезы Таниямы — Симуры (это предположение было доказано Кеном Рибетом при участии Ж.‑П.Серра.).Первый вариант своего доказательства Уайлс опубликовал в 1993 году (после 7 лет напряжённой работы), но в нём вскоре обнаружился серьёзный пробел; с помощью Ричарда Лоуренса Тейлора пробел удалось достаточно быстро ликвидировать. В 1995 году был опубликован завершающий вариант. 15 марта 2016 года Эндрю Уайлз получает премию Абеля. В настоящее время премия составляет 6 миллионов норвежских крон, то есть примерно 50 миллионов рублей. По словам Уайлса, присуждение премии стало для него «полной неожиданностью».

3.Линейные уравнения в целых числах

Линейные уравнения - самые простые из всех диофантовых уравнений.

Уравнение вида ах=b, где a и b - некоторые числа, а х- неизвестная переменная, называется линейным уравнением с одной неизвестной. Здесь требуется найти только целые решения уравнения. Можно заметить, что если а ≠ 0, то целочисленное решение уравнение будет иметь только в том случае, когда b нацело делится на а и это решение х= b/ф. Если же а=0, то целочисленное решение уравнение будет иметь тогда, когда b=0 и в этом случае х любое число.

т.к. 12 нацело делится на 4, то

Т.к. а=о и b=0, то х любое число

Т.к. 7 нацело не делится на 10, то решений нет.

4. Способ перебора вариантов .

В способе перебора вариантов необходимо учитывать признаки делимости чисел, рассмотреть все возможные варианты равенства конечного перебора. Этот способ можно применить решая данные задачи:

1 Найти множество всех пар натуральных чисел, которые являются решением уравнения 49x+69y=602

Выражаем из уравнения х =,

Т.к. x и y натуральные числа, то х = ≥ 1, умножаем все уравнение на 49, чтобы избавиться от знаменателя:

Переносим 602 в левую сторону:

51y ≤ 553, выражаем y, y= 10

Полный перебор вариантов показывает, что натуральными решениями уравнения являются x=5, y=7.

Ответ:(5,7).-

2 Решить задачу

Из цифр 2, 4, 7 следует составить трёхзначное число, в котором ни одна цифра не может повторяться более двух раз.

Найдем количество всех трехзначных чисел, которые начинаются с цифры 2: (224, 242, 227, 272, 247, 274, 244, 277) - их 8.

Аналогично находим все трехзначные цифры начинающиеся с цифр 4 и 7: (442, 424, 422, 447, 474, 427, 472, 477).

(772, 774, 727, 747, 722, 744, 724, 742) - их тоже по 8 чисел. Следует всего 24 числа.

Ответ: 24 числа.

5. Цепная дробь и алгоритм Евклида

Цепной дробью называется выражение обыкновенной дроби в виде

где q 1 - целое число, а q 2 , … ,qn - натуральные числа. Такое выражение называется цепной (конечной непрерывной) дробью. Различают конечные и бесконечные цепные дроби.

Для рациональных чисел цепная дробь имеет конечный вид. Кроме того, последовательность a i — это ровно та последовательность частных, которая получается при применении алгоритма Евклида к числителю и знаменателю дроби.

Решая уравнения цепной дробью, я составила общий алгоритм действий для данного способа решения уравнений в целых числах.

Алгоритм

1) Составить отношение коэффициентов при неизвестных в виде дроби

2) Преобразовать выражение в неправильную дробь

3) Выделить целую часть неправильной дроби

4) Правильную дробь заменить равной ей дробью

5) Проделать 3,4 с полученной в знаменателе неправильной дробью

6) Повторять 5 до конечного результата

7) У полученного выражения отбросить последнее звено цепной дроби, превратить получающуюся при этом новую цепную дробь в простую и вычесть ее из исходной дробь.

Пример №1 Решить в целых числах уравнение 127x- 52y+ 1 = 0

Преобразуем отношение коэффициентов при неизвестных.

Прежде всего, выделим целую часть неправильной дроби; = 2 +

Правильную дробь заменим равной ей дробью.

Откуда = 2+

Проделаем такие же преобразования с полученной в знаменателе неправильной дробью.

Теперь исходная дробь примет вид: .Повторяя те же рассуждения для дроби получим Выделяя целую часть неправильной дроби, придем к окончательному результату:

Мы получили выражение, которое называется конечной цепной или непрерывной дробью. Отбросив последнее звено этой цепной дроби - одну пятую, превратим получающуюся при этом новую цепную дробь в простую и вычтем ее из исходной дроби:

Приведем полученное выражение к общему знаменателю и отбросим его.

Откуда 127∙9-52∙22+1=0. Из сопоставления полученного равенства с уравнением 127x- 52y+1 = 0 следует, что тогда x= 9, y= 22 - решение исходного уравнения, и согласно теореме все его решения будут содержаться в прогрессиях x= 9+ 52t, y= 22+ 127t, где t=(0; ±1; ±2…..).Полученный результат наводит на мысль о том, что и в общем случае для нахождения решения уравнения ax+by+c=0 надо разложить отношение коэффициентов при неизвестных в цепную дробь, отбросить ее последнее звено и проделать выкладки, подобные тем, которые были приведены выше.

Для доказательства этого предположения будут нужны некоторые свойства цепных дробей.

Рассмотрим несократимую дробь. Обозначим через q 1 частное и через r 2 остаток от деления a на b. Тогда получим:

Тогда b=q 2 r 2 +r 3 ,

Точно так же

r 2 =q 3 r 3 +r 4 , ;

r 3 =q 4 r 4 +r 5 ,;

………………………………..

Величины q 1 , q 2 ,… называются неполными частными. Приведенный выше процесс образования неполных частных называется алгоритмом Евклида . Остатки от деления r 2 , r 3 ,…удовлетворяют неравенствам

т.е. образуют ряд убывающих неотрицательных чисел.

Пример№2 Решить уравнение170х+190у=3000 в целых числах

После сокращения на 10 уравнение выглядит так,

Для нахождения частного решения воспользуемся разложением дроби в цепную дробь

Свернув предпоследнюю подходящую к ней дробь в обыкновенную

Частное решение данного уравнения имеет вид

Х 0 = (-1)4300∙9=2700, y 0 =(-1)5300∙8=-2400,

а общее задается формулой

х=2700-19k, y= -2400+17k.

откуда получаем условие на параметр k

Т.е. k=142, x=2, y=14. .

6. Метод разложения на множители

Метод перебора вариантов неудобный способ, так как бывают случаи когда найти перебором всецелые решения, невозможно, так как таких решений бесконечное множество. Метод разложения на множители очень интересный прием и встречается он как и в элементарной математике так и в высшей.

Суть состоит в тождественном преобразовании. Смысл любого тождественного преобразования - это запись выражения в другом виде с сохранением его сути. Рассмотрим примеры применения данного метода.

1 Решить уравнение в целых числах y 3 - x 3 = 91.

Используя формулы сокращенного умножения, разложим правую часть уравнения на множители:

(y - x)(y 2 + xy + x 2) = 91

Выписываем все делители числа 91: ± 1; ± 7; ± 13; ± 91

Замечаем, что для любых целых x и y число

y 2 + yx + x 2 ≥ y 2 - 2|y||x| + x 2 = (|y| - |x|) 2 ≥ 0,

следовательно, оба сомножителя в левой части уравнения должны быть положительными. Тогда исходное уравнение равносильно совокупности систем уравнений:

Решив системы, отбираем те корни, которые являются целыми числами.

Получаем решения исходного уравнения: (5; 6), (-6; -5); (-3; 4),(-4;3).

Ответ: (5; 6); (-6; -5); (-3; 4); (-4;3).

2 Найти все пары натуральных чисел, удовлетворяющих уравнению х 2 2 = 69

Разложим левую часть уравнения на множители и запишем уравнение в виде

Т.к. делителями числа 69 являются числа 1, 3, 23 и 69, то 69 можно получить двумя способами: 69=1·69 и 69=3·23. Учитывая, что х-у > 0, получим две системы уравнений, решив которые мы сможем найти искомые числа:

Выразив одну переменную и подставив ее в второе уравнение находим корни уравнений.Первая система имеет решение x=35;y=34 , а вторая система имеет решение x=13, y=10.

Ответ: (35; 34), (13; 10).

3 Решить уравнение х+у =ху в целых числах:

Запишем уравнение в виде

Разложим левую часть уравнения на множители. Получим

Произведение двух целых чисел может равняться 1 только в двух случаях: если оба они равны 1 или -1. Получим две системы:

Первая система имеет решение х=2, у=2, а вторая система имеет решение х=0, у=0.Ответ: (2; 2), (0; 0).

4 Доказать, что уравнение (x - y) 3 + (y - z) 3 + (z - x) 3 = 30 не имеет решений в целых числах.

Разложим левую часть уравнения на множители и обе части уравнения разделим на 3, в результате получим уравнение:

(x - y)(y - z)(z - x) = 10

Делителями 10 являются числа ±1, ±2, ±5, ±10. Заметим также, что сумма сомножителей левой части уравнения равна 0. Нетрудно проверить, что сумма любых трех чисел из множества делителей числа 10, дающих в произведении 10, не будет равняться 0. Следовательно, исходное уравнение не имеет решений в целых числах.

7. Метод остатков

Основная задача метода - находить остаток от деления обоих частей уравнения на целое число, на основе полученных результатов. Часто полученная информация уменьшает возможности множеств решений уравнения. Рассмотрим примеры:

1 Доказать, что уравнение x 2 = 3y + 2 не имеет решений в целых числах.

Доказательство.

Рассмотрим случай, когда x, y ∈ N. Рассмотрим остатки от деления обоих частей на 3. Правая часть уравнения дает остаток 2 при делении на 3 при любом значении y. Левая же часть, которая является квадратом натурального числа, при делении на 3 всегда дает остаток 0 или 1. Исходя из этого получаем, что решения данного уравнения в натуральных числах нет.

Рассмотрим случай, когда одно из чисел равно 0. Тогда очевидно, решений в целых числах нет.

Случай, когда y - целое отрицательное не имеет решений, т.к. правая часть будет отрицательна, а левая - положительна.

Случай, когда x - целое отрицательное, также не имеет решений, т.к. попадает под один из рассмотренных ранее случаев ввиду того, что (-x) 2 = (x) 2 .

Получается, что указанное уравнение не имеет решений в целых числах, что и требовалось доказать.

2 Решите в целых числах 3 х = 1 + y 2 .

Не сложно заметить, что (0; 0) — решение данного уравнения. Остаётся доказать, что других целых корней уравнение не имеет.

Рассмотрим случаи:

1) Если x∈N, y∈N, то З делится на три без остатка, а 1 + y 2 при делении на 3 дает

остаток либо 1, либо 2. Следовательно, равенство при натуральных

значениях х, у невозможно.

2) Если х— целое отрицательное число,y∈Z , тогда 0< 3 х < 1, а 1 + y 2 ≥ 0 и

равенство также невозможно. Следовательно, (0; 0) — единственное

Ответ: (0; 0).

3 Решить уравнение 2х 2 -2ху+9х+у=2 в целых числах:

Выразим из уравнения то неизвестное, которое входит в него только в первой степени, то есть переменную у:

2х 2 +9х-2=2ху-у, откуда

Выделим у дроби целую часть с помощью правила деления многочлена на многочлен «углом». Получим:

Очевидно, разность 2х-1 может принимать только значения -3, -1, 1 и 3.

Осталось перебрать эти четыре случая, в результате чего получаем решения: (1;9), (2;8), (0;2), (-1;3)

Ответ: (1;9), (2;8), (0;2), (-1;3)

8.Пример решения уравнений с двумя переменными в целых числах как квадратных относительно одной из переменных

1 Решить в целых числах уравнение 5х 2 +5у 2 + 8ху+2у-2х +2=0

Данное уравнение можно решить методом разложения на множители, однако этот способ применительно к данному уравнению достаточно трудоёмкий. Рассмотрим более рациональный способ.

Запишем уравнение в виде квадратного относительно переменной х:

5x 2 +(8y-2)x+5y 2 +2y+2=0

Находим его корни.

Данное уравнение имеет решение тогда и только тогда, когда дискриминант

этого уравнения равен нулю, т.е. - 9(у+1) 2 =0, отсюда у= - 1.

Если у= -1,то х= 1.

Ответ: (1; — 1).

9.Пример решения задач с помощью уравнений в целых числах.

1. Решить в натуральных числах уравнение : где n>m

Выразим переменную n через переменную m:

Найдем делители числа 625: это 1; 5; 25; 125; 625

1) если m-25 =1, то m=26, n=25+625=650

2) m-25 =5, то m=30, n=150

3) m-25 =25, то m=50, n=50

4) m-25 =125, то m=150, n=30

5) m-25 =625, то m=650, n=26

Ответ: m=150, n=30

2. Решить уравнение в натуральных числах: mn +25 = 4m

Решение: mn +25 = 4m

1) выразим переменную 4m через n:

2) найдем натуральные делители числа 25: это 1; 5; 25

если 4-n =1, то n=3, m=25

4-n=5, то n=-1, m=5; 4-n =25, то n=-21, m=1 (посторонние корни)

Ответ: (25;3)

Помимо заданий решить уравнение в целых числах, встречаются задания на доказательство того факта, что уравнение не имеет целых корней.

При решении таких задач, необходимо помнить следующие свойства делимости:

1) Если n Z; n делится на 2, то n = 2k, k ∈ Z.

2) Если n ∈ Z; n не делится на 2, то n = 2k+1, k ∈ Z.

3) Если n ∈ Z; n делится на 3, то n = 3k, k ∈ Z.

4) Если n ∈ Z; n не делится на 3, то n = 3k±1, k ∈ Z.

5) Если n ∈ Z; n не делится на 4, то n = 4k+1; n = 4k+2; n = 4k+3. k ∈ Z.

6) Если n ∈ Z; n(n+1) делится на 2, то n (n+1)(n+2) делится на 2;3;6.

7) n; n+1 - взаимно простые.

3 Доказать, что уравнение x 2 - 3у = 17 не имеет целых решений.

Доказательство:

Пусть x; y - решения уравнения

x 2 = 3(у+6)-1 Т.к. y ∈ Z то y+6 ∈ Z , значит 3(y+6) делится на 3, следовательно, 3(y+6)-1 не делится на 3, следовательно, x 2 не делится на 3, следовательно, x не делится на 3, значит x = 3k±1, k ∈ Z.

Подставим это в исходное уравнение.

Получили противоречие. Значит у уравнения нет целых решений, что и требовалось доказать.

10.Формула Пика

Формула Пика была открыта австрийским математиком Георгом Пиком в 1899 году. Формула связанна с уравнениями в целых числах тем, что из многоугольников берут только целые узлы, как и целые числа в уравнениях.

При помощи этой формулы можно находить площадь фигуры построенной на листе в клетку (треугольник, квадрат, трапеция, прямоугольник, многоугольник).

В этой формуле будем находить целые точки внутри многоугольника и на его границе.

В задачах, которые будут на ЕГЭ есть целая группа заданий, в которых дан многоугольник построенный на листе в клетку и стоит вопрос о нахождении площади. Масштаб клетки это один квадратный сантиметр.

Пример№1

М - количество узлов на границе треугольника (на сторонах и вершинах)

N - количество узлов внутри треугольника.

*Под «узлами» имеется ввиду пересечение линий. Найдём площадь треугольника:

Отметим узлы:

M = 15 (обозначены красным)

N = 34 (обозначены синим)

Пример №2

Найдём площадь многоугольника: Отметим узлы:

M = 14 (обозначены красным)

N = 43 (обозначены синим)

12.Метод спуска

Один из методов решений уравнений в целых числах - метод спуска - опирается на теорему Ферма.

Методом спуска называется метод, который заключается в построении одного решения бесчисленной последовательности решений с неограниченно убывающим положительным z.

Алгоритм этого метода рассмотрим на примере решения конкретного уравнения.

Пример 1. Решить уравнение в целых числах 5x + 8y = 39.

1) Выберем неизвестное, имеющее наименьший коэффициент (в нашем случае это х), и выразим его через другое неизвестное:

2) Выделим целую часть: Очевидно, что х будет целым, если выражение окажется целым, что, в свою очередь, будет иметь место тогда, когда число 4 - 3y без остатка делится на 5.

3) Введем дополнительную целочисленную переменную z следующим образом: 4 -3y = 5z. В результате получим уравнение такого же типа, как и первоначальное, но уже с меньшими коэффициентами.

4) Решаем его уже относительно переменной y, рассуждая точно также как в п.1, 2: Выделяя целую часть, получим:

5) Рассуждая аналогично предыдущему, вводим новую переменную u: 3u = 1 - 2z.

6) Выразим неизвестную с наименьшим коэффициентом, в этом случае переменную z: . Требуя, чтобы было целым, получим: 1 - u = 2v, откуда u = 1 - 2v. Дробей больше нет, спуск закончен (процесс продолжаем до тез пор, пока в выражении для очередной переменной не останется дробей).

7) Теперь необходимо «подняться вверх». Выразим через переменную v сначала z, потом y и затем x:

8) Формулы x = 3+8v и y = 3 - 5v, где v - произвольное целое число, представляют общее решение исходного уравнения в целых числах.

Таким образом, метод спуска предполагает сначала последовательное выражение одной переменой чрез другую, пока в представлении переменной не останется дробей, а затем, последовательное «восхождение» по цепочке равенств для получения общего решения уравнения.

12.Заключение

В результате исследования подтвердилась гипотеза о том, что трудности при решении уравнений в целых числах обусловлены тем, что далеко не все способы их решения были мне известны. В ходе исследований мне удалось отыскать и описать малоизвестные способы решения уравнений в целых числах, проиллюстрировать их примерами. Результаты моих исследований могут быть полезны всем ученикам, интересующимся математикой.

13.Библиография

Книжные ресурсы:

1. Н. Я. Виленкин и др., Алгебра и математический анализ/10класс, 11 класс// М., «Просвещение», 1998 год;

2. А. Ф. Иванов и др., Математика. Учебно-тренировочные материалы для подготовки к экзамену// Воронеж, ГОУВПО ВГТУ, 2007 год

3. А. О. Гельфонд, Математика, теория чисел// Решение уравнений в целых числах// Книжный дом «ЛИБРОКОМ»

Ресурсы сети интернет:

4. Демонстрационные варианты контрольных измерительных материалов единого государственного экзамена по математике http://fipi.ru/

5. Примеры решений уравнений в целых числахhttp://reshuege.ru

6. Примеры решений уравнений в целых числахhttp://mat-ege.ru

7.История Диофантовых уравнений http://www.goldenmuseum.com/1612Hilbert_rus.html

8. История Диофанта http://nenuda.ru/%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F-%D1%81-%D0%B4%D0%B2%D1%83%D0%BC%D1%8F-%D0%BD%D0%B5%D0%B8%D0%B7%D0%B2%D0%B5%D1%81%D1%82%D0%BD%D1%8B%D0%BC%D0%B8-%D0%B2-%D1%86%D0%B5%D0%BB%D1%8B%D1%85-%D1%87%D0%B8%D1%81%D0%BB%D0%B0%D1%85.htm

9.История Диофантовых уравненийhttp://dok.opredelim.com/docs/index-1732.html

10. История Диофанта http://www.studfiles.ru/preview/4518769/