Наибольшее значение электроотрицательности. Справочный материал для прохождения тестирования. Что мы узнали

Электроотрицательность (ЭО) — это способность атомов притягивать электроны при связывании с другими атомами.

Электроотрицательность зависит от расстояния между ядром и валентными электронами, и от того, насколько валентная оболочка близка к завершенной. Чем меньше радиус атома и чем больше валентных электронов, тем выше его ЭО.

Фтор является самым электроотрицательным элементом. Во-первых, он имеет на валентной оболочке 7 электронов (до октета недостает всего 1-го электрона) и, во-вторых, эта валентная оболочка (…2s 2 2p 5) расположена близко к ядру.

Менее всего электроотрицательны атомы щелочных и щелочноземельных металлов. Они имеют большие радиусы и их внешние электронные оболочки далеки от завершения. Им гораздо проще отдать свои валентные электроны другому атому (тогда предвнешняя оболочка станет завершенной), чем «добирать» электроны.

Электроотрицательность можно выразить количественно и выстроить элементы в ряд по ее возрастанию. Наиболее часто используют шкалу электроотрицательностей, предложенную американским химиком Л. Полингом.

Разность электроотрицательностей элементов в соединении (ΔX ) позволит судить о типе химической связи. Если величина Δ X = 0 – связь ковалентная неполярная .

При разности электроотрицательностей до 2,0 связь называют ковалентной полярной , например: связь H-F в молекуле фтороводорода HF: Δ X = (3,98 — 2,20) = 1,78

Связи с разностью электроотрицательностей больше 2,0 считаются ионными . Например: связь Na-Cl в соединении NaCl: Δ X = (3,16 — 0,93) = 2,23.

Степень окисления

Степень окисления (СО) — это условный заряд атома в молекуле, вычисленный в предположении, что молекула состоит из ионов и в целом электронейтральна.


При образовании ионной связи происходит переход электрона от менее электроотрицательного атома к более электроотрицательному, атомы теряет свою электронейтральность, превращается в ионы. возникают целочисленные заряды. При образовании ковалентной полярной связи электрон переходит не полностью, а частично, поэтому возникают частичные заряды (на рисунке ниже HCl). Представим, что электрон перешел полностью от атома водорода к хлору, и на водороде возник целый положительный заряд +1, а на хлоре -1. такие условные заряды и называют степенью окисления.


На этом рисунке изображены степени окисления, характерные для первых 20 элементов.
Обратите внимание. Высшая СО как правило равна номеру группы в таблице Менделеева. У металлов главных подгрупп – одна характерная СО, у неметаллов, как правило, наблюдается разброс СО. Поэтому неметаллы образуют большое количество соединений и обладают более «разнообразными» свойствами, по сравнению с металлами.

Примеры определения степени окисления

Определим степени окисления хлора в соединениях:

Те правила, которые мы рассмотрели не всегда позволяют рассчитать СО всех элементов, как например в данной молекуле аминопропана.


Здесь удобно пользоваться следующим приемом:

1)Изображаем структурную формулу молекулы, черточка – это связь, пара электронов.

2) Черточку превращаем в стрелку, направленную к более ЭО атому. Эта стрелка символизирует переход электрона к атому. Если связаны два одинаковых атома, оставляем черту как есть – нет перехода электронов.

3) Считаем сколько электронов «пришло» и «ушло».

Например, посчитаем заряд первого атома углерода. Три стрелки направленны к атому, значит, 3 электрона пришло, заряд -3.

Второй атом углерода: водород отдал ему электрон, а азот забрал один электрон. Заряд не поменялся, равен нулю. И т.д.

Валентность

Вале́нтность (от лат. valēns «имеющий силу») - способность атомов образовывать определённое число химических связей с атомами других элементов.

В основном, под валентностью понимается способность атомов к образованию определённого числа ковалентных связей . Если в атоме имеется n неспаренных электронов и m неподелённых электронных пар, то этот атом может образовывать n + m ковалентных связей с другими атомами, т.е. его валентность будет равна n + m . При оценке максимальной валентности следует исходить из электронной конфигурации «возбуждённого» состояния. Например, максимальная валентность атома бериллия, бора и азота равна 4 (например, в Be(OH) 4 2- , BF 4 — и NH 4 +), фосфора - 5 (PCl 5), серы - 6 (H 2 SO 4), хлора - 7 (Cl 2 O 7).

В ряде случаев, валентность может численно совпадать со степенью окисления, но ни коим образом они не тождественны друг другу. Например, в молекулах N 2 и CO реализуется тройная связь (то есть валентность каждого атома равна 3), однако степень окисления азота равна 0, углерода +2, кислорода −2.



В химии широко применяется понятие электроотрицательности (ЭО) — свойство атомов данного элемента оттягивать на себя электроны от атомов других элементов в соединениях называют электроотрицательностью. Электроотрицательность лития условно принимается за единицу, ЭО других элементов вычисляют соответственно. Имеется шкала значений ЭО элементов.

Числовые значения ЭО элементов имеют приблизительные значения: это безразмерная величина . Чем выше ЭО элемента, тем ярче проявляются его неметаллические свойства. По ЭО элементы можно записать следующим образом:

F > O > Cl > Br > S > P > C > H > Si > Al > Mg > Ca > Na > K > Cs

Наибольшее значение ЭО имеет фтор. Сопоставляя значения ЭО элементов от франция (0,86) до фтора (4,1), легко заметить, что ЭО подчиняется Периодическому закону. В Периодической системе элементов ЭО в периоде растет с увеличением номера элемента (слева направо), а в главных подгруппах - уменьшается (сверху вниз). В периодах по мере увеличения зарядов ядер атомов число электронов на внешнем слое увеличивается, радиус атомов уменьшается, поэтому легкость отдачи электронов уменьшается, ЭО возрастает, следовательно, усиливаются неметаллические свойства.

Разность электроотрицательностей элементов в соединении (ΔX) позволит судить о типе химической связи.

Если величина Δ X = 0 – связь ковалентная неполярная.

При разности электроотрицательностей до 2,0 связь называют ковалентной полярной , например: связь H-F в молекуле фтороводорода HF: Δ X = (3,98 – 2,20) = 1,78

Связи с разностью электроотрицательностей больше 2,0 считаются ионными. Например: связь Na-Cl в соединении NaCl: Δ X = (3,16 – 0,93) = 2,23.

Электроотрицательность зависит от расстояния между ядром и валентными электронами, и от того, насколько валентная оболочка близка к завершенной. Чем меньше радиус атома и чем больше валентных электронов, тем выше его ЭО.

Фтор является самым электроотрицательным элементом . Во-первых, он имеет на валентной оболочке 7 электронов (до октета недостает всего 1-го электрона) и, во-вторых, эта валентная оболочка расположена близко к ядру.


Менее всего электроотрицательны атомы щелочных и щелочноземельных металлов.
Они имеют большие радиусы и их внешние электронные оболочки далеки от завершения. Им гораздо проще отдать свои валентные электроны другому атому (тогда предвнешняя оболочка станет завершенной), чем “добирать” электроны.

Электроотрицательность можно выразить количественно и выстроить элементы в ряд по ее возрастанию. Наиболее часто используют шкалу электроотрицательностей, предложенную американским химиком Л. Полингом.


Степень окисления

Сложные вещества, состоящие из двух химических элементов, называют бинарными (от лат. би - два), или двухэлементными (NaCl, HCl). В случае ионной связи в молекуле NaCl атом натрия передает свой внешний электрон атому хлора и превращается при этом в ион с зарядом +1, а атом хлора принимает электрон и превращается в ион с зарядом -1. Схематически процесс превращения атомов в ионы можно изобразить так:

При химическом взаимодействии в молекуле HCl общая электронная пара смещается в сторону более электроотрицательного атома. Например,, т. е. электрон не полностью перейдет от атома водорода к атому хлора, а частично, обусловливая тем самым частичный заряд атомов δ: Н +0.18 Сl -0.18 . Если же представить, что и в молекуле HCl, как и в хлориде NaCl, электрон полностью перешел от атома водорода к атому хлора, то они получили бы заряды +1 и -1:

Такие услов­ные заряды называют степенью окисления . При определении этого понятия условно предполагают, что в ковалентных полярных соединениях связую­щие электроны полностью перешли к более элек­троотрицательному атому, а потому соединения со­стоят только из положительно и отрицательно заряженных атомов.

Степень окисления - это условный заряд атомов химического элемента в соединении, вычисленный на основе предположения, что все соединения (и ионные, и ковалентно-полярные) состоят только из ионов. Степень окисления может иметь отрицательное, положительное или нулевое значение, которое обычно ставится над символом элемента сверху, например:

Отрицательное значение степени окисления имеют те атомы, которые приняли электроны от других атомов или к которым смещены общие электронные пары, т. е. атомы более электроотрицательных элементов . Положительное значение степени окисления имеют те атомы, которые отдают свои электроны другим атомам или от которых оттянуты общие электронные пары, т. е. атомы менее электроотрицательных элементов . Нулевое значение степени окисления имеют атомы в молекулах простых веществ и атомы в свободном состоянии, например:

В соединениях суммарная степень окисления всегда равна нулю.

Валентность

Валентность атома химического элемента определяется в первую очередь числом неспаренных электронов, принимающих участие в образовании химической связи.

Валентные возможности атомов определяются:

Числом неспаренных электронов (одноэлектронных орбиталей);

Наличием свободных орбиталей;

Наличием неподеленных пар электронов.

В органической химии понятие «валентность» замещает понятие «степень окисления», с которым привычно работать в неорганической химии. Однако это не одно и то же. Валентность не имеет знака и не может быть нулевой, тогда как степень окисления обязательно характеризуется знаком и может иметь значение, равное нулю.

В основном, под валентностью понимается способность атомов к образованию определённого числа ковалентных связей. Если в атоме имеется n неспаренных электронов и m неподелённых электронных пар, то этот атом может образовывать n + m ковалентных связей с другими атомами, т.е. его валентность будет равна n + m. При оценке максимальной валентности следует исходить из электронной конфигурации «возбуждённого» состояния. Например, максимальная валентность атома бериллия, бора и азота равна 4.

Постоянные валентности:

  • H, Na, Li, К, Rb, Cs — Степень окисления I
  • О, Be, Mg, Ca, Sr, Ba, Ra, Zn, Cd — Степень окисления II
  • B, Al, Ga, In — Степень окисления III

Переменные валентности:

  • Сu - I и II
  • Fe, Со, Ni -II и III
  • С, Sn, Pb - II и IV
  • P- III и V
  • Cr - II, III и VI
  • S - II, IV и VI
  • Mn-II, III, IV, VI и VII
  • N-II, III, IV и V
  • Cl-I, IV, VI и VII

Используя валентности можно составить формулу соединения.

Химическая формула — это условная запись состава вещества посредством химических знаков и индексов.

Например: Н 2 O-формула воды, где Н и О-химические знаки элементов, 2 — индекс, который показывает число атомов данного элемента, входящих в состав молекулы воды.

При названии веществ с переменной валентностью обязательно указывается его валентность, которая ставится в скобки. Например, Р 2 0 5 — оксид фосфора (V)

I. Степень окисления свободных атомов и атомов в молекулах простых веществ равна нулю — Na 0 , Р 4 0 , О 2 0

II. В сложном веществе алгебраическая сумма СО всех атомов с учётом их индексов равна нулю = 0. а в сложном ионе его заряду.

Например:

Разберем для примера несколько соединений и узнаем валентность хлора :

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости

Электроотрицательность атомов элементов. Относительная электроотрицательность. Изменение в периодах и группах Периодической системы. Полярность химической связи,полярность молекул и ионов.

Электроотрицательность (э.о.)- это способность атома смещать к себе электронные пары.
Мерой э.о. является энергия равняя арифметически ½ сумме энергии ионизации I и энергии сходства к электронц Е
Э.О. = ½ (I+E)

Относительная электроотрицательность. (ОЭО)

Фтору как самому сильному э.о элементу присваивается значение 4.00 относительно которого рассматриваются остальные элементы.

Изменения в периодах и группах Периодической системы.

Внутри периодов с увеличением заряда ядра слева направо увеличивается электроотрицательность.

Наименьшее значение наблюдается у щелочных и щелочноземельных металлов.

Наибольшее - у галогенов.

Чем выше электроотрицательность, тем сильнее у элементов выражены неметаллические свойства.

Электроотрицательность (χ) - фундаментальное химическое свойство атома, количественная характеристика способности атома в молекуле смещать к себе общие электронные пары.

Современное понятие об электроотрицательности атомов было введено американским химиком Л. Полингом. Л. Полинг использовал понятие электроотрицательности для объяснения того факта, что энергия гетероатомной связи A-B (A, B - символы любых химических элементов) в общем случае больше среднего геометрического значения гомоатомных связей A-A и B-B.

Самое выское значение э.о. у фтора,а самое низкое –цезий.

Теоретическое определение электроотрицательности было предложено американским физиком Р. Малликеном. Исходя из очевидного положения о том, что способность атома в молекуле притягивать к себе электронный заряд зависит от энергии ионизации атома и его сродства к электрону, Р. Малликен ввёл представление об электроотрицательности атома А как о средней величине энергии связи наружных электронов при ионизации валентных состояний (например, от А− до А+) и на этой основе предложил очень простое соотношение для электроотрицательности атома:

где J1A и εA - соответственно энергия ионизации атома и его сродство к электрону.
Строго говоря, элементу нельзя приписать постоянную электроотрицательность. Электроотрицательность атома зависит от многих факторов, в частности, от валентного состояния атома, формальной степени окисления, координационного числа, природы лигандов, составляющих окружение атома в молекулярной системе, и от некоторых других. В последнее время все чаще для характеристики электроотрицательности используют так называемую орбитальную электроотрицательность, зависящую от типа атомной орбитали, участвующей в образовании связи, и от её электронной заселённости, т. е. от того, занята атомная орбиталь неподелённой электронной парой, однократно заселена неспаренным электроном или является вакантной. Но, несмотря на известные трудности в интерпретации и определении электроотрицательности, она всегда остаётся необходимой для качественного описания и предсказания природы связей в молекулярной системе, включая энергию связи, распределение электронного заряда и степень ионности, силовую постоянную и т. д.Одним из наиболее развитых в настоящее время подходов является подход Сандерсона. В основу этого подхода легла идея выравнивания электроотрицательностей атомов при образовании химической связи между ними. В многочисленных исследованиях были найдены зависимости между электроотрицательностями Сандерсона и важнейшими физико-химическими свойствами неорганических соединений подавляющего большинства элементов периодической таблицы. Очень плодотворной оказалась и модификация метода Сандерсона, основанная на перераспределении электроотрицательности между атомами молекулы для органических соединений.

2)Полярность химической связи, полярность молекул и ионов.

То,что есть в конспекте и в учебнике-Полярность связана с дипольным моментом.Проявляется в результате смещения общей электронной пары к одному из атомов.Полярность так же зависит от разности электроотрицательности связываемых атомов.Чем выше значение э.о. двух атомов,тем более полярной является хим.связь между ними.В зависимости от того,как происходит перераспределение электронной плотности при образовании химической связи,различают несколько ее типов.Предельный случай поляризации хим.связи – полный переход от одного атома к другому.

При этом образуется два иона, между которыми возникает ионная связь.Для того чтобы два атома смогли создать ионную связь,необходимо, чтобы их э.о. очень сильно различались.Если э.о. равны,то образуется неполярная ковалентная связь.Чаще всего встречается полярная ковалентная связь- она образуется между любыми атомами,имеющими разное значение э.о.

Количественной оценкой полярности связи могут служить эффективные заряды атомов.эффективный заряд атома характерезует разность между числом электоронов,принадлежащих данному атому в химическом соединении, и числом электронов свободного атома.атом более электроотрицательного элемента притягивает электроны сильнее,поэтому электроны оказываются ближе к нему,и он получает некоторый отрицательный заряд,который называют эффективным,а у его партнера появляется такой же положительный эффективный заряд.Если электроны,образующие связь между атомами, принадлежат им в равной степени,эффективные заряяды равны нулю.

Для двухатомных молекул охарактеризовать полярность связи и определить эффективные заряды атомов можно на основе измерения дипольного момента M=q*r где q-заряд полюса диполя,равный для двухатомной молекулы эффективному заряду, r-межъядерное расстояние.Диполный момент связи является векторной величиной. Он направлен от положительно зарядной части молекулы к ее отрицательной части.Эффектичный заряд на атоме элемента не совпадает со степенью окисления.

Полярность молекул в значительной мере определяет свойства веществ. Полярные молекулы поворачиваются друг к другу разноимённо заряженными полюсами, и между ними возникает взаимное притяжение. Поэтому вещества, образованные полярными молекулами, имеют более высокие температуры плавления и кипения, чем вещества, молекулы которых неполярны.

Жидкости, молекулы которых полярны, имеют более высокую растворяющую способность. При этом чем больше полярность молекул растворителя, тем выше растворимость в ней полярных или ионных соединений. Эта зависимость объясняется тем, что полярные молекулы растворителя за счет диполь-дипольного или ион-дипольного взаимодействия с растворяемым веществом способствуют распаду растворяемого вещества на ионы. Например, раствор хлороводорода в воде, молекулы которой полярны, хорошо проводит электрический ток. Раствор хлороводорода в бензоле не обладает заметной электропроводностью. Это указывает на отсутствие ионизации хлороводорода в бензольном растворе, так как молекулы бензола неполярны.

Ионы, подобно электрическому полю, оказывают поляризующее действие друг на друга. При встрече двух ионов происходит их взаимная поляризация, т.е. смещение электронов внешних слоев относительно ядер. Взаимная поляризация ионов зависит от зарядов ядра и иона, радиуса иона и других факторов.

Внутри групп э.о. уменьшается.

Металлические свойства элементов возрастают.

Металлические элементы на внешнем энергетическом уровне содержат 1,2,3 электрона и характеризуются низким значением ионизационных потенциалов и э.о. потому что металлы проявляют выраженную тенденцию к отдаче электронов.
Неметаллические элементы отличаются более высоким значением энергии ионизации.
По мере заполнения наружной оболочки у неметаллов внутри периодов уменьшается радиус атомов. На внешней оболочке число электронов равно 4,5,6,7,8.

Полярность химической связи. Полярность молекул и ионов.

Полярность химической с вязи – определяется смещением связей электронной пары к одному из атомов.

Химическая связь возникает за счет перераспределения электронов валентных орбиталей, в результате чего возникает устойчивая электронная конфигурация благородного газа, за счет образования ионов или образования общих электронных пар.
Химическая связь характеризуется энергией и длиной.
Мерой прочности связи служит энергия, затрачиваемая на разрушение связи.
Например. Н – Н = 435 кДжмоль-1

Электроотрицательность атомово элементов
Электроотрицательность - химическое свойство атома, количественная характеристика способности атома в молекуле притягивать к себе электроны от атомов других элементов.
Относительная электроотрицательность

Первой и наиболее известной шкалой относительной электроотрицательности является шкала Л.Полинга, полученная из термохимических данных и предложенная в 1932 г. За начало отсчета в этой шкале произвольно принята величина электроотрицательности наиболее электроотрицательного элемента фтора, (F) = 4,0.

Элементы VIII группы периодической системы (благородные газы) имеют нулевую электроотрицательность;
Условной границей между металлами и неметаллами считается значение относительной электроотрицательности равное 2.

Электроотрицательность элементов периодической системы, как правило, последовательно возрастает слева направо в каждом периоде. В пределах каждой группы, за несколькими исключениями, электроотрицательность последовательно убывает сверху вниз. С помощью электроотрицательностей можно охарактеризовать химическую связь.
Связи с меньшей разностью электроотрицательностей атомов относят к полярным ковалентным связям. Чем меньше разность электроотрицательностей атомов, образующих химическую связь, тем меньше степень ионности этой связи. Нулевая разность электроотрицательностей атомов указывает на отсутствие ионного характера у образованной ими связи, т. е. на ее сугубую ковалентность.

Полярность химической связи, полярность молекул и ионов
Полярность химических связей, характеристика химической связи, показывающая перераспределение электронной плотности в пространстве вблизи ядер по сравнению с исходным распределением этой плотности в нейтральных атомах, образующих данную связь.

Практически все химические связи, за исключениям связей в двухатомных гомоядерных молекулах - в той или иной степени полярны. Обычно ковалентные связи слабо полярны, ионные связи сильно полярны.

Например:
ковалентная неполярная: Cl2, O2, N2, H2,Br2

ковалентная полярная: H2O, SO2, HCl, NH3 и т.д.

Электроотрицательность - способность атомов смещать в свою сторону электроны при образовании химической связи. Это понятие было введено американским химиком Л. Полингом (1932 г.). Электроотрицательность характеризует способность атома данного элемента притягивать к себе общую электронную пару в молекуле. Величины электроотрицательности, определенные различными способами, отличаются друг от друга. В учебной практике чаще всего пользуются не абсолютными, а относительными значениями электроотрицательности. Наиболее распространенной является шкала, в которой электроотрицательности всех элементов сравниваются с электроотрицательностью лития , принятой за единицу.

Среди элементов групп IA - VIIA:

электроотрицательность с увеличением порядкового номера, как правило, в периодах увеличивается («слева направо»), а в группах - уменьшается («сверху вниз»).

Закономерности изменения электроотрицательности среди элементов d-блока имеют значительно более сложный характер.

Элементы с высокой электроотрицательностью, атомы которых имеют большое сродство к электрону и высокую энергию ионизации, т. е. склонные к присоединению электрона или смещению пары связывающих электронов в свою сторону, называются неметаллами.

К ним относятся: водород , углерод , азот , фосфор , кислород , сера , селен , фтор , хлор , бром и иод . По ряду признаков к неметаллам относят также особняком стоящую группу благородных газов (гелий -радон).

К металлам относится большинство элементов Периодической системы.

Для металлов характерны низкая электроотрицательность, т. е. низкие значения энергии ионизации и сродства к электрону. Атомы металлов либо отдают электроны атомам неметаллов, либо смешают от себя пары связывающих электронов. Металлы отличаются характерным блеском, высокой электрической проводимостью и хорошей теплопроводностью. Они в большинстве своем обладают прочностью и ковкостью.

Такой набор физических свойств, отличающих металлы от неметаллов, объясняется особым типом связи, существующей в металлах. Все металлы имеют четко выраженную кристаллическую решетку. В ее узлах наряду с атомами находятся катионы металлов, т.е. атомы, потерявшие свои электроны. Эти электроны образуют обобществленное электронное облако, так называемый электронный газ. Эти электроны находятся в силовом поле многих ядер. Такая связь называется металлической. Свободная миграция электронов по объему кристалла и обусловливает особые физические свойства металлов.

К металлам относятся все d и f-элементы. Если из Периодической системы мысленно выделить только блоки s- и p-элементов, т. е. элементы группы А и провести диагональ из левого верхнего угла в правый нижний угол, то окажется, что неметаллические элементы располагаются в правой стороне от этой диагонали, а металлические - в левой. К диагонали примыкают элементы, которые нельзя отнести однозначно ни к металлам, ни к неметаллам. К этим промежуточным по свойствам элементам относятся: бор , кремний , германий , мышьяк , сурьма , селен , полоний и астат .

Представления о ковалентной и ионной связи сыграли важную роль в развитии представлений о строении вещества, однако создание новых физико-химических методов исследования тонкой структуры вещества и их использование показали, что феномен химической связи значительно сложнее. В настоящее время считается, что любая гетероатомная связь является одновременно и ковалентной, и ионной, но в разных соотношениях. Таким образом вводится понятие о ковалентной и ионной составляющих гетероатомной связи. Чем больше разница в электроотрицательности связывающихся атомов, тем больше полярность связи. При разнице больше двух единиц преобладающей практически всегда является ионная составляющая. Сравним два оксида: оксид натрия Na 2 O и оксид хлора(VII) Cl 2 O 7 . В оксиде натрия частичный заряд на атоме кислорода составляет -0,81, а в оксиде хлора -0,02. Это фактически означает, что связь Na-O на 81% является ионной и на 19% - ковалентной. Ионная составляющая связи Cl-O равна только 2%.

Список использованной литературы

  1. Попков В. А. , Пузаков С. А. Общая химия: учебник. - М.: ГЭОТАР-Медия, 2010. - 976 с.: ISBN 978-5-9704-1570-2. [с. 35-37]
  2. Волков, А.И., Жарский, И.М. Большой химический справочник / А.И. Волков, И.М. Жарский. - Мн.: Современная школа, 2005. - 608 с ISBN 985-6751-04-7.
Периоды Группы
I II III IV V VI VII
H 2,1
Li 1,0 Be 1,5 B 2,0 C 2,5 N 3,0 O 3,5 F 4,0
Na 0,9 Mg 1,2 Al 1,6 Si 1,8 P 2,1 S 2,5 Cl 3,0
K 0,8 Ca 1,0 Ga 1,6 Ge 1,8 As 2,0 Se 2,4 Br 2,8
Rb 0,8 Sr 1,0 In 1,7 Sn 1,8 Sb 1,9 Te 2,1 I 2,5
Cs 0,7 Ba 0,9 Tl 1,8 Pb 1,6 Bi 1,9 Po 2,0 At 2,2

Примеры решения задач

Пример 1 . Объясните, почему алюминий и скандий находятся в одной группе, но в разных подгруппах?

Р е ш е н и е. 1) Запишем электронные конфигурации атомов и выделим валентные уровни: Al 1s 2 2s 2 2p 6 3s 2 3p 1

Sc 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 1

2) Обоснуем расположение элементов Al и Sc в одной группе, но в разных подгруппах. Атомы алюминия и скандия имеют одинаковое число валентных электронов – три. Следовательно, Al и Sc – это элементы одной группы (III). Однако характер заполнения валентного уровня у этих атомов различен. Алюминий – это p – элемент, у него последним заполняется p – подуровень внешнего энергетического уровня, поэтому валентными являются электроны 3s 2 3p 1 . Скандий – это d - элемент, у которого в последнюю очередь заполняется d – подуровень предпоследнего энергетического уровня, поэтому валентные электроны – 4s 2 3d 1 . Именно это является причиной расположения атомов Al и Sc в разных подгруппах: Al (IIIА) – в главной, а Sc (IIIB) – в побочной подгруппе.

Пример 2 . Руководствуясь положением элементов в Периодической системе, определите, какой из атомов – сера или теллур проявляет более сильные неметаллические свойства.

Р е ш е н и е. 1) Определяем координаты этих элементов в Периодической системе: S (3, VIA) и Те (5, VIA), т.е. эти элементы являются электронными аналогами, так как расположены в одной (главной) подгруппе VI группы.

2) Составляем электронные формулы атомов этих элементов и выделяем строение внешних уровней (именно они ответственны за химические свойства любого атома):
S – 1s 2 2s 2 2p 6 3s 2 3p 4 , Те – 1s 2 2s 2 3s 2 Зр 6 3d 10 4s 2 4р 6 4d 10 5s 2 5р 4

Действительно, атомы S и Те имеют сходное строение внешнего уровня, который можно представить в виде ns 2 nр 4 , т.е. на внешнем уровне находится 6 валентных электронов.

3) Сравним неметаллические свойства атомов S и Те . Неметаллические свойства определяются способностью атома присоединять электроны при их химическом взаимодействии. Неметаллические свойства атомов зависят от конфигурации внешнего уровня, радиуса атома (г ат) и величины энергии сродства к электрону (Е е ).

Как уже отмечалось, элементы S и Те расположены в одной группе, имеют сходное строение внешнего уровня - ns 2 nр 4 . Однако атом S имеет три энергетических уровня, а атом Те – пять, поэтому валентные электроны у S расположены ближе к ядру. Радиус атома S меньше, чем радиус атома Те , а энергия сродства к электрону больше, чем Е е атома Te (в главной подгруппе сверху вниз г ат увеличивается, а Е е уменьшается). Поэтому атом S обладает большей способностью присоединять электроны. Следовательно, атом S по сравнению с атомом Те проявляет более сильные неметаллические свойства.

Пример 3 . Руководствуясь Периодической системой, определите какой из элементов – магний или алюминий обладает более выраженными металлическими свойствами.

Р е ш е н и е. 1) Химические свойства элементов определяются электронным строением внешних уровней их атомов. Запишем электронные конфигурации атомов магния и алюминия. Они расположены в третьем периоде (имеют одинаковое число энергетических уровней, равное трем). Магний – элемент второй группы, имеет два валентных ē . Алюминий – элемент третьей группы, имеет три валентных ē . Оба элемента расположены в главных подгруппах, т.е. все валентные электроны находятся на внешнем уровне. Отсюда электронные конфигурации внешних уровней: Mg 2s 2 , Al 3s 2 3p 1 .

2) Сравним металлические свойства атомов этих элементов – способность отдавать электроны при химическом взаимодействии. Металлические свойства зависят от конфигурации внешнего уровня, радиуса атома (r ат ) и энергии ионизации (Е и ). Магний и алюминий находятся в одном периоде. При переходе от Mg к Al происходит увеличение заряда ядра и числа ē на внешнем уровне, которые все сильнее удерживаются ядром атома вследствие уменьшения r ат . При этом Е и возрастает и способность атома к отдаче электронов уменьшается. Следовательно, магний обладает более сильными металлическими свойствами, чем алюминий.

1.3. Химическая связь

Выделяют три типа химической связи: ковалентную, ионную и металлическую.

Ковалентная связь – химическая связь, осуществляемая общими электронными парами. В соответствии с методом валентных связей (ВС) ковалентная связь между двумя атомами осуществляется общей для этих атомов парой электронов с противоположными спинами . В момент образования связи атомные орбитали перекрываются, что приводит к увеличению электронной плотности между ядрами взаимодействующих атомов и к взаимному притяжению ядер к области повышенной электронной плотности. В результате этого происходит выделение энергии и потенциальная энергия системы уменьшается.

Общая для двух атомов электронная пара может образовываться по двум механизмам: обменному или донорно-акцепторному.

При обменном механизме два связываемых атома (А и В) предоставляют для образования связи по одному неспаренному электрону, как бы обмениваясь ими:

А +В→ А В А

Донорно-акцепторный механизм образования связи заключается в том, что один атом А (донор) на образование связи предоставляет пару электронов, а другой атом В (акцептор) – вакантную атомную орбиталь.

Различают две разновидности ковалентной связи: неполярную и полярную.

Ковалентная неполярная связь – это связь, при которой область повышенной электронной плотности расположена симметрично относительно ядер обоих атомов. Такая связь образуется между атомами с одинаковой электроотрицательностью (ЭО ), например, в молекулах Cl 2 , O 2 , H 2 и др.

Ковалентная полярная связь – это связь, при которой область повышенной электронной плотности смещена к ядру атома с большей ЭО . В результате этот атом приобретает эффективный отрицательный заряд, а на другом менее электроотрицательном атоме возникает равный по величине эффективный положительный заряд. Такая система представляет собой электрический диполь. Полярная связь образуется между атомами с разной ЭО , например, в молекулах HCl, HI, H 2 O, H 2 S, CO и др. Чем больше разность электроотрицательностей атомов, образующих связь (∆ЭО А – В ), тем выше полярность связи.

Важнейшие свойства ковалентной связи – насыщаемость и направленность. Насыщаемость – это способность атомов образовывать ограниченное число ковалентных связей. В случае обменного механизма число связей равно числу неспаренных валентных электронов атома. Способность атома к образованию химических связей характеризуется валентностью.

Валентность определяется как число химических связей, которыми данный атом соединен с другими атомами. Она зависит от того, в каком состоянии - основном или возбужденном находится атом. Основное состояние – это устойчивое состояние с наименьшей энергией. При возбуждении спаренные валентные электроны разъединяются и переходят с одного подуровня на свободные АО другого, энергетически более высокого подуровня в пределах внешнего энергетического уровня. В результате число неспаренных электронов увеличивается, и атом данного элемента образует максимально возможное для него число химических связей, проявляя при этом высшую валентность и высшую положительную степень окисления, равную номеру группы в Периодической системе (см. примеры решения задач).

Ковалентная связь имеет направленность , которая обусловливает пространственную структуру молекулы, т.е. ее геометрическую форму. В зависимости от способа перекрывания АО различают σ (сигма)- , π (пи)- и
δ (дельта)- связи.

σ – связь обладает осевой симметрией относительно межъядерной оси, и область перекрывания АО лежит на межъядерной оси. Ее могут образовывать s – АО, p – АО и d – АО. Именно σ – связи определяют пространственную конфигурацию молекул:


π – связь образуется при перекрывании АО, расположенных параллельно друг другу. Область перекрывания лежит по обе стороны от межъядерной оси. В образовании π – связи могут участвовать p – и d – АО:

δ – связи образуют толькоd – АО.

Сигма – связь является самой прочной связью и всегда образуется в первую очередь. Между двумя атомами в молекуле возможна лишь одна σ – связь.

Для объяснения геометрической структуры молекул (или направленности ковалентной связи) используют представление о гибридизации атомных орбиталей центрального атома в молекуле АВ n .

Гибридизация – это выравнивание энергии различных АО у атома А в результате их смешения перед химическим взаимодействием, что приводит к образованию гибридных орбиталей. В гибридизации участвуют только АО одного уровня, например, 2s и 2p . Каждому виду гибридизации АО соответствует определенная геометрическая форма молекулы. Например, sp – гибридизации (две связи) соответствует линейная форма молекулы (BeCl 2 ), sp 2 – гибридизации (три связи) – плоская треугольная (BCl 3 ), sp 3 - гибридизации (четыре связи) – тетраэдрическая (CH 4 ).

Ионная связь – связь между ионами, осуществляемая их электростатическим взаимодействием. Ионная связь возникает между атомами металлов и неметаллов, резко отличающимися по своей электроотрицательности. Механизм образования ионной связи заключается в переходе электронов от одного атома к другому (более электроотрицательному), в результате чего атомы превращаются в противоположно заряженные ионы (катион и анион) и происходит их электростатическое взаимодействие. Свойства ионной связи – ненаправленность и ненасыщаемость.

Металлическая связь – это связь, образованная в результате перекрывания валентных орбиталей атомов металлов, в результате чего электроны свободно перемещаются из одной орбитали в другую, осуществляя связь между всеми атомами кристалла металла.

Примеры решения задач

Пример 1. Объясните механизм образования ковалентной химической связи в молекуле HBr и оцените степень ее полярности.

Р е ш е н и е. 1) Для объяснения механизма образования ковалентной химической связи необходимо определить, какие электроны участвуют в образовании этой связи. Запишем электронные конфигурации атомов и электронные схемы строения их валентных уровней; изобразим форму АО, участвующих в образовании связи.

Br 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 5

Для образования ковалентной связи атомы водорода и брома предоставляют по одному неспаренному электрону с антипараллельными спинами: атом Н – электрон, находящийся на s – АО (форма АО – сфера), а атом Br – электрон с
p – АО (форма АО – гантель).

2) Покажем механизм образования ковалентной связи в молекуле HBr .

В молекуле HBr связь создается за счет перекрывания двух атомных орбиталей: s – АО и p – АО с образованием между ядрами атомов H и Br зоны повышенной электронной плотности:

H Br

3) Для определения степени полярности связи рассчитаем разность электроотрицательностей атомов, образующих молекулу: ЭО Н = 2,2; ЭО Br = 2,8; т.е. ЭО H − Br = 0,6, поэтому связь в молекуле HBr ковалентная полярная.

4) Определим вид химической связи в зависимости от способа перекрывания АО взаимодействующих атомов. В молекулах с одинарной химической связью (а именно таковой является молекула HBr ) всегда образуется σ – связь как более прочная. В случае σ – связи область перекрывания АО расположена на линии, соединяющей ядра двух атомов.

Пример 2. Определите химические свойства, валентность и возможные степени окисления атома углерода в основном и возбужденном состояниях.

Р е ш е н и е. 1) Рассмотрим основное состояние атома углерода. Так как химические свойства атома определяются его электронным строением, составим электронную конфигурацию атома С и выделим строениевалентного уровня:

С Z = +6 , 1s 2 2s 2 2p 2

2) Составим электронную схему валентного уровня и определим химические свойства атома С , его валентность и степень окисления.

Валентность атома определяется числом неспаренных электронов валентного уровня. Из данной схемы видно, что атом углерода имеет два неспаренных валентных электрона, значит в основном состоянии валентность атома углерода равна двум (В=II), т.е. атом углерода может образовывать две химические связи. Вступая во взаимодействие с другими атомами, атом С стремится завершить свой внешний уровень. Поэтому он может отдать эти два неспаренных электрона, проявляя при этом восстановительные свойства и превращаясь в положительно заряженный ион со степенью окисления +2: С 0 − 2 ē = С +2

2s 2 2p 2 2s 2 (типа He)

Но атом углерода, как неметалл, может принимать недостающие до завершения внешнего уровня четыре электрона, проявляя окислительные свойства и превращаясь в отрицательно заряженный ион со степенью окисления – 4:

С 0 + 4 ē = С -4

2s 2 2p 2 2s 2 2p 6 (типа Ne)

3) Рассмотрим возбужденное состояние атома углерода. Для возбуждения атома необходимо наличие свободной АО внутри валентного уровня и спаренных электронов. Из электронной схемы строения внешнего уровня атома углерода видно, что атом С имеет вакантную АО на 2p – подуровне, а из четырех валентных электронов два электрона (2s 2 ) спарены. Следовательно, атом углерода может находиться в возбужденном состоянии. При возбуждении происходит распаривание 2s 2 - электронов и переход их с 2s - на 2p – подуровень:

С 0 …2s 2 2p 2 → С* … 2s 1 2p 3

Основное состояние Возбужденное состояние

При возбуждении число неспаренных электронов увеличивается до четырех. Значит в возбужденном состоянии атом углерода проявляет валентность В=IV и образует четыре химические связи. В возбужденном состоянии атом С может только отдать на связь свои 4ē , проявляя восстановительные свойства и превращаясь в положительно заряженный ион со степенью окисления +4:

С 0 – 4 ē = С +4

2s 2 2p 2 1s 2 (типа He)

Пример 3. Определите, какая связь C−N или C−H является более полярной. Укажите, к ядру какого атома происходит смещение общей электронной пары.

Р е ш е н и е. Для определения полярности связи необходимо найти разность электроотрицательностей атомов (∆ЭО ), образующих эти связи. Из табл.1 выписываем значения ЭО этих атомов и находим ∆ЭО:
ЭО С = 2,5; ЭО N = 3,0; ЭО H = 2,1; ∆ЭО C − N = 3,0 – 2,5 = 0,5; ∆ЭО C − H = 2,5 – 2,1 = 0,4.

Известно, что чем больше ∆ЭО атомов, образующих связь, тем выше полярность связи. Поэтому более полярной является связь C–N . При образовании ковалентной связи общая электронная пара смещается к ядру атома с большей ЭО . В химической связи C−N общая электронная пара смещена к атому N , а в химической связи C−H – к атому С .