Синусы косинусы тангенсы 30 45 60. Нахождение значений синусов, косинусов, тангенсов и котангенсов

Вводный урок по тригонометрии был представлен в предыдущей презентации. Школьники ознакомились с понятиями синус, косинус и тангенс, как они обозначаются, как их находить. Рассматривался острый угол некоторого прямоугольного треугольника. Также, они ознакомились с основным тригонометрическим тождеством, что составляет основу для многочисленных формул, с которыми ученики ознакомятся несколько позже.

Данный урок предлагает рассмотреть определенные углы: 45, 30 и 60 градусов. Необходимо найти их синус, косинус и тангенс. Все эти три угла являются острыми. Подразумевается, что мы работаем с прямоугольными треугольниками, как и в предыдущем уроке.

слайды 1-2 (Тема презентации "Значение синуса, косинуса и тангенса для углов 30, 45 и 60 градусов", пример)

Первый слайд презентации «Значение синуса, косинуса и тангенса для углов 30, 45 и 60 градусов» продемонстрирует учащимся некоторый прямоугольный треугольник, острый угол которого равен 30 градусов. Зная о том, что один из углов является прямым, можем легко вычислить значение третьего угла. Сумма всех углов любого треугольника составляет 180 градусов. Об этом свойстве ученики восьмого класса уже должны знать. Итак, для того, чтобы найти третий неизвестный угол, необходимо отнять от 180и градусов 120 градусов, что составляет сумму остальных двух сторон. Третий неизвестный угол равен 60 градусов. Это отмечено на чертеже.

Автор отмечает, что отношение катетов прямоугольного треугольника ABС равно одной второй. Откуда автор получил такое число? Дело в том, что катет, который лежит напротив угла 30 градусов, что можно увидеть на рисунке, равняется половине гипотенузы данного треугольника. Это является одним из важных свойств прямоугольных треугольников. Данное отношение является синусом угла 30 градусов. Таким образом, синус угла 30 градусов найден.

слайды 3-4 (пример, таблица синусов, косинусов, тангенсов)

Данное отношение является также и косинусом для угла прилежащего к катету, то есть для угла 60 градусов. Далее, исходя из информации, которая была получена на предыдущем уроке, можно посчитать оставшийся тангенс, поделив найденный синус определенного угла на найденный косинус того же угла.

Следующий слайд аналогичным образом исследует синус, косинус и тангенс угла 45 градусов. Для начала находится третий неизвестный угол. Выясняется, что углы при гипотенузе равны, то есть треугольник, помимо того, что является прямоугольным, еще и равнобедренный. По теореме Пифагора выразим гипотенузу через катеты. Так как они равны, как выяснилось, то можно заменить один катет другим и получить простое произведение числа 2 на квадрат одного из катетов. Далее, автор избавляется от иррациональности и выражает катет. Таким образом, находятся два катета. Далее, пользуясь изученными формулами можно найти и синус, и косинус, и тангенс угла 45 градусов.

На последнем слайде приводятся данные значения в виде таблицы. Желательно, чтобы школьники записали таблицу себе с тетради. Можно сказать, она является аналогом таблицы умножения, только тригонометрическая. Желательно, чтобы школьники знали о том, откуда появились данные значения и запомнили таблицы.


В этой статье собраны таблицы синусов, косинусов, тангенсов и котангенсов . Сначала мы приведем таблицу основных значений тригонометрических функций, то есть, таблицу синусов, косинусов, тангенсов и котангенсов углов 0, 30, 45, 60, 90, …, 360 градусов (0, π/6, π/4, π/3, π/2, …, 2π радиан). После этого мы дадим таблицу синусов и косинусов, а также таблицу тангенсов и котангенсов В. М. Брадиса, и покажем, как использовать эти таблицы при нахождении значений тригонометрических функций.

Навигация по странице.

Таблица синусов, косинусов, тангенсов и котангенсов для углов 0, 30, 45, 60, 90, … градусов

Список литературы.

  • Алгебра: Учеб. для 9 кл. сред. шк./Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского.- М.: Просвещение, 1990.- 272 с.: ил.- ISBN 5-09-002727-7
  • Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.
  • Брадис В. М. Четырехзначные математические таблицы: Для общеобразоват. учеб. заведений. - 2-е изд. - М.: Дрофа, 1999.- 96 с.: ил. ISBN 5-7107-2667-2

Понятия синуса (), косинуса (), тангенса (), котангенса () неразрывно связаны с понятием угла. Чтобы хорошо разобраться в этих, на первый взгляд, сложных понятиях (которые вызывают у многих школьников состояние ужаса), и убедиться, что «не так страшен черт, как его малюют», начнём с самого начала и разберёмся в понятии угла.

Понятие угла: радиан, градус

Давай посмотрим на рисунке. Вектор «повернулся» относительно точки на некую величину. Так вот мерой этого поворота относительно начального положения и будет выступать угол .

Что же ещё необходимо знать о понятии угла? Ну, конечно же, единицы измерения угла!

Угол, как в геометрии, так и в тригонометрии, может измеряться в градусах и радианах.

Углом в (один градус) называют центральный угол в окружности, опирающийся на круговую дугу, равную части окружности. Таким образом, вся окружность состоит из «кусочков» круговых дуг, или угол, описываемый окружностью, равен.

То есть на рисунке выше изображён угол, равный, то есть этот угол опирается на круговую дугу размером длины окружности.

Углом в радиан называют центральный угол в окружности, опирающийся на круговую дугу, длина которой равна радиусу окружности. Ну что, разобрался? Если нет, то давай разбираться по рисунку.

Итак, на рисунке изображён угол, равный радиану, то есть этот угол опирается на круговую дугу, длина которой равна радиусу окружности (длина равна длине или радиус равен длине дуги). Таким образом, длина дуги вычисляется по формуле:

Где - центральный угол в радианах.

Ну что, можешь, зная это, ответить, сколько радиан содержит угол, описываемый окружностью? Да, для этого надо вспомнить формулу длины окружности. Вот она:

Ну вот, теперь соотнесём эти две формулы и получим, что угол, описываемый окружностью равен. То есть, соотнеся величину в градусах и радианах, получаем, что. Соответственно, . Как можно заметить, в отличие от «градусов», слово «радиан» опускается, так как единица измерения обычно ясна из контекста.

А сколько радиан составляют? Всё верно!

Уловил? Тогда вперёд закреплять:

Возникли трудности? Тогда смотри ответы :

Прямоугольный треугольник: синус, косинус, тангенс, котангенс угла

Итак, с понятием угла разобрались. А что же всё-таки такое синус, косинус, тангенс, котангенс угла? Давай разбираться. Для этого нам поможет прямоугольный треугольник.

Как называются стороны прямоугольного треугольника? Всё верно, гипотенуза и катеты: гипотенуза - это сторона, которая лежит напротив прямого угла (в нашем примере это сторона); катеты - это две оставшиеся стороны и (те, что прилегают к прямому углу), причём, если рассматривать катеты относительно угла, то катет - это прилежащий катет, а катет - противолежащий. Итак, теперь ответим на вопрос: что такое синус, косинус, тангенс и котангенс угла?

Синус угла - это отношение противолежащего (дальнего) катета к гипотенузе.

В нашем треугольнике.

Косинус угла - это отношение прилежащего (близкого) катета к гипотенузе.

В нашем треугольнике.

Тангенс угла - это отношение противолежащего (дальнего) катета к прилежащему (близкому).

В нашем треугольнике.

Котангенс угла - это отношение прилежащего (близкого) катета к противолежащему (дальнему).

В нашем треугольнике.

Эти определения необходимо запомнить ! Чтобы было проще запомнить какой катет на что делить, необходимо чётко осознать, что в тангенсе и котангенсе сидят только катеты, а гипотенуза появляется только в синусе и косинусе . А дальше можно придумать цепочку ассоциаций. К примеру, вот такую:

Косинус→касаться→прикоснуться→прилежащий;

Котангенс→касаться→прикоснуться→прилежащий.

В первую очередь, необходимо запомнить, что синус, косинус, тангенс и котангенс как отношения сторон треугольника не зависят от длин этих сторон (при одном угле). Не веришь? Тогда убедись, посмотрев на рисунок:

Рассмотрим, к примеру, косинус угла. По определению, из треугольника: , но ведь мы можем вычислить косинус угла и из треугольника: . Видишь, длины у сторон разные, а значение косинуса одного угла одно и то же. Таким образом, значения синуса, косинуса, тангенса и котангенса зависят исключительно от величины угла.

Если разобрался в определениях, то вперёд закреплять их!

Для треугольника, изображённого ниже на рисунке, найдём.

Ну что, уловил? Тогда пробуй сам: посчитай то же самое для угла.

Единичная (тригонометрическая) окружность

Разбираясь в понятиях градуса и радиана, мы рассматривали окружность с радиусом, равным. Такая окружность называется единичной . Она очень пригодится при изучении тригонометрии. Поэтому остановимся на ней немного подробней.

Как можно заметить, данная окружность построена в декартовой системе координат. Радиус окружности равен единице, при этом центр окружности лежит в начале координат, начальное положение радиус-вектора зафиксировано вдоль положительного направления оси (в нашем примере, это радиус).

Каждой точке окружности соответствуют два числа: координата по оси и координата по оси. А что это за числа-координаты? И вообще, какое отношение они имеют к рассматриваемой теме? Для этого надо вспомнить про рассмотренный прямоугольный треугольник. На рисунке, приведённом выше, можно заметить целых два прямоугольных треугольника. Рассмотрим треугольник. Он прямоугольный, так как является перпендикуляром к оси.

Чему равен из треугольника? Всё верно. Кроме того, нам ведь известно, что - это радиус единичной окружности, а значит, . Подставим это значение в нашу формулу для косинуса. Вот что получается:

А чему равен из треугольника? Ну конечно, ! Подставим значение радиуса в эту формулу и получим:

Так, а можешь сказать, какие координаты имеет точка, принадлежащая окружности? Ну что, никак? А если сообразить, что и - это просто числа? Какой координате соответствует? Ну, конечно, координате! А какой координате соответствует? Всё верно, координате! Таким образом, точка.

А чему тогда равны и? Всё верно, воспользуемся соответствующими определениями тангенса и котангенса и получим, что, а.

А что, если угол будет больше? Вот, к примеру, как на этом рисунке:

Что же изменилось в данном примере? Давай разбираться. Для этого опять обратимся к прямоугольному треугольнику. Рассмотрим прямоугольный треугольник: угол (как прилежащий к углу). Чему равно значение синуса, косинуса, тангенса и котангенса для угла? Всё верно, придерживаемся соответствующих определений тригонометрических функций:

Ну вот, как видишь, значение синуса угла всё так же соответствует координате; значение косинуса угла - координате; а значения тангенса и котангенса соответствующим соотношениям. Таким образом, эти соотношения применимы к любым поворотам радиус-вектора.

Уже упоминалось, что начальное положение радиус-вектора - вдоль положительного направления оси. До сих пор мы вращали этот вектор против часовой стрелки, а что будет, если повернуть его по часовой стрелке? Ничего экстраординарного, получится так же угол определённой величины, но только он будет отрицательным. Таким образом, при вращении радиус-вектора против часовой стрелки получаются положительные углы , а при вращении по часовой стрелке - отрицательные.

Итак, мы знаем, что целый оборот радиус-вектора по окружности составляет или. А можно повернуть радиус-вектор на или на? Ну конечно, можно! В первом случае, таким образом, радиус-вектор совершит один полный оборот и остановится в положении или.

Во втором случае, то есть радиус-вектор совершит три полных оборота и остановится в положении или.

Таким образом, из приведённых примеров можем сделать вывод, что углы, отличающиеся на или (где - любое целое число), соответствуют одному и тому же положению радиус-вектора.

Ниже на рисунке изображён угол. Это же изображение соответствует углу и т.д. Этот список можно продолжить до бесконечности. Все эти углы можно записать общей формулой или (где - любое целое число)

Теперь, зная определения основных тригонометрических функций и используя единичную окружность, попробуй ответить, чему равны значения:

Вот тебе в помощь единичная окружность:

Возникли трудности? Тогда давай разбираться. Итак, мы знаем, что:

Отсюда, мы определяем координаты точек, соответствующих определённым мерам угла. Ну что же, начнём по порядку: углу в соответствует точка с координатами, следовательно:

Не существует;

Дальше, придерживаясь той же логики, выясняем, что углам в соответствуют точки с координатами, соответственно. Зная это, легко определить значения тригонометрических функций в соответствующих точках. Сначала попробуй сам, а потом сверяйся с ответами.

Ответы:

Не существует

Не существует

Не существует

Не существует

Таким образом, мы можем составить следующую табличку:

Нет необходимости помнить все эти значения. Достаточно помнить соответствие координат точек на единичной окружности и значений тригонометрических функций:

А вот значения тригонометрических функций углов в и, приведённых ниже в таблице, необходимо запомнить :

Не надо пугаться, сейчас покажем один из примеров довольно простого запоминания соответствующих значений :

Для пользования этим методом жизненно необходимо запомнить значения синуса для всех трёх мер угла (), а также значение тангенса угла в. Зная эти значения, довольно просто восстановить всю таблицу целиком -значения косинуса переносятся в соответствии со стрелочками, то есть:

Зная это можно восстановить значения для. Числитель « » будет соответствовать, а знаменатель « » соответствует. Значения котангенса переносятся в соответствии со стрелочками, указанными на рисунке. Если это уяснить и запомнить схему со стрелочками, то будет достаточно помнить всего значения из таблицы.

Координаты точки на окружности

А можно ли найти точку (её координаты) на окружности, зная координаты центра окружности, её радиус и угол поворота ?

Ну, конечно, можно! Давай выведем общую формулу для нахождения координат точки .

Вот, к примеру, перед нами такая окружность:

Нам дано, что точка - центр окружности. Радиус окружности равен. Необходимо найти координаты точки, полученной поворотом точки на градусов.

Как видно из рисунка, координате точки соответствует длина отрезка. Длина отрезка соответствует координате центра окружности, то есть равна. Длину отрезка можно выразить, используя определение косинуса:

Тогда имеем, что для точки координата.

По той же логике находим значение координаты y для точки. Таким образом,

Итак, в общем виде координаты точек определяются по формулам:

Координаты центра окружности,

Радиус окружности,

Угол поворота радиуса вектора.

Как можно заметить, для рассматриваемой нами единичной окружности эти формулы значительно сокращаются, так как координаты центра равны нулю, а радиус равен единице:

Ну что, попробуем эти формулы на вкус, поупражняясь в нахождении точек на окружности?

1. Найти координаты точки на единичной окружности, полученной поворотом точки на.

2. Найти координаты точки на единичной окружности, полученной поворотом точки на.

3. Найти координаты точки на единичной окружности, полученной поворотом точки на.

4. Точка - центр окружности. Радиус окружности равен. Необходимо найти координаты точки, полученной поворотом начального радиус-вектора на.

5. Точка - центр окружности. Радиус окружности равен. Необходимо найти координаты точки, полученной поворотом начального радиус-вектора на.

Возникли проблемы в нахождении координот точки на окружности?

Реши эти пять примеров (или разберись хорошо в решении) и ты научишься их находить!

1.

Можно заметить, что. А мы ведь знаем, что соответствует полному обороту начальной точки. Таким образом, искомая точка будет находиться в том же положении, что и при повороте на. Зная это, найдём искомые координаты точки:

2. Окружность единичная с центром в точке, значит, мы можем воспользоваться упрощёнными формулами:

Можно заметить, что. Мы знаем, что соответствует двум полным оборотам начальной точки. Таким образом, искомая точка будет находиться в том же положении, что и при повороте на. Зная это, найдём искомые координаты точки:

Синус и косинус - это табличные значения. Вспоминаем их значения и получаем:

Таким образом, искомая точка имеет координаты.

3. Окружность единичная с центром в точке, значит, мы можем воспользоваться упрощёнными формулами:

Можно заметить, что. Изобразим рассматриваемый пример на рисунке:

Радиус образует с осью углы, равные и. Зная, что табличные значения косинуса и синуса равны, и определив, что косинус здесь принимает отрицательное значение, а синус положительное, имеем:

Подробней подобные примеры разбираются при изучении формул приведения тригонометрических функций в теме .

Таким образом, искомая точка имеет координаты.

4.

Угол поворота радиуса вектора (по условию,)

Для определения соответствующих знаков синуса и косинуса построим единичную окружность и угол:

Как можно заметить, значение, то есть положительно, а значение, то есть - отрицательно. Зная табличные значения соответствующих тригонометрических функций, получаем, что:

Подставим полученные значения в нашу формулу и найдём координаты:

Таким образом, искомая точка имеет координаты.

5. Для решения данной задачи воспользуемся формулами в общем виде, где

Координаты центра окружности (в нашем примере,

Радиус окружности (по условию,)

Угол поворота радиуса вектора (по условию,).

Подставим все значения в формулу и получим:

и - табличные значения. Вспоминаем и подставляем их в формулу:

Таким образом, искомая точка имеет координаты.

КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

Синус угла - это отношение противолежащего (дальнего) катета к гипотенузе.

Косинус угла - это отношение прилежащего (близкого) катета к гипотенузе.

Тангенс угла - это отношение противолежащего (дальнего) катета к прилежащему (близкому).

Котангенс угла - это отношение прилежащего (близкого) катета к противолежащему (дальнему).

Каждой тригонометрической функции для данного угла соответствует определенное значение этой функции. Из определений синуса, косинуса, тангенса и котангенса ясно, что значением синуса угла является ордината точки, в которую переходит начальная точка единичной окружности после ее поворота на угол , значением косинуса – абсцисса этой точки, значением тангенса – отношение ординаты к абсциссе, а значением котангенса – отношение абсциссы к ординате.

Достаточно часто при решении задач возникает необходимость в нахождении значений синусов, косинусов, тангенсов и котангенсов указанных углов. Для некоторых углов, например в 0, 30, 45, 60, 90, … градусов, есть возможность найти точные значения тригонометрических функций, для других углов нахождение точных значений оказывается проблематичным и приходится довольствоваться приближенными значениями.

В этой статье мы разберемся, какими принципами следует руководствоваться при вычислении значения синуса, косинуса, тангенса или котангенса. Перечислим их по порядку.

Теперь рассмотрим каждый из перечисленных принципов вычисления значений синусов, косинусов, тангенсов и котангенсов подробно.

Навигация по странице.

    Нахождение значений синуса, косинуса, тангенса и котангенса по определению. Линии синусов, косинусов, тангенсов и котангенсов. Значения синусов, косинусов, тангенсов и котангенсов углов 30, 45 и 60 градусов. Сведение к углу из интервала от 0 до 90 градусов. Достаточно знать значение одной из тригонометрических функций. Нахождение значений с помощью тригонометрических формул. Что делать в остальных случаях?

Нахождение значений синуса, косинуса, тангенса и котангенса по определению

Отталкиваясь от определения синуса и косинуса, можно найти значения синуса и косинуса данного угла . Для этого нужно взять единичную окружность, повернуть начальную точку А(1, 0) на угол , после чего она перейдет в точку А1. Тогда координаты точки А1 дадут соответственно косинус и синус данного угла . После этого можно вычислить тангенс и котангенс угла , вычислив отношения ординаты к абсциссе и абсциссы к ординате соответственно.

По определению мы можем вычислить точные значения синуса, косинуса, тангенса и котангенса углов 0, ±90, ±180, ±270, ±360, … градусов (0, ±р/2, ±р, ±3р/2, ±2р, …радиан). Разобьем эти углы на четыре группы: 360·z градусов (2р·z радиан),90+360·z градусов (р/2+2р·z радиан), 180+360·z градусов (р+2р·z радиан) и270+360·z градусов (3р/2+2р·z радиан), где z – любое целое число. Изобразим на рисунках, где будет располагаться точка А1, получающаяся при повороте начальной точки А на эти углы (при необходимости изучите материал статьи угол поворота).

Для каждой из этих групп углов найдем значения синуса, косинуса, тангенса и котангенса, используя определения.

Что касается остальных углов, отличных от 0, ±90, ±180, ±270, ±360, … градусов, то по определению мы можем найти лишь приближенные значения синуса, косинуса, тангенса и котангенса. Для примера найдем синус, косинус, тангенс и котангенс угла−52 градуса.

Выполним построения.

По чертежу находим, что абсцисса точки А1 приближенно равна 0,62, а ордината приближенно равна −0,78. Таким образом, и . Остается вычислить значения тангенса и котангенса, имеем и .

Понятно, что чем точнее будут выполнены построения, тем точнее будут найдены приближенные значения синуса, косинуса, тангенса и котангенса данного угла. Также понятно, что нахождение значений тригонометрических функций по определению не удобно на практике, так как неудобно выполнять описанные построения.

К началу страницы

Линии синусов, косинусов, тангенсов и котангенсов

Вкратце стоит остановиться на так называемых линиях синусов, косинусов, тангенсов и котангенсов. Линиями синусов, косинусов, тангенсов и котангенсов называют линии, изображаемые совместно с единичной окружностью, имеющие начало отсчета и , равную единицы во введенной прямоугольной системе координат, на них наглядно представляются все возможные значения синусов, косинусов, тангенсов и котангенсов. Изобразим их на чертеже ниже.

К началу страницы

Значения синусов, косинусов, тангенсов и котангенсов углов 30, 45 и 60 градусов

Для углов 30, 45 и 60 градусов известны точные значения синуса, косинуса, тангенса и котангенса. Они могут быть получены по определениям синуса, косинуса, тангенса и котангенса в прямоугольном треугольнике с использованием теоремы Пифагора.

Чтобы получить значения тригонометрических функций для углов 30 и 60 градусов рассмотрим прямоугольный треугольник с этими углами, причем его возьмем таким, чтобы длина гипотенузы равнялась единице. Известно, что катет, лежащий напротив угла 30 градусов вдвое меньше гипотенузы, следовательно, его длина равна 1/2. Длину другого катета находим по теореме Пифагора: .

Так как синус угла – это отношение противолежащего катета к гипотенузе, то и . В свою очередь косинус – это отношение прилежащего катета к гипотенузе, тогда и . Тангенс – это отношение противолежащего катета к прилежащему, а котангенс – это отношение прилежащего катета к противолежащему, следовательно, и , а также и .

Осталось получить значения синуса, косинуса, тангенса и котангенса для угла 45градусов. Обратимся к прямоугольному треугольнику с углами 45 градусов (он будет равнобедренным) и гипотенузой, равной единице. Тогда по теореме Пифагора несложно проверить, что длины катетов равны . Теперь мы можем вычислить значения синуса, косинуса, тангенса и котангенса как отношение длин соответствующих сторон рассматриваемого прямоугольного треугольника. Имеем и .

Полученные значения синуса, косинуса, тангенса и котангенса углов 30, 45 и 60градусов будут очень часто использоваться при решении различных геометрических и тригонометрических задач, так что рекомендуем их запомнить. Для удобства занесем их в таблицу основных значений синуса, косинуса, тангенса и котангенса.

В заключение этого пункта приведем иллюстрацию значений синуса, косинуса, тангенса и котангенса углов 30, 45 и 60 с использованием единичной окружности и линий синуса, косинуса, тангенса и котангенса.

К началу страницы

Сведение к углу из интервала от 0 до 90 градусов

Сразу заметим, что удобно находить значения тригонометрических функций, когда угол находится в интервале от 0 до 90 градусов (от нуля до пи пополам радиан). Если же аргумент тригонометрической функции, значение которой нам нужно найти, выходит за пределы от 0 до 90 градусов, то мы всегда при помощи формул приведения можем перейти к нахождению значения тригонометрической функции, аргумента которой будет в указанных пределах.

Для примера найдем значение синуса 210 градусов. Представив 210 как 180+30 или как 270−60, соответствующие формулы приведения сводят нашу задачу от нахождения синуса 210 градусов к нахождению значения синуса 30 градусов , или косинуса 60 градусов .

Давайте на будущее условимся при нахождении значений тригонометрических функций всегда с помощью формул приведения переходить к углам из интервала от0 до 90 градусов, если конечно угол уже не находится в этих пределах.

К началу страницы

Достаточно знать значение одной из тригонометрических функций

Основные тригонометрические тождества устанавливают связи между синусом, косинусом, тангенсом и котангенсом одного и того же угла. Таким образом, с их помощью мы можем по известному значению одной из тригонометрических функций найти значение любой другой функции этого же угла.

Рассмотрим решение примера.

Определите, чему равен синус угла пи на восемь, если .

Сначала найдем чему равен котангенс этого угла:

Теперь, используя формулу , мы можем вычислить, чему равен квадрат синуса угла пи на восемь, а следовательно, и искомое значение синуса. Имеем

Осталось лишь найти значение синуса. Так как угол пи на восемь является углом первой координатной четверти, то синус этого угла положителен (при необходимости смотрите раздел теории знаки синуса, косинуса, тангенса и котангенса по четвертям). Таким образом, .

.

К началу страницы

Нахождение значений с помощью тригонометрических формул

В двух предыдущих пунктах мы уже начали освещение вопроса по нахождению значений синуса, косинуса, тангенса и котангенса с использованием формул тригонометрии. Здесь мы лишь хотим сказать, что иногда возможно вычислить требуемое значение тригонометрической функции, используя тригонометрические формулы и известные значения синуса, косинуса, тангенса и котангенса (например, для углов 30, 45 и 60 градусов).

Для примера, используя тригонометрические формулы, вычислим значение тангенса угла пи на восемь, которое мы использовали в предыдущем пункте для нахождения значения синуса.

Найдите значение .

Воспользовавшись формулой тангенса половинного угла, мы можем записать следующее равенство . Значения косинуса угла пи на четыре нам известны, поэтому мы можем сразу вычислить значение квадрата искомого тангенса: .

Угол пи на восемь является углом первой координатной четверти, поэтому тангенс этого угла положителен. Следовательно, .

.