Свойство статистической устойчивости относительной частоты события. Относительная частота. Устойчивость относительной частоты

При классическом определении вероятность события определяется равенством Р(А)=m/n, где m-число элементарных исходов испытания, благоприятствующих появлению события А; n – общее число возможных элементарных исходов испытания.

Предполагается, что элементарные исходы образуют полную группу и равновозможны.

Относительная частота события А: W(A)=m/n, где m – число испытаний, в которых событие А наступило; n-общее число произведенных испытаний.

При статистическом определении в качестве вероятности события принимают его относительную частоту.

Пример: брошены две игральные кости. Найти вероятность того, что сумма очков на выпавших гранях – четная, причем на грани хотя бы одной из костей появится шестерка.

Решение: на выпавшей грани «первой» игральной кости может появиться одно очко,…,шесть очков. аналогичные шесть элементарных исходов возможны при бросании «второй»кости. Каждый из исходов бросания «первой»может сочетаться с каждым из исходов бросания «второй».Т.о. общее число элементарных исходов испытания 6*6=36.эти исходы образуют полную группу и в силу симметрии костей равновозможны. Благоприятствующими событию являются 5 ходов:1)6,2;2)6,4;3)6,6;4)2,6;5)4,6;

Искомая вероятность: Р(А)=5/36

Вы также можете найти интересующую информацию в научном поисковике Otvety.Online. Воспользуйтесь формой поиска:

Еще по теме 3. Относительная частота. Устойчивость относительных частот. Статистическое определение вероятности.:

  1. 4. Классическое определение вероятности. Относительная частота наступления события. Статистическая вероятность. Геометрическая вероятность.
  2. 27. Статистическое определение выборки. Вариационные ряды и их графическое изображение. Полигон и гистограмма частот (относительных частот).
  3. 39. Построение интервального вариационного ряда. Гистограмма частот и относительных частот.
  4. 4.Вероятность отклонения относительной частоты от постоянной вероятности в независимых испытаниях

Известно, что случайное событие вследствие испытания может произойти или не произойти. Но при этом для разных событий в одном и том же испытании существуют разные возможности. Давайте разберём пример. Если в урне сто тщательно перемешанных одинаковых шариков, причем среди них лишь десять черных, а остальные - белые, то при извлечении наугад одного шарика больше возможностей, что появится имеет именно белый. Возможность появления того или иного события в данном испытании имеет численную меру, которая называется вероятностью этого события и согласно теории вероятностей, можно посчитать, каков же шанс увидеть чёрный или белый шар.

Классическое определение вероятности

Предположим, что при проведении определенного испытания возможно появление $n$ элементарных равновозможных событий. Из этого количества число $m$ - это количество тех элементарных событий, которые благоприятствуют появлению определенного события $A$. Тогда вероятностью события $A$ называется отношение $P\left(A\right)=\frac{m}{n} $.

Пример № 1.

В урне 3 белых и 5 черных шариков, которые отличаются лишь цветом. Испытание заключается в том, что из урны наугад вынимают один шарик. Событием $A$ считаем "появление белого шарика". Вычислить вероятность события $A$.

При испытании можно извлечь любой из восьми шариков. Все эти события являются элементарными, поскольку они несовместны и образуют полную группу. Понятно также, что все эти события - равновозможны. Итак, для вычисления вероятности $P\left(A\right)$ можно применить классическое ее определение. Как решение имеем: $n=8$, $m=3$, а вероятность извлечь из шаров именно белый будет равна $P\left(A\right)=\frac{3}{8} $.

Из классического определения вероятности вытекают следующие ее свойства:

  • вероятность достоверного события $V$ всегда равна единице, то есть $P\left(V\right)=1$; это объясняется тем, что достоверному событию благоприятствуют все элементарные события, то есть $m=n$;
  • вероятность невозможного события $H$ всегда равна нулю, то есть $P\left(H\right)=0$; это объясняется тем, что невозможному событию не благоприятствует ни одно из элементарных, то есть $m=0$;
  • вероятность любого случайного события $A$ всегда удовлетворяет условию $0

Таким образом, в общем случае вероятность любого события удовлетворяет неравенству $0\le P\left(A\right)\le 1$.

Относительная частота и её устойчивость

Определение 1

Предположим, что выполняется довольно большое количество испытаний, в каждом из которых может произойти или не произойти определенное событие $A$. Такие испытания называют серией испытаний.

Предположим, что проведена серия из $n$ испытаний, в которых событие $A$ состоялось $m$ раз. Здесь число $m$ называют абсолютной частотой события $A$, а отношение $\frac{m}{n} $ называют относительной частотой события $A$. Например, из $n=20$ использованных во время пожара огнетушителей не сработали (событие $A$) $m=3$ огнетушителя. Здесь $m=3$ - абсолютная частота события $A$, а $\frac{m}{n} =\frac{3}{20} $ - относительная.

Практический опыт и здравый смысл подсказывают, что при малых $n$ значения относительной частоты не могут быть устойчивыми, но если количество испытаний увеличивать, то значения относительной частоты должны стабилизироваться.

Пример № 2.

Для участия в команде тренер отбирает пять мальчиков из десяти. Сколькими способами он может сформировать команду, если два определенных мальчика, образующих костяк команды, должны войти в команду?

В соответствии с условием задачи, двое мальчиков войдут в команду сразу. Следовательно, остается отобрать трех мальчиков из восьми. При этом важен только состав, так роли всех членов команды не различаются. Это значит, что мы имеем дело с сочетаниями.

Сочетаниями из $n$ элементов по $m$ называются комбинации, состоящие из $m$ элементов и отличающиеся друг от друга хотя бы одним элементом, но не порядком расположения элементов.

Количество сочетаний вычисляется по формуле $C_{n}^{m} =\frac{n!}{m!\cdot \left(n-m\right)!} $.

Таким образом, количество различных способов формирования команды в количестве трех мальчиков, выбирая их из восьми мальчиков - это число сочетаний из 8 элементов по 3:

$C_{8}^{3} =\frac{8!}{3!\cdot \left(8-3\right)!} =\frac{8!}{3!\cdot 5!} =\frac{6\cdot 7\cdot 8}{1\cdot 2\cdot 3} =56$

Пример № 3.

На полке в кабинете в случайном порядке расставлено 15 книг, причем 5 из них по алгебре. Преподаватель берет наудачу три книги. Найти вероятность того, что хотя бы одна из взятых книг окажется по алгебре.

Событие $A$ (хотя бы одна из взятых трех книг - книга по алгебре) и $\bar{A}$ (ни одна из взятых трех книг не является книгой по алгебре) - противоположные, поэтому Р(А) + Р($\bar{A}$) = 1. Отсюда Р(А) = 1-Р($\bar{A}$). Таким образом, искомая вероятность Р(А) = 1 - $C_{10}^{3} \, /C_{15}^{3} \, $= 1 - 24/91 = 67/91.

Пример № 4.

Из двадцати акционерных обществ четыре являются иностранными. Гражданин приобрел по одной акции шести акционерных обществ. Какова вероятность того, что среди купленных акций две окажутся акциями иностранных акционерных обществ?

Общее число комбинаций выбора акционерных обществ равно числу сочетаний из 20 по 6, то есть ${\rm C}_{{\rm 20}}^{{\rm 6}} $. Число благоприятствующих исходов определяется как произведение ${\rm C}_{{\rm 4}}^{{\rm 2}} \cdot {\rm C}_{{\rm 16}}^{{\rm 4}} $, где первый сомножитель указывает число комбинаций выбора иностранных акционерных обществ из четырех. Но с каждой такой комбинацией могут встретиться акционерные общества, не являющиеся иностранными. Число комбинаций таких акционерных обществ будет ${\rm C}_{{\rm 16}}^{{\rm 4}} $. Поэтому искомая вероятность запишется в виде ${\rm P}=\frac{{\rm C}_{{\rm 4}}^{{\rm 2}} \cdot {\rm C}_{{\rm 16}}^{{\rm 4}} }{{\rm C}_{{\rm 20}}^{{\rm 6}} } =0,28$.

Пример № 5.

В партии из 18 деталей находятся 4 нестандартных. Наугад выбирают 5 деталей. Найти вероятность того, что из этих 5 деталей две окажутся нестандартными.

Число всех равновозможных несовместных исходов $n$ равно числу сочетаний из 18 по 5, т.е. $n=C_{18}^{5} =8568$.

Подсчитаем число исходов $m$, благоприятствующих событию А. Среди 5 взятых наугад деталей должно быть 3 стандартных и 2 нестандартных. Число способов выборки двух нестандартных деталей из 4 имеющихся нестандартных равно числу сочетаний из 4 по 2: $C_{4}^{2} =6$.

Число способов выборки трех стандартных деталей из 14 имеющихся стандартных равно $C_{14}^{3} =364$.

Любая группа стандартных деталей может комбинироваться с любой группой нестандартных деталей, поэтому общее число комбинаций $m$ составляет $m=C_{4}^{2} \cdot C_{14}^{3} =6\cdot 364=2184$.

Искомая вероятность события А равна отношению числа исходов $m$, благоприятствующих событию, к числу $n$ всех равновозможных и несовместных событий $P(A)=\frac{2184}{8568} =0,255.$

Пример № 6.

В урне содержится 5 чёрных и 6 белых шаров. Случайным образом вынимают 4 шара. Найти вероятность того, что среди них имеется хотя бы один белый шар.

Пусть событие $ $ - среди вынутых шаров хотя бы один белый.

Рассмотрим противоположное событие $\bar{}$ - среди вынутых шаров нет ни одного белого. Значит все вынутые 4 шара чёрные.

Используем формулы комбинаторики.

Количество способов вынуть четыре шара из одиннадцати:

$n=!_{11}^{4} =\frac{11!}{4!\cdot (11-4)!} =330$

Количество способов вынуть четыре черных шара из одиннадцати:

$m=!_{5}^{4} =\frac{5!}{4!\cdot (5-4)!} =5$

Получаем: $\; (\bar{})=\frac{m}{n} =\frac{5}{330} =\frac{1}{66} $; $P(A)=1-\; (\bar{A})=1-\frac{1}{66} =\frac{65}{66} $.

Ответ: вероятность того, что среди четырёх вынутых шаров нет ни одного белого равна $\frac{65}{66} $.

Существует несколько определений понятия вероятности. Приведем классическое определение. Оно связано с понятием благоприятствующего исхода. Те элементарные исходы (э.и.), в кот. интересующее нас событие наступает назовем благоприятствующими этому событию. Опр. : Вер.ю события А назыв. отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных э. и., образующих полную группу. P(A) = m/n, где m – число э. и., благоприятствующих событию А; n – число всех возможных э. и. испытания. Из определения вероятности вытекают ее св-ва :1)вер.(в) достоверного события всегда равна 1. Т.к. событие достоверно, то все э. и. испытания благоприятствуют этому событию, т.е. m=n. P(A)=n/n = 1; 2) В. невозможного соб. равна 0. Т.к. событие невозможно, то нет ни одного э. и., благоприятствующего этому событию, значит m=0. P(A) = 0/n = 0; 3) В. случайного события есть неотрицательная вел-на, заключенная между 0 и 1, т.е. 0

4. Относительная частота. Устойчивость относительной частоты.

Относительной частотой (ОЧ) события называют отношение числа испытаний, в которых событие появилось, к общему числу фактически произведенных испытаний. (НЕ омега!!!). W(A) = m/n, где m – число появления события А, n – общее число испытаний. Определение вероятности не требует, чтобы испытания проводились в действительности. Определение ОЧ предполагает, что испытания были произведены фактически, т.е. вер. вычисляют до опыта, а ОЧ после опыта. Если в одинаковых условиях производят опыты, в каждом из кот. число испытаний достаточно велико, то ОЧ обнаруживает св-во устойчивости. Это св-во состоит в том, что в различных опытах ОЧ изменяется мало, тем меньше, чем больше произведено испытаний, колеблаясь около некоторого постоянного числа. Это число есть вер. появления события. Т.о. опытным путем установлено, что ОЧ можно принять за приближенное значение вероятности.

5.Статистическая вероятность.

Классическое определение вероятности предполагает, что число элементарных исходов испытания конечно. На практике часто встречаются испытания, число возможных исходов кот. бесконечно. В таких случаях классическое определение неприменимо. Наряду с классич. опр. используют статистическое. Опр.: стат. вер. (ст.в.) события – относительная частота (ОЧ) или число близкое к ней. Св-ва вероятности, вытекающие из классич. определения, сохраняются и при статистическом. Если событие достоверно, то его ОЧ =1, т.е. ст.в. также =1. Если событие невозможно, то ОЧ = 0, т.е. ст.в. тоже = 0. Для любого события 0W(A) 1, сл-но. ст.в. заключена между 0 и 1. Для существования ст.в. требуется: 1) возможность хотя бы принципиально проводить неограничен. число испытаний, в каждом из кот. событие наступает или не наступает; 2) устойчивость ОЧ появления события в различных сериях достаточно большого числа испытаний. Недостатком статистич. определения является неоднозначность ст.в. Например, если в рез-те достаточно большого числа испытаний оказалось, что ОЧ весьма близка к 0,6, то это число можно принять за ст.в. Но в кач-ве вероятности события можно принять не только 0,6, но и 0,59 и 0,61.

Относительная частота. Устойчивость относительной частоты

Относительная частота наряду с вероятностью принадлежит к основным понятиям теории вероятностей.

Относительной частотой события называют отношение числа испытаний, в которых событие появилось, к общему числу фактически произведённых испытаний. Таким образом, относительная частота события А определяется формулой

где m – число появлений события, n – общее число испытаний.

Сопоставляя определения вероятности и относитель­ной частоты, заключаем: определение вероятности не требует, чтобы испытания производились в действитель­ности; определение же относительной частоты предпола­гает, что испытания были произведены фактически. Дру­гими словами, вероятность вычисляют до опыта, а относительную частоту-после опыта.

Пример 1 . Отдел технического контроля обнаружил 3 нестандартных детали в партии из 80 случайно отобранных деталей. Относительная частота появления нестандартных деталей

Пример 2. По цели произвели 24 выстрела, причем было зарегистрировано 19 попаданий. Относительная частота поражения цели

Длительные наблюдения показали, что если в одина­ковых условиях производят опыты, в каждом из которых число испытаний достаточно велико, то относительная частота обнаруживает свойство устойчивости. Это свой­ство состоит в том, что в различных опытах относитель­ная частота изменяется мало (тем меньше, чем больше произведено испытаний), колеблясь около некоторого постоянного числа . Оказалось, что это постоянное число есть вероятность появления события.

Таким образом, если опытным путем установлена от­носительная частота, то полученное число можно принять за приближенное значение вероятности.

Подробнее и точнее связь между относительной часто­той и вероятностью будет изложена далее. Теперь же проиллюстрируем свойство устойчивости на примерах.

Пример 3. По данным шведской статистики, относительная час­тота рождения девочек за 1935 г. по месяцам характеризуется следующими числами (числа расположены в порядке следования месяцев, начиная с января): 0,486; 0,489; 0,490; 0,471; 0,478; 0,482; 0.462; 0,484; 0,485; 0,491; 0,482; 0,473.

Относительная частота колеблется около числа 0,482, которое можно принять за приближенное значение вероятности рождении девочек.

Заметим, что статистические данные различных стран дают при­мерно то же значение относительной частоты.

Пример 4 . Многократно проводились опыты бросания монеты, которых подсчитывали число появления «герба». Результаты не­скольких опытов приведены в табл. 1.

Здесь относительные частоты незначительно отклоняются от чис­ла 0,5, причем тек меньше, чем больше число испытаний. Напри­мер, при 4040 испытаниях отклонение равно 0, 0069, а при 24 000 испытаний - лишь 0, 0005. Приняв во внимание, что вероятность появления «герба» при бросании монеты равна 0,5, мы вновь убеж­даемся, что относительная частота колеблется около вероятности.

Классическое определение вероятности

Вероятность - одно из основных понятий теории вероятностей. Существует несколько определений этого понятия. Вероятность есть число, характеризующее степень возможности появление того или иного события.

Каждый из возможных результатов испытания называется элементарным исходом (элементарным событием). Обозначения: …,

Те элементарные исходы, в которых интересующее нас событие наступает, назовем благоприятствующими.

Пример: В урне 10 одинаковых шаров, из которых 4 – черные, 6- белые. Событие - из урны извлекается белый шар. Число благоприятствующих исходов, в которых из урны будут извлекаться белые шары, равно 4-м.

Отношение числа благоприятствующих событию элементарных исходов к их общему числу называют вероятностью события; обозначение В нашем примере

Вероятностью события называют отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу,

где число элементарных исходов, благоприятствующих событию ; число всех возможных элементарных исходов испытания.

Свойства вероятности:

1. Вероятность достоверного события равна единице, т.е.

2. Вероятность невозможного события равно нулю, т. е.

3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей, т. е.

или

С учетом свойств 1 и 2, вероятность любого события удовлетворяет неравенству

4 . Основные формулы комбинаторики

Комбинаторика изучает количество комбинаций, подчиненных определенным условиям, которые можно составить из заданного конечного множества элементов произвольной природы. При непосредственном вычислении вероятностей часто используют формулы комбинаторики. Приведем наиболее употребительные из них.

Перестановками называют комбинации, состоящие из одних и тех же различных элементов и отличающиеся только порядком их расположения.

Число всех возможных перестановок

где Принято, что

Пример. Число трехзначных чисел, когда каждая цифра входит в изображение трехзначного числа только один раз, равно

Размещениями называют комбинации, составленные из различных элементов по элементов, которые отличаются либо составом элементов, либо их порядком. Число всех возможных размещений

Пример. Число сигналов из 6 флажков различного цвета, взятых по 2:

Сочетаниями называют комбинации, составленные из различных элементов по элементов, которые отличаются хотя бы одним элементом. Число сочетаний

Пример. Число способов выбора двух деталей из ящика, содержащего 10 деталей:



Числа размещений, перестановок и сочетаний связаны равенством

При решении задач комбинаторики используют следующие правила:

Правило суммы . Если некоторый объект может быть выбран из совокупности объектов способами, а другой объект может быть выбран способами, то выбрать либо , либо можно способами.

Правило произведения . Если объект можно выбрать из совокупности объектов способами и после каждого такого выбора объект можно выбрать способами, то пара объектов в указанном порядке может быть выбрана способами.

Относительная частота также является основным понятием теории вероятностей.

Относительной частотой события называют отношение числа испытаний, в которых событие появилось, к общему числу фактически произведенных испытаний и определяется формулой

,

где число появлений события в испытаниях, общее число испытаний.

Сопоставляя определения вероятности и относительной частоты, заключаем, что определение вероятности не требует проведения испытаний, а определение относительной частоты предполагает фактическое проведение испытаний.

Длительные наблюдения показывают, что при проведении опытов в одинаковых условиях, относительная частота обладает свойством устойчивости. Это свойство состоит в том, что в различных сериях опытов относительная частота испытаний от серии к серии изменяется мало, колеблясь около некоторого постоянного числа. Это постоянное число и есть вероятность появления события.

Классическое определение вероятности имеет некоторые недостатки:

1) число элементарных исходов испытания конечно, на практике это число может быть и бесконечным;

2) очень часто результат испытания невозможно представить в виде совокупности элементарных событий;

По этим причинам наряду с классическим определением вероятности используют статистическое определение: в качествестатистической вероятности события принимают относительную частоту.