Уравнения иррациональные и способы их решения. Иррациональные уравнения

Если в уравнении переменная содержится под знаком квадратного корня, то уравнение называют иррациональным .

Иногда математическая модель реальной ситуации представляет собой иррациональное уравнение. Поэтому нам следует научиться решать хотя бы простейшие иррациональные уравнения.

Рассмотрим иррациональное уравнение 2 x + 1 = 3 .

Обрати внимание!

Метод возведения в квадрат обеих частей уравнения - основной метод решения иррациональных уравнений.

Впрочем, это понятно: как же иначе освободиться от знака квадратного корня?

Из уравнения \(2x + 1 = 9\) находим \(x = 4\). Это корень как уравнения \(2х + 1 = 9\), так и заданного иррационального уравнения.

Метод возведения в квадрат технически несложен, но иногда приводит к неприятностям.

Рассмотрим, например, иррациональное уравнение 2 x − 5 = 4 x − 7 .

Возведя обе его части в квадрат, получим

2 x − 5 2 = 4x − 7 2 2 x − 5 = 4 x − 7

Но значение \(x = 1\), хоть и является корнем рационального уравнения \(2x - 5 = 4x - 7\), не является корнем заданного иррационального уравнения. Почему? Подставив \(1\) вместо \(x\) в заданное иррациональное уравнение, получим − 3 = − 3 .

Как же можно говорить о выполнении числового равенства, если и в левой, и в правой его части содержатся выражения, не имеющие смысла?

В подобных случаях говорят: \(x = 1\) - посторонний корень для заданного иррационального уравнения. Получается, что заданное иррациональное уравнение не имеет корней.

Посторонний корень - не новое для тебя понятие, посторонние корни уже встречались при решении рациональных уравнений, обнаружить их помогает проверка.

Для иррациональных уравнений проверка - обязательный этап решения уравнения, который поможет обнаружить посторонние корни, если они есть, и отбросить их (обычно говорят «отсеять»).

Обрати внимание!

Итак, иррациональное уравнение решают методом возведения обеих его частей в квадрат; решив полученное в итоге рациональное уравнение, надо обязательно сделать проверку и отсеять возможные посторонние корни.

Используя этот вывод, рассмотрим пример.

Пример:

реши уравнение 5 x − 16 = x − 2 .

Возведём обе части уравнения 5 x − 16 = x − 2 в квадрат: 5 x − 16 2 = x − 2 2 .

Преобразовываем и получаем:

5 x − 16 = x 2 − 4 x + 4 ; − x 2 + 9 x − 20 = 0 ; x 2 − 9 x + 20 = 0 ; x 1 = 5 ; x 2 = 4 .

Проверка. Подставив \(x = 5\) в уравнение 5 x − 16 = x − 2 , получим 9 = 3 - верное равенство. Подставив \(x = 4\) в уравнение 5 x − 16 = x − 2 , получим 4 = 2 - верное равенство. Значит, оба найденные значения - корни уравнения 5 x − 16 = x − 2 .

Ты уже накопил некоторый опыт в решении различных уравнений: линейных, квадратных, рациональных, иррациональных. Ты знаешь, что при решении уравнений выполняют различные преобразования, например: член уравнения переносят из одной части уравнения в другую с противоположным знаком; обе части уравнения умножают или делят на одно и то же отличное от нуля число; освобождаются от знаменателя, т. е. заменяют уравнение p x q x = 0 уравнением \(р(x)=0\); обе части уравнения возводят в квадрат.

Конечно, ты обратил внимание на то, что в результате некоторых преобразований могли появиться посторонние корни, а потому приходилось быть бдительными: проверять все найденные корни. Вот мы и попытаемся сейчас осмыслить всё это с теоретической точки зрения.

Два уравнения \(f (x) = g(x)\) и \(r(x) = s(х)\) называют равносильными , если они имеют одинаковые корни (или, в частности, если оба уравнения не имеют корней).

Обычно при решении уравнения стараются заменить данное уравнение более простым, но равносильным ему. Такую замену называют равносильным преобразованием уравнения.

Равносильными преобразованиями уравнения являются следующие преобразования:

1. перенос членов уравнения из одной части уравнения в другую с противоположными знаками.

Например, замена уравнения \(2x + 5 = 7x - 8\) уравнением \(2x - 7x = - 8 - 5\) есть равносильное преобразование уравнения. Это значит, что уравнения \(2x + 5 = 7x -8\) и \(2x - 7x = -8 - 5\) равносильны.

Решение иррациональных уравнений.

В этой статье мы поговорим о способах решения простейших иррациональных уравнений.

Иррациональным уравнением называется уравнение, которое содержит неизвестное под знаком корня.

Давайте рассмотрим два вида иррациональных уравнений , которые очень похожи на первый взгляд, но по сути сильно друг от друга отличаются.

(1)

(2)

В первом уравнении мы видим, что неизвестное стоит под знаком корня третьей степени. Мы можем извлекать корень нечетной степени из отрицательного числа, поэтому в этом уравнении нет никаких ограничений ни на выражение, стоящее под знаком корня, ни на выражение, стоящее в правой части уравнения. Мы можем возвести обе части уравнения в третью степень, чтобы избавиться от корня. Получим равносильное уравнение:

При возведении правой и левой части уравнения в нечетную степень мы можем не опасаться получить посторонние корни.

Пример 1 . Решим уравнение

Возведем обе части уравнения в третью степень. Получим равносильное уравнение:

Перенесем все слагаемые в одну сторону и вынесем за скобки х:

Приравняем каждый множитель к нулю, получим:

Ответ: {0;1;2}

Посмотрим внимательно на второе уравнение: . В левой части уравнения стоит квадратный корень, который принимает только неотрицательные значения. Поэтому, чтобы уравнение имело решения, правая часть тоже должна быть неотрицательной. Поэтому на правую часть уравнения накладывается условие:

Title="g(x)>=0"> - это условие существования корней .

Чтобы решить уравнение такого вида, нужно обе части уравнения возвести в квадрат:

(3)

Возведение в квадрат может привести к появлению посторонних корней, поэтому нам надо уравнения:

Title="f(x)>=0"> (4)

Однако, неравенство (4) следует из условия (3): если в правой части равенства стоит квадрат какого-то выражения, а квадрат любого выражения может принимать только неотрицательные значения, следовательно левая часть тоже должна быть неотрицательна. Поэтому условие (4) автоматически следует из условия (3) и наше уравнение равносильно системе:

Title="delim{lbrace}{matrix{2}{1}{{f(x)=g^2{(x)}} {g(x)>=0} }}{ }">

Пример 2 . Решим уравнение:

.

Перейдем к равносильной системе:

Title="delim{lbrace}{matrix{2}{1}{{2x^2-7x+5={(1-x)}^2} {1-x>=0} }}{ }">

Решим первое уравнение системы и проверим, какие корни удовлетворяют неравеству.

Неравеству title="1-x>=0">удовлетворяет только корень

Ответ: x=1

Внимание! Если мы в процессе решения возводим обе части уравнения в квадрат, то нужно помнить, что могут появиться посторонние корни. Поэтому либо нужно переходить к равносильной системе, либо в конце решения СДЕЛАТЬ ПРОВЕРКУ: найти корни и подставить их в исходное уравнение.

Пример 3 . Решим уравнение:

Чтобы решить это уравнение, нам также нужно возвести обе части в квадрат. Давайте в этом уравнении не будем заморачиваться с ОДЗ и условием существования корней, а просто в конце решения сделаем проверку.

Воозведем обе части уравнения в квадрат:

Перенесем слагаемое, содержащее корень влево, а все остальные слагаемые вправо:

Еще раз возведем обе части уравнения в квадрат:

По тереме Виета:

Сделаем проверку. Для этого подставим найденные корни в исходное уравнение. Очевидно, что при правая часть исходного уравнения отрицательна, а левая положительна.

При получаем верное равенство.

О чем пойдет речь? Об уравнениях, которые содержат под знаком радикала функцию от переменной. Впрочем, знак радикала может быть заменен степенью с дробным показателем. Такие уравнения считают иррациональными .

Основные свойства иррациональных уравнений

1. Любой корень четной степени являются арифметическими, т.е. подкоренные выражения всегда неотрицательны и принимают только неотрицательные значения.

2. Любой корень нечетной степени определен при всех значениях подкоренного выражения и могут принимать любые значения.

3. Уравнение √(f(x)) = g(x) равносильно системе (здесь и далее под записью √(f(x)) будем понимать корень квадратный из выражения, стоящего в скобках):

{f(x) = (g(x))2,
{g(x) ≥ 0.

Какими способами можно решать иррациональные уравнения?

1. Возвести обе части уравнения в одну и ту же степень.
2. Заменой переменной.
3. Способом умножения обеих частей на одинаковые выражения.
4. Применение свойств функций, входящих в уравнение.

Рассмотрим примеры уравнений, решаемых этими методами.

Пример 1.

Решить уравнение √(3х 2 – 14х + 17) = 3 – 2х.

Решение.

Воспользуемся свойством 3 из выше перечисленных и получим систему:

{3х 2 – 14х + 17 = (3 – 2х) 2 ,
{3 – 2х ≥ 0.

Из первого уравнения получаем х 2 + 2х – 8 = 0. Его корни: -4 и 2. Но неравенству нашей системы удовлетворяет лишь число -4.

Ответ: -4.

Возможен и другой путь решения этого уравнения. Не будем записывать систему. Забудем неравенство. Работаем только с уравнением. Но будем помнить, что возведение обеих частей уравнения в четную степень, приводит к уравнению-следствию. Оно наряду с корнями исходного уравнения может содержать и другие корни, которые называются посторонними. Поэтому после решения уравнения-следствия необходимо найти способ отсеять посторонние корни. Обычно это можно сделать при помощи проверки, которая в данном случае рассматривается как один из этапов решения.

Очевидно, что опять получим корни уравнения-следствия: -4 и 2. Проверка проводится путем подстановки в исходное уравнение √(3х 2 – 14х + 17) = 3 – 2х.

Если х = -4, то получаем √121 = 11, что верно. При х = 2 получаем √1 = -1, что не верно и корень 2 отсеян.

Ответ: х = -4.

Пример 2.

Решить уравнение 3 √(4х + 3) – 3 √(х + 2) = 1

Решение.

Возведём обе части уравнения в третью степень

(3 √(4х + 3) – 3 √(х + 2))3 = 13.

Получим (4х + 3) – (х + 2) – 3(3 √(4х + 3) 3 √(х + 2))(3 √(4х + 3) – 3 √(х + 2)) = 1

Или (4х + 3) – (х + 2) – 3 3 √((4х + 3)(х + 2))(3 √(4х + 3) – 3 √(х + 2)) = 1.

Учитывая первоначальное условие, уравнение примет вид

(4х + 3) – (х + 2) – 3 3 √((4х + 3)(х + 2)) = 1. Выполнив несложные преобразования, мы получим

3х – 3 3 √((4х + 3)(х + 2)) = 0,

х = 3 √((4х + 3)(х + 2)).

Для решения данного уравнения необходимо повторное возведение в куб.

Выполнив его, будем иметь

х 3 = 4х 2 + 11х + 6,

х 3 – 4х 2 – 11х – 6 = 0.

Способом подбора найдём один корень уравнения. Это число -1.

Разделив уголком многочлен х 3 – 4х 2 – 11х – 6 на х + 1 получим трёхчлен х 2 – 5х – 6.

Корни уравнения х 2 – 5х – 6 = 0 – числа: -1; 6.

Следовательно, корнями уравнения х 3 – 4х 2 – 11х – 6 = 0 будут числа -1; 6.

Подставляя числа -1; 6 в первоначальное уравнение убедимся в том, что корень уравнения – число 6.

Ответ: 6.

Пример 3.

Решить уравнение х 2 – х√(4x + 5) = 8х + 10

Решение.
Заметим, что 8х + 10 = 2(√(4x + 5)) 2 . Проверкой убеждаемся, что х = 0 не является корнем данного уравнения. Значит, поделив на х 2 обе части данного уравнения, получим ему равносильное:

1 √(4x + 5)/х = 2(√(4x + 5)/х) 2

Заменим √(4x + 5)/х = t и решим полученное квадратное уравнение 1 t = 2t 2.

Получим t 1 = -1 и t 2 = 1/2. Вернёмся к исходной переменной х и получим 2 уравнения

1) √(4x + 5)/х = -1,

2) √(4x + 5)/х = 1/2

Из первого уравнения х = -1. (х = 5 приходится отбросить после проверки).

Из второго -х = 8 ± 2√21. Для отсеивания посторонних корней здесь проще проанализировать условие, чем делать подстановку. Ведь уравнение легко преобразуется к виду √(4x + 5) = 0,5х, которое равносильно системе

{4х + 5 = 0,25х 2 ,
{0,5х ≥ 0.

Теперь очевидно, что подходит х = 8 + 2√21. И общий

ответ: х = -1 и х = 8 + 2√21.

Пример 4.

Решить уравнение √(8х + 1) + √(3х – 5) = √(7х + 4) + √(2х – 2).

Решение.

Воспользуемся формулой √а + √b = (a – b) / (√а – √b), которая верна при a ≥ 0; b ≥ 0; a ≠ b.

С учетом ОДЗ (х ≥ 1 2/3) эту формулу можно применить к выражениям стоящим в левой и правой части уравнения.

И получим: (5х + 6) / (√(8х + 1) – √(3х – 5)) = (5х + 6) / (√(7х + 4) – √(2х – 2))

или (5х + 6)((√(8х + 1) – √(3х – 5)) – (√(7х + 4) – √(2х – 2)) = 0

Оно равнозначно совокупности 2 уравнений:

1) (5х + 6) = 0 и

2) √(8х + 1) – √(3х – 5) = √(7х + 4) – √(2х – 2)

Из первого получаем х = -1,2. Но это значение не входит в ОДЗ.

Сопоставим второе уравнение с исходным. При сложении этих уравнений получим:

2√(8х + 1) = 2√(7х + 4).

х = 3 .

Ответ: 3.

Невозможно описать все способы решения иррациональных уравнений в одной статье. Вряд ли вообще найдется источник с таким полным содержанием. Да он вам и не нужен. Для успешной подготовки к ЕГЭ, как и подготовки любого специалиста вообще, важно не запомнить теорию или методы и воспроизвести в аналогичных случаях, а, важнее, овладеть ими и применить в незнакомой ситуации. То есть некоторый базовый запас знаний надо научиться применять творчески. Тогда вы сами способны будете изобрести новые способы, то есть делать открытия.

Успехов вам. А своими находками делитесь с друзьями. Это можно сделать и через комментарии к статьям в блоге.

Остались вопросы? Не знаете, как решить иррациональное уравнение?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Методы решения иррациональных уравнений.

Предварительная подготовка к уроку: учащиеся должны уметь решать иррациональные уравнения различными способами.

За три недели до данного занятия учащиеся получают домашнее задание №1: решить различные иррациональные уравнения. (Учащиеся самостоятельно находят по 6 различных иррациональных уравнений и решают их в парах.)

За одну неделю до данного занятия учащиеся получают домашнее задание №2, которое выполняют индивидуально.

1. Решить уравнение различными способами.

2. Оценить достоинства и недостатки каждого способа.

3. Оформить запись выводов в виде таблицы.

п/п

Способ

Достоинства

Недостатки

Цели урока:

Образовательная: обобщение знаний учащихся по данной теме, демонстрация различных методов решения иррациональных уравнений, умения учащихся подходить к решению уравнений с исследовательских позиций.

Воспитательная: воспитание самостоятельности, умения выслушивать других и общаться в группах, повышение интереса к предмету.

Развивающая: развитие логического мышления, алгоритмической культуры, навыков самообразования, самоорганизации, работы в парах при выполнении домашнего задания, умений анализировать, сравнивать, обобщать, делать выводы.

Оборудование: компьютер, проектор, экран, таблица «Правила решения иррациональных уравнений», плакат с цитатой М.В. Ломоносова «Математику уже затем учить следует, что она ум в порядок приводит», карточки.

Правила решения иррациональных уравнений.

Тип урока: урок-семинар (работа в группах по 5-6 человек, в каждой группе обязательно есть сильные ученики).

Ход урока

I . Организационный момент

(Сообщение темы и целей урока)

II . Презентация исследовательской работы «Методы решения иррациональных уравнений»

(Работу представляет учащийся, который ее проводил.)

III . Анализ методов решения домашнего задания

(По одному учащемуся от каждой группы записывают на доске предложенные ими способы решения. Каждая группа анализирует один из способов решения, оценивает достоинства и недостатки, делает выводы. Учащиеся групп дополняют, если это необходимо. Оценивается анализ и выводы группы. Ответы должны быть четкими и полными.)

Первый способ: возведение обеих частей уравнения в одну и ту же степень с последующей проверкой.

Решение.

Снова возведем обе части уравнения в квадрат:

Отсюда

Проверка:

1. Если х= 42, то , значит, число 42 не является корнем уравнения.

2. Если х= 2, то , значит, число 2 является корнем уравнения.

Ответ: 2.

п/п

Способ

Достоинства

Недостатки

Возведение обеих частей уравнения в одну и ту же степень

1. Понятно.

2. Доступно.

1. Словесная запись.

2. Сложная проверка.

Вывод. При решении иррациональных уравнений методом возведения обеих частей уравнения в одну и ту же степень необходимо вести словесную запись, что делает решение понятным и доступным. Однако обязательная проверка иногда бывает сложной и занимает много времени. Этот метод можно использовать для решения несложных иррациональных уравнений, содержащих 1-2 радикала.

Второй способ: равносильные преобразования.

Решение: Возведем обе части уравнения в квадрат:

Ответ: 2.

п/п

Способ

Достоинства

Недостатки

Равносильных преобразований

1. Отсутствие словесного описания.

2. Нет проверки.

3. Четкая логическая запись.

4. Последовательность равносильных переходов.

1. Громоздкая запись.

2. Можно ошибиться при комбинации знаков системы и совокупности.

Вывод. При решении иррациональных уравнений методом равносильных переходов нужно четко знать, когда ставить знак системы, а когда - совокупности. Громоздкость записи, различные комбинации знаков системы и совокупности нередко приводят к ошибкам. Однако последовательность равносильных переходов, четкая логическая запись без словесного описания, не требующая проверки, являются бесспорными достоинствами данного способа.

Третий способ: функционально-графический.

Решение.

Рассмотрим функции и .

1. Функция степенная; является возрастающей, т.к. показатель степени - положительное (не целое) число.

D( f ).

Составим таблицу значений x и f ( x ).

1,5

3,5

f(x)

2. Функция степенная; является убывающей.

Найдем область определения функции D ( g ).

Составим таблицу значений x и g ( x ).

g(x)

Построим данные графики функций в одной системе координат.

Графики функций пересекаются в точке с абсциссой Т.к. функция f ( x ) возрастает, а функция g ( x ) убывает, то решение уравнения будет только одно.

Ответ: 2.

п/п

Способ

Достоинства

Недостатки

Функционально-графический

1. Наглядность.

2. Не нужно делать сложных алгебраических преобразований и следить за ОДЗ.

3. Позволяет найти количество решений.

1. словесная запись.

2. Не всегда можно найти точный ответ, а если ответ точный, то нужна проверка.

Вывод. Функционально-графический метод является наглядным, позволяет найти количество решений, но применять его лучше тогда, когда легко можно построить графики рассматриваемых функций и получить точный ответ. Если ответ приближенный, то лучше воспользоваться другим методом.

Четвертый способ: введение новой переменной.

Решение. Введем новые переменные, обозначив Получим первое уравнение системы

Составим второе уравнение системы.

Для переменной :

Для переменной

Поэтому

Получим систему двух рациональных уравнений, относительно и

Вернувшись к переменной , получим

Введение новой переменной

Упрощение - получение системы уравнений, не содержащих радикалы

1. Необходимость отслеживать ОДЗ новых переменных

2. Необходимость возврата к исходной переменной

Вывод. Этот метод лучше применять для иррациональных уравнений, содержащих радикалы различных степеней, или одинаковые многочлены под знаком корня и за знаком корня, или взаимообратные выражения под знаком корня.

- Итак, ребята, для каждого иррационального уравнения необходимо выбирать наиболее удобный способ решения: понятный. Доступный, логически и грамотно оформленный. Поднимите руку, кто из вас при решении этого уравнения отдал бы предпочтение:

1) методу возведения обеих частей уравнения в одну и ту же степень с проверкой;

2) методу равносильных преобразований;

3) функционально-графическому методу;

4) методу введения новой переменной.

IV . Практическая часть

(Работа в группах. Каждая группа учащихся получает карточку с уравнением и решает ее в тетрадях. В это время по одному представителю от группы решают пример на доске. Учащиеся каждой группы решают тот же пример, что и член их группы, и следят за правильностью выполнения задания на доске. Если отвечающий у доски допускает ошибки, то тот, кто их замечает, поднимает руку и помогает исправить. В ходе занятия каждый учащийся помимо примера, решаемого его группой, должен записать в тетрадь и другие, предложенные группам, и решить их дома.)

Группа 1.

Группа 2.

Группа 3.

V . Самостоятельная работа

(В группах сначала идет обсуждение, а затем учащиеся приступают к выполнению задания. Правильное решение, подготовленное преподавателем, выводится на экран.)

VI . Подведение итогов урока

Теперь вы знаете, что решение иррациональных уравнений требует от вас хороших теоретических знаний, умения применять их на практике, внимания, трудолюбия, сообразительности.

Домашнее задание

Решить уравнения, предложенные группам в ходе занятия.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.