Основные гипотезы зарождения жизни на земле. Происхождение жизни на Земле: гипотезы, теории, основные концепции. Гипотезы о возникновении жизни

Происхождении жизни на Земле является ключевой и нерешенной проблемой естествознания, нередко служащей почвой для столкновения науки и религии. Если наличие в природе эволюции живой материи можно считать доказанным, так как были вскрыты ее механизмы, археологами обнаружены древние более просто устроенные организмы, то ни одна гипотеза возникновения жизни не имеет такой обширной доказательной базы. Эволюцию мы можем наблюдать воочию хотя бы в селекции. Создать же живое из неживого никому не удавалось.

Несмотря на большое количество гипотез о происхождении жизни, лишь одна из них имеет приемлемое научное объяснение. Это гипотеза абиогенеза - длительной химической эволюции, которая протекала в особых условиях древней Земли и предшествовала биологической эволюции. При этом из неорганических веществ сначала были синтезированы простые органические, из них более сложные, далее появились биополимеры, следующие этапы более умозрительны и малодоказуемы. Гипотеза абиогенеза имеет много нерешенных проблем, различных взглядов на определенные этапы химической эволюции. Однако некоторые ее моменты были подтверждены опытным путем.

Другие гипотезы происхождения жизни - панспермия (занесение жизни из космоса), креационизм (сотворение творцом), самопроизвольное зарождение (в неживой материи вдруг появляются живые организмы), стационарное состояние (жизнь существовала всегда). Невозможность самозарождения жизни в неживом была доказано Луи Пастером (XIX в.) и рядом ученых до него, но не так безапелляционно (Ф. Реди - XVII в.). Гипотеза панспермии не решает проблему возникновения жизни, а переносит ее с Земли в космическое пространство или на другие планеты. Однако и опровергнуть эту гипотезу сложно, особенно тех ее представителей, которые утверждают, что жизнь была занесена на Землю не метеоритами (в этом случае живое могло сгореть в слоях атмосферы, подвергнуться разрушительному действию космической радиации и т. д.), а разумными существами. Только вот как они долетели до Земли? С точки зрения физики (огромных размеров Вселенной и невозможности преодолеть скорость света) это вряд ли возможно.

Впервые возможный абиогенез был обоснован А.И. Опариным (1923-1924 г.), позже данную гипотезу разрабатывал Дж. Холдейн (1928 г). Однако мысль, что жизни на Земле могло предшествовать абиогенное образование органических соединений, высказывал еще Дарвин. Теория абиогенеза была доработана и дорабатывается другими учеными и по сей день. Главная ее нерешенная проблема - это подробности перехода от сложных неживых систем к простым живым организмам.

В 1947 г. Дж. Бернал, на основе разработок Опарина и Холдейна, сформулировал теорию биопоэза, выделив в абиогенезе три стадии: 1) абиогенное возникновение биологических мономеров; 2) образование биополимеров; 3) образование мембран и формирование первичных организмов (протобионтов).

Абиогенез

Ниже в общих чертах описан предположительный сценарий происхождения жизни согласно теории абиогенеза.

Возраст Земли составляет около 4,5 млрд. лет. Жидкая вода на планете, так необходимая для жизни, по оценкам ученых появилась не ранее 4 млрд. лет назад. При этом 3,5 млрд. лет назад жизнь на Земле уже существовала, что доказано обнаружением пород таких возрастов со следами жизнедеятельности микроорганизмов. Таким образом, первые простейшие организмы возникли относительно быстро - менее чем за 500 млн. лет.

Когда Земля только образовалась, ее температура могла достигать 8000 °C. При остывании планеты металлы и углерод как наиболее тяжелые элементы конденсировались и образовывали земную кору. В то же время происходила вулканическая активность, кора двигалась и сжималась, на ней образовывались складки и разрывы. Гравитационные силы приводили к уплотнению коры, при этом выделялась энергия в виде тепла.

Легкие газы (водород, гелий, азот, кислород и др.) не удерживались планетой и уходили в космос. Но в составе других веществ эти элементы оставались. До тех пор, пока температура на Земле не упала ниже 100 °C, вся вода находилась в парообразном состоянии. После снижения температуры испарение и конденсация повторялись множество раз, шли сильные ливни с грозами. Горячая лава и вулканический пепел, оказавшись в воде, создавали разные условия среды. В каких-то могли протекать определенные реакции.

Таким образом, физические и химические условия на ранней Земле были благоприятны для образования органических веществ их неорганических. Атмосфера была восстановительного типа, свободного кислорода и озонового слоя в ней не было. Поэтому на Землю проникали ультрафиолетовое и космическое излучение. Другими источниками энергии были теплота земной коры, которая еще не остыла, извергающиеся вулканы, грозы, радиоактивный распад.

В атмосфере присутсвовали метан, оксиды углерода, аммиак, сероводород, цианистые соединения, а также пары воды. Из них синтезировались ряд простейших органических веществ. Далее могли образовываться аминокислоты, сахара, азотистые основания, нуклеотиды и другие более сложные органические соединения. Многие из них послужили мономерами для будущих биологических полимеров. Отсутствие в атмосфере свободного кислорода благоприятствовало протеканию реакций.

Химическими опытами (впервые в 1953 г. С. Миллер и Г. Юри), моделирующих условия древней Земли, была доказана возможность абиогенного синтеза органических веществ из неорганических. При пропускании электрических разрядов через газовую смесь, имитировавшую первобытную атмосферу, в присутсвии паров воды были получены аминокислоты, органические кислоты, азотистые основания, АТФ и др.


Следует отметить, что в древней атмосфере Земли простейшие органические вещества могли образовываться не только абиогенно. Они также заносились из космоса, содержались в вулканической пыли. Причем это могли быть достаточно большие количества органики.

Низкомолекулярные органические соединения накапливались в океане, создавая так называемый первичный бульон. Вещества адсорбировались на поверхности глинистых отложений, что повышало их концентрацию.

В определенных условиях древней Земли (например на глине, склонах остывающих вулканов) могла происходить полимеризация мономеров. Так образовались белки и нуклеиновые кислоты - биополимеры, ставшие в последствии химической основой жизни. В водной среде полимеризация маловероятна, так как в воде обычно происходит деполимеризация. Опытом была доказана возможность синтеза полипептида из аминокислот, соприкасающихся с кусками горячей лавы.

Следующий важный шаг на пути происхождения жизни – образование в воде коацерватных капель (коацерватов ) из полипептидов, полинуклеотидов, других органических соединений. Подобные комплексы снаружи могли иметь слой, имитировавший мембрану и сохраняющий их стабильность. Опытным путем в коллоидных растворах были получены коацерваты.

Белковые молекулы амфотерны. Они притягивают к себе молекулы воды так, что вокруг них образуется оболочка. Получаются коллоидные гидрофильные комплексы, обособленные от водной массы. В результате в воде образуется эмульсия. Далее коллоиды сливаются между собой и образуются коацерваты (процесс называется коацервацией). Коллоидный состав коацервата зависел от состава среды, в которой он образовывался. В разных водоемах древней Земли образовывались разные по химическому составу коацерваты. Какие-то из них были более устойчивыми и могли в определенной степени осуществлять избирательный обмен веществ с окружающей средой. Происходил своего рода биохимический естественный отбор.

Коацерваты способны избирательно поглощать из окружающей среды некоторые вещества и выделять в нее некоторые продукты протекающих в них химических реакций. Это напоминает обмен веществ. По мере накопления веществ коацерваты росли, а при достижении критических размеров распадались на части, каждая из которых сохраняла черты исходной организации.

В самих коацерватах могли происходить химические реакции. При поглощении коацерватами ионов металлов могли образовываться ферменты.

В процессе эволюции остались лишь такие системы, которые были способны к саморегуляции и самовоспроизведению. Это знаменовало наступление следующего этапа происхождения жизни – возникновение протобионтов (по некоторым источникам это то же самое, что коацерваты) - тел, имеющие сложный химический состав и ряд свойств живых существ. Протобионты можно рассматривать как наиболее устойчивые и удачно получившиеся коацерваты.

Мембрана могла образоваться следующим образом. Жирные кислоты соединялись со спиртами и образовывали липиды. Липиды формировали пленки на поверхности водоемов. Их заряженные головки обращены в воду, а неполярные концы - наружу. Плавающие в воде белковые молекулы притягивались к головкам липидов, в результате чего образовывались двойные липопротеиновые пленки. От ветра такая пленка могла изгибаться, и образовывались пузырьки. В эти пузырьки могли быть случайно захвачены коацерваты. Когда такие комплексы снова оказывались на поверхности воды, то покрывались уже вторым липопротеиновым слоем (за счет гидрофобных взаимодействий, обращенных друг к другу неполярных концов липидов). Общая схема мембраны сегодняшних живых организмов представляет собой два слоя липидов внутри и два слоя белков, расположенных по краям. Но за миллионы лет эволюции произошло усложнение мембраны за счет включения белков, погруженных в липидный слой и пронизывающих его, выпячивание и впячивание отдельных участков мембраны и др.

В коацерваты (или протобионты) могли попадать уже существующие молекулы нуклеиновых кислот, способные к самовоспроизведению. Далее в некоторых протобионтах могла произойти такая перестройка, что нуклеиновая кислота стала кодировать белок.

Эволюция протобионтов - это уже не химическая, а предбиологическая эволюция. Она привела к усовершенствованию каталитической функции белков (они стали выполнять роль ферментов), мембран и их избирательной проницаемости (что делает протобионт устойчивым набором полимеров), возникновению матричного синтеза (переноса информации с нуклеиновой кислоты на нуклеиновую кислоту и с нуклеиновой кислоты на белок).

Этапы происхождения и эволюции жизни
Эволюция Результаты
1 Химическая эволюция - синтез соединений
  1. Простые органические вещества
  2. Биополимеры
2 Предбиологическая эволюция – химический отбор: остаются наиболее устойчивые, способные к самовоспроизведению протобионты
  • Коацерваты и протобионты
  • Ферментативный катализ
  • Матричный синтез
  • Мембрана
3 Биологическая эволюция – биологический отбор: борьба за существование, выживание наиболее приспособленных к условиям окружающей среды
  1. Приспособленность организмов к конкретным условиям среды
  2. Разнообразие живых организмов

Одной из самых больших загадок происхождения жизни остается вопрос: как РНК стала кодировать аминокислотную последовательность белков. В вопросе фигурирует РНК, а не ДНК, так как считается, что сначала рибонуклеиновая кислота играла не только роль в реализации наследственной информации, но и отвечала за ее хранение. ДНК ее заменила позже, возникнув из РНК путем обратной транскрипции. ДНК лучше подходит для хранения информации и более устойчива (менее склонна к реакциям). Поэтому в процессе эволюции именно она была оставлена в качестве хранителя информации.

В 1982 г. Т. Чеком была открыта каталитическая активность РНК. Кроме того РНК могут синтезироваться в определенных условиях даже при отсутствии ферментов, а также образовывать свои копии. Поэтому можно предположить, что РНК были первыми биополимерами (гипотеза РНК-мира). Какие-то участки РНК случайно могли кодировать полезные для протобионта пептиды, остальные участки РНК в процессе эволюции стали вырезаемыми интронами.

В протобионтах возникла обратная связь - РНК кодирует белки-фермены, белки-ферменты увеличивают количество нуклеиновых кислот.

Начало биологической эволюции

Химическая эволюция и эволюция протобионтов длилась более 1 млрд. лет. Жизнь возникла, и началась ее биологическая эволюция.

От некоторых протобионтов произошли примитивные клетки, включающие всю совокупность наблюдаемых нами сегодня свойств живого. В них было реализовано хранение и передача наследственной информации, ее использование для создания структур и обмена веществ. Энергия для процессов жизнедеятельности обеспечивалась молекулами АТФ, появились типичные для клеток мембраны.

Первые организмы были анаэробные гетеротрофы. Энергию, запасаемую в АТФ, они получали с помощью брожения. Пример - гликолиз - бескислородное расщепление сахаров. Питались эти организмы за счет органических веществ первичного бульона.

Но запасы органических молекул постепенно истощались, так как условия на Земле менялись, и новая органика уже почти не синтезировалась абиогенным путем. В условиях конкуренции за пищевые ресурсы эволюция гетеротрофов ускорилась.

Преимущество получили бактерии, оказавшиеся способными фиксировать углекислый газ с образованием органических веществ. Автотрофный синтез питательных веществ более сложный, чем гетеротрофное питание, поэтому у ранних форм жизни он возникнуть не мог. Из некоторых веществ под действием энергии солнечного излучения образовывались соединения, необходимых клетке.

Первые фотосинтезирующие организмы не выделяли кислорода. Фотосинтез с его выделением скорее всего появился позже у организмов, сходных с нынешними сине-зелеными водорослями.

Накопление в атмосфере кислорода, появление озонового экрана, уменьшение количества ультрафиолетового излучения привело к почти невозможности абиогенного синтеза сложных органических веществ. С другой стороны, возникшие формы жизни стали более устойчивыми в таких условиях.

На Земле распространилось кислородное дыхание. Анаэробные организмы сохранились лишь в отдельных местах (например, есть анаэробные бактерии, живущие в горячих подземных источниках).

Происхождение жизни на Земле является одной из важнейших проблем естествознания. Еще в глубокой древности люди задавали себе вопросы, откуда произошла живая природа, как появилась жизнь на Земле, где грань перехода от неживого к жизни и пр. На протяжении десятков веков менялись взгляды на проблему жизни, высказывались разные идеи, гипотезы и концепции. Этот вопрос волнует человечество и по настоящее время.

Некоторые идеи и гипотезы о происхождении жизни получили широкое распространение в разные периоды истории развития естествознания. В настоящее время существует пять гипотез возникновения жизни:

1. Креационизм – гипотеза, утверждающая, что жизнь создана сверхъестественным существом в результате акта творения, то есть Богом.

2. Гипотеза стационарного состояния, согласно которой жизнь существовала всегда.

3. Гипотеза самопроизвольного зарождения жизни, которая основывается на идее многократного возникновения жизни из неживого вещества.

4. Гипотеза панспермии, согласно которой жизнь была занесена на Землю из космического пространства.

5. Гипотеза исторического происхождения жизни путем биохимической эволюции.

Согласно креационистской гипотезе, которая имеет самую длинную историю, создание жизни есть акт божественного творения. Свидетельством этому является наличие в живых организмах особой силы, «души», управляющей всеми жизненными процессами. Гипотеза креационизма навеяна религиозными воззрениями и к науке отношения не имеет.

Согласно гипотезе стационарного состояния, жизнь никогда не возникала, а существовала вечно вместе с Землей, отличаясь большим разнообразием живого. С изменением условий жизни на Земле происходило и изменение видов: одни исчезали, другие появлялись. Эта гипотеза основывается в основном на исследованиях палеонтологии. По своей сущности эта гипотеза не относится к концепциям возникновения жизни, поскольку вопрос о происхождении жизни она принципиально не затрагивает.

Гипотеза самопроизвольного зарождения жизни была выдвинута в древнем Китае и Индии как альтернатива креационизму. Представления этой гипотезы поддерживали мыслители Древней Греции (Платон, Аристотель), а также ученые периода Нового времени (Галилей, Декарт, Ламарк). Согласно этой гипотезе, живые организмы (низшие) могут появиться путем саморождения из неживого вещества, содержащего некое «активное начало». Так, например, по Аристотелю, насекомые и лягушки при определенных условиях могут заводиться в иле, сырой почве; черви и водоросли в стоячей воде, а вот личинки мух – в протухшем мясе при его гниении.

Однако уже с начала XVII в. такое понимание происхождения жизни стало подвергаться сомнению. Ощутимый удар по этой гипотезе нанес итальянский естествоиспытатель и врач Ф. Реди (1626–1698), который в 1688 г. раскрыл сущность появления жизни в гниющем мясе. Ф. Реди сформулировал свой принцип: «Все живое – от живого» и стал основоположником концепции биогенеза, утверждавшей, что жизнь может возникнуть только из предшествующей жизни.

Французский микробиолог Л. Пастер (1822–1895) своими опытами с вирусами окончательно доказал несостоятельность идеи спонтанного самозарождения жизни. Однако, опровергнув эту гипотезу, он не предложил свою, не пролил свет на вопрос о возникновении жизни.

Тем не менее опыты Л. Пастера имели большое значение в получении богатого эмпирического материала в области микробиологии его времени.

Гипотеза панспермии – о неземном происхождении жизни путем занесения «зародышей жизни» из космоса на Землю – впервые была высказана немецким биологом и врачом Г. Рихтером в конце XIX в. Концепция панспермии (от греч. pan – весь, sperma – семя) допускает возможность происхождения жизни в разное время в разных частях Вселенной и переноса ее различными путями на Землю (метеориты, астероиды, космическая пыль).

Действительно, в настоящее время получены некоторые данные, указывающие на возможность образования органических веществ химическим путем в условиях космоса. Так, в 1975 г. предшественники аминокислот были найдены в лунном грунте. В межзвездных облаках обнаружены простейшие соединения углерода, в том числе и близкие к аминокислотам. В составе метеоритов найдены альдегиды, вода, спирты, синильная кислота и т. д.

Концепцию панспермии разделяли крупнейшие ученые конца XIX – начала XX в.: немецкий химик и агроном Ю. Либих, английский физик У. Томсон, немецкий естествоиспытатель Г. Гельмгольц, шведский физико-химик С. Аррениус. С. Аррениус в 1907 г. в своих трудах даже описывал, как с других планет в космическое пространство уходят с пылинками и живые споры организмов. Носясь в бескрайних просторах космоса под действием давления звездного света, они попадали на планеты и там, где были благоприятные условия (в том числе на Земле) начинали новую жизнь. Идеи панспермии поддерживали и некоторые русские ученые: геофизик П. Лазарев, биолог Л. Берг, биолог-почвовед С. Костычев.

Существует идея о возникновении жизни на Земле почти с момента ее образования. Как известно, Земля образовалась около 5 млрд лет назад. Значит, жизнь могла зародиться во время образования Солнечной системы, то есть в космосе. Поскольку длительность эволюции Земли и жизни на ней разнится незначительно, то существует версия, что жизнь на Земле – это продолжение вечного ее существования. Эта позиция близка к теории вечного существования жизни во Вселенной. В масштабе глобального эволюционного процесса можно полагать, что возникновение жизни на Земле может, по-видимому, совпадать с образованием и существованием материи. Академик В. Вернадский разделял идею вечности жизни не в контексте ее перераспределения в космосе, а в смысле неразрывности и взаимосвязанности материи и жизни. Он писал, что «жизнь и материя неразрывны, взаимосвязаны и между ними нет временной последовательности». На эту же мысль указывает и русский биолог и генетик Тимофеев-Ресовский (19001982). В своем кратком очерке теории эволюции (1977 г.) он остроумно заметил: «Мы все такие материалисты, что нас всех безумно волнует, как возникла жизнь. При этом нас почти не волнует, как возникла материя. Тут все просто. Материя вечна, она ведь всегда была, и ненужно никаких вопросов. Всегда была. А вот жизнь, видите ли, обязательно должна возникнуть. А может быть, она тоже была всегда. И не надо вопросов, просто всегда была, и все».

Для обоснования панспермии в научно-популярной литературе приводятся «факты» о неопознанных летающих объектах, прилете инопланетян на Землю, наскальные топологические рисунки.

Однако серьезных доказательств эта концепция не имеет, а многие доводы выступают против нее. Известно, что диапазон жизненных условий для существования живого довольно узок. Поэтому вряд ли живые организмы выжили бы в космосе под действием ультрафиолетовых лучей, рентгеновского и космического излучения. Но и не исключается возможность занесения отдельных предпосылочных факторов жизни на нашу планету из космоса. Следует отметить, что это принципиального значения не имеет, поскольку концепция панспермии в корне не решает проблемы происхождения жизни, а лишь переносит ее за пределы Земли, не раскрывая самого механизма ее образования.

Таким образом, ни одна из перечисленных четырех гипотез до настоящего времени не подтверждена надежными экспериментальными исследованиями.

Наиболее доказательно с точки зрения современной науки выглядит пятая гипотеза – гипотеза происхождения жизни в историческом прошлом в результате биохимической эволюции. Ее авторами являются отечественный биохимик академик А. Опарин (1923 г.) и английский физиолог С. Холдейн (1929 г.). Об этой гипотезе мы подробно будем говорить в следующем разделе.


Гипотеза происхождения жизни в историческом прошлом в результате биохимической эволюции А. И. Опарина

С точки зрения гипотезы А. Опарина, а также с позиций современной науки возникновение жизни из неживого вещества произошло в результате естественных процессов во Вселенной при длительной эволюции материи. Жизнь есть свойство материи, которое появилось на Земле в определенный момент ее истории. Это результат процессов, протекающих сначала многие миллиарды лет в масштабе Вселенной, а потом сотни миллионов лет на Земле.

А. Опарин выделил несколько этапов биохимической эволюции, конечной целью которых явилась примитивная живая клетка. Эволюция шла по схеме:

1. Геохимическая эволюция планеты Земля, синтез простейших соединений, таких как СО 2 ,1 ч[Н 3 ,Н 2 0 и т. д., переход воды из парообразного состояния в жидкое в результате постепенного охлаждения Земли. Эволюция атмосферы и гидросферы.

2. Образование из неорганических соединений органических веществ – аминокислот – и их накопление в первичном океане в результате электромагнитного воздействия Солнца, космического излучения и электрических разрядов.

3. Постепенное усложнение органических соединений и образование белковых структур.

4. Выделение белковых структур из среды, образование водных комплексов и создание вокруг белков водной оболочки.

5. Слияние таких комплексов и образование коацерватов (от лат. coacervus – сгусток, куча, накопление), способных обмениваться веществом и энергией с окружающей средой.

6. Поглощение коацерватами металлов, что привело к образованию ферментов, ускоряющих биохимические процессы.

7. Образование гидрофобных липидных границ между коацерватами и внешней средой, что привело к образованию полупроницаемых мембран, что обеспечивало стабильность функционирования коацервата.

8. Выработка в ходе эволюции у этих образований процессов саморегуляции и самовоспроизведения.

Так, по гипотезе А. Опарина, появилась примитивная форма живого вещества. Такова, по его мнению, предбиологическая эволюция вещества.

Академик В. Вернадский возникновение жизни связывал с мощным скачком, прервавшим безжизненную эволюцию земной коры. Этот скачок (бифуркация) внес в эволюцию столько противоречий, что они создали условия для зарождения жизни.

Проблема происхождения и эволюции жизни относится к наиболее интересным и в то же время наименее исследованным вопросам, связанным с философией и религией. Практически на протяжении почти всей истории развития научной мысли считалось, что жизнь - явление самозарождающееся.

Основные теории:

1) жизнь была создана Творцом в определенное время - креационизм (от лат. creatio - сотворение);

2) жизнь возникла самопроизвольно из неживого вещества;

3) жизнь существовала всегда;

4) жизнь была занесена на Землю из Космоса;

5) жизнь возникла в результате биохимической эволюции.

Согласно теории креационизма , возникновение жизни относится к определенному событию в прошлом, которое можно вычислить. Организмы, населяющие сегодня Землю, происходят от сотворенных по отдельности основных типов живых существ. Сотворённые виды были с самого начала превосходно организованы и наделены способностью к некоторой изменчивости в определенных границах (микроэволюция).

Теория спонтанного зарождения жизни существовала в Вавилоне, Египте и Китае как альтернатива креационизму. Она восходит к Эмпедоклу и Аристотелю: определенные «частицы» вещества содержат некое «активное начало», которое при определенных условиях может создать живой организм. Аристотель считал, что активное начало есть в оплодотворенном яйце, солнечном свете, гниющем мясе. У Демокрита начало жизни было в иле, у Фалеса - в воде, у Анаксагора - в воздухе.

С распространением христианства идеи самозарождения были объявлены еретическими, и долгое время о них не вспоминали. Но Гельмонт придумал рецепт получения мышей из пшеницы и грязного белья. Бэкон считал, что гниение - зачаток нового рождения. Идеи самозарождения жизни поддерживали Коперник, Галилей, Декарт, Гарвей, Гегель, Ламарк, Гете, Шеллинг.

Л. Пастер в 1860 г. окончательно показал, что бактерии могут появляться в органических растворах только тогда, если они были туда занесены ранее. И для избавления от микроорганизмов необходима стерилизация, получившая название пастеризации . Отсюда укрепилось представление, что новый организм может быть только от живого.

Сторонники теории вечного существования жизни считают, что на вечно существующей Земле некоторые виды вынуждены были вымереть или резко изменить численность в тех или иных местах из-за изменения внешних условий. Четкой концепции на этом пути не выработано, поскольку в палеонтологической летописи Земли есть некоторые разрывы и неясности.

Гипотеза о появлении жизни на Земле в результате переноса с других планет неких зародышей жизни получила название панспермии (от греч. pan - весь, всякий и sperma - семя). Теория панспермии не предлагает механизма для объяснения первичного возникновения жизни и переносит проблему в другое место Вселенной. Зародившись в космосе, жизнь долго сохранялась в анабиозе почти при Т = О К и была занесена на Землю метеоритами. В начале XX в. с идеей радиопанспермии выступил Аррениус. Он описывал, как с населенных планет уходят в мировое пространство частички вещества, пылинки и живые споры микроорганизмов. Они, сохраняя жизнеспособность, летают во Вселенной за счет светового давления и, попадая на планету с подходящими условиями, начинают новую жизнь.


В последнее столетие при изучении вещества метеоритов и комет были обнаружены многие «предшественники живого» - органические соединения, вода, формальдегид, цианогены. Современные приверженцы концепции панспермии считают, что жизнь на Землю занесена случайно или преднамеренно космическими пришельцами. К гипотезе панспермии примыкает точка зрения астрономов Ч. Викрамасингха (Шри-Ланка) и Ф. Хойла (Великобритания). Они считают, что в космическом пространстве, в основном в газовых и пылевых облаках, в большом количестве присутствуют микроорганизмы, где они, по мнению ученых, и образуются. Далее эти микроорганизмы захватываются кометами, которые затем, проходя вблизи планет, «сеют зародыши жизни».

Первую научную теорию относительно происхождения живых организмов на Земле создал советский биохимик А.И. Опарин. В 1924 г. он опубликовал работы, в которых изложил представления о том, как могла возникнуть жизнь на Земле. Согласно этой теории, жизнь возникла в специфических условиях древней Земли, и рассматривается как закономерный результат химической эволюции соединений углерода во Вселенной. Согласно этой теории, процесс, приведший к возникновению жизни на Земле, может быть разделен на три этапа:

1) Возникновение органических веществ.

2) Образование из более простых органических веществ биополимеров (белков, нуклеиновых кислот, полисахаридов, липидов и др.).

3) Возникновение примитивных самовоспроизводящихся организмов.

В представлениях о зарождении жизни в результате биохимической эволюции важную роль играет эволюция самой планеты. Земля существует почти 4,5 млрд. лет, а органическая жизнь - около 3,5 млрд. лет. Молодая Земля была горячей планетой с температурой 5...8 10 3 К. По мере остывания тугоплавкие металлы и углерод конденсировались, образуя земную кору. Атмосфера первичной Земли сильно отличалась от современной. Легкие газы - водород, гелий, азот, кислород, аргон и др. - не удерживались еще недостаточно плотной планетой, а более тяжелые соединения оставались (вода, аммиак, двуокись углерода, метан).

Когда температура Земли опустилась ниже 100ºС, водяной пар начал конденсироваться, образуя Мировой океан. В это время происходил абиогенный синтез, то есть в первичных земных океанах, насыщенных разными простыми химическими соединениями, «в первичном бульоне» под влиянием вулканического тепла, разрядов молний, интенсивной ультрафиолетовой радиации и других факторов среды начался синтез более сложных органических соединений, а затем и биополимеров. Образованию органических веществ способствовало отсутствие живых организмов - потребителей органики - и главного окислителя - кислорода. Сложные молекулы аминокислот случайно объединялись в пептиды, которые, в свою очередь, создали первоначальные белки. Из этих белков синтезировались первичные живые существа микроскопических размеров.

Наиболее сложной проблемой в современной теории эволюции является превращение сложных органических веществ в простые живые организмы. Опарин полагал, что решающая роль в превращении неживого в живое принадлежит белкам. По-видимому, белковые молекулы, притягивая молекулы воды, образовывали коллоидные гидрофильные комплексы. Дальнейшее слияние таких комплексов друг с другом приводило к отделению коллоидов от водной среды (коацервация). На границе между коацерватом (от лат. coacervus - сгусток, куча) и средой выстраивались молекулы липидов - примитивная клеточная мембрана. Предполагается, что коллоиды могли обмениваться молекулами с окружающей средой (прообраз гетеротрофного питания) и накапливать определённые вещества.

Первые организмы на земле были одноклеточные – прокариоты. Через несколько миллиардов лет образовывались эукариоты, и с их появлением наметился выбор растительного или животного образа жизни, различие между которыми заключается в способе питания и связано с процессом фотосинтеза. Он сопровождается поступлением в атмосферу кислорода, современное содержание кислорода в атмосфере 21% было достигнуто 25 млн. лет назад в результате интенсивного развития растений.

Если проанализировать все данные, которые удалось получить ученым в ходе различных исследований, становится очевидным, что жизнь на Земле — поразительно невероятный факт. Шансы на ее появление в нашей Вселенной ничтожно малы. Все этапы возникновения жизни содержали в себе возможность альтернативного развития событий, в результате которых мир так и остался бы холодной космической бездной без намека не то что на человеческий разум, а даже на мельчайшего микроба. Креационисты объясняют столь невероятное событие божественным вмешательством. Однако существование Бога невозможно доказать или опровергнуть, а современные представления о возникновении жизни, как и вся наука в целом, базируются на экспериментальных данных и теоретических разработках, которые можно поставить под сомнение или подтвердить.

Витализм

Человеческие познания переживают эволюцию, чем-то схожую в основных моментах с описанным Дарвином процессом. Теории проходят и выживают сильнейшие, сумевшие выдержать натиск контраргументов или приспособиться, видоизмениться под стать им. Гипотезы происхождения жизни также прошли длительный путь становления, завершение которого еще даже не обозначилось, поскольку ежедневно открываются новые факты, вынуждающие корректировать уже устоявшиеся взгляды.

Крупной вехой на этой дороге стал витализм — теория постоянного самозарождения жизни. Согласно ее положениям, мыши появлялись в старом тряпье, черви — в гниющих остатках пищи. Витализм довлел над наукой вплоть до опытов Луи Пастера в 1860 году, когда он доказал невозможность самозарождения живых организмов. Результаты вызвали парадоксальные события: они укрепили веру в божественное начало и заставили ученых искать доказательства того, что они недавно опровергли. Наука стремилась объяснить, что самостоятельное зарождение жизни имело место, но очень давно и происходило поэтапно, заняв миллионы лет.

Синтез углеродов

Ситуация казалась безнадежной до того момента, пока в 1864 году А.М. Бутлеров не сделал важное открытие.

Он сумел получить (углерод) из неорганического (в его эксперименте это был формальдегид). Полученные данные разрушили внушительную стену, разграничивавшую до сих пор живые организмы и мир мертвой материи. Спустя время ученые смогли получить и другие варианты органики из неорганических веществ. С этого момента стали формироваться современные представления о возникновении жизни. Они вобрали в себя данные не только биологии, но и космологии и физики.

Последствия Большого взрыва

Теории возникновения жизни охватывают огромный период: первые предпосылки для будущего формирования организмов ученые находят еще на ранних этапах зарождения Вселенной. Современная физика ведет отсчет существования мира от Большого взрыва, когда практически из ничего появилось все. В быстро расширяющейся и остывающей Вселенной образовались сначала атомы и молекулы, затем они стали объединяться, образуя звезды первого поколения. Они стали местом формирования большинства элементов, известных сегодня науке. Новые атомы заполняли космос после взрывов звезд и становились основой для следующего поколения объектов, в том числе и нашего Солнца. Современные данные позволяют предположить, что первые могли появиться в протопланетных облаках, окружавших новые звезды. Из них вскоре сформировались и планеты. Получается, что первые этапы возникновения жизни на Земле проходили еще до ее образования.

Автокаталитические циклы

Процессы, происходившие на Голубой планете в ее «детские годы», поддерживались веществами, входящими в состав ее недр и поступающими из космоса в качестве метеоритов. Гипотезы возникновения жизни одной из важных основ для зарождения органики на Земле называют катализаторы химических реакций, попавшие сюда с осколками этих «пришельцев». Они привели к тому, что подавляющую роль в формировании новых веществ на планете стали играть самые быстрые процессы.

Следующий этап — автокаталитические циклы. В таких процессах образуются вещества, способствующие увеличению скорости реакции, а также возобновляющие субстрат — элементы, вступающие во взаимодействие. Цикл, таким образом, замкнулся: процессы сами себя ускоряли и сами себе «готовили пищу», то есть вещества, которые вновь вступали в реакцию, опять катализируя сами себя и вновь образуя субстрат, и так далее.

Сомнения

Современные представления о возникновении жизни долгое время содержали противоречивые мнения. Камень преткновения — проблема курицы и яйца. Что возникло сначала: белки, осуществляющие все процессы в клетке, или ДНК, определяющая строение этих белков, хранящая всю наследственную информацию. Первые необходимы для организма, так как способствуют самоподдержанию системы, без которого жизнь невозможна. ДНК содержит запись строения клетки, также определяющую жизнеспособность. Мнения ученых разделились и ответа на вопрос не было до того момента, когда стало известно, что в качестве хранилища наследственной информации у вирусов выступает не ДНК, а РНК, третий класс органических соединений, которому обычно отводилась в теории возникновения жизни лишь второстепенная роль.

РНК-мир

Постепенно стали накапливаться факты и в 80-х годах прошлого века появились данные, перевернувшие представления о начальных этапах формирования живой материи. Были обнаружены рибозимы, молекулы РНК, обладающие способностями белков, в частности, катализировать реакции. Первые формы жизни, таким образом, могли возникнуть и без участия белков и ДНК. В них функцию хранения информации, а также всю внутреннюю работу совершала РНК. Жизнь на Земле теперь происходила от протоорганизмов, представляющих собой автокаталитические циклы, состоящие из самовоспроизводящихся рибозимов. Теория получила название «РНК-мир».

Коацерваты

Сегодня трудно представить себе жизнь того периода, поскольку она не имела одной важной особенности — оболочки или границы. По сути, это был раствор, содержащий автокаталитические циклы из РНК. Проблема отсутствия границ, необходимых для правильного протекания процессов, решалась подручными способами. Протоорганизмы находили приют вблизи минералов цеолитов, обладавших сетчатой структурой кристаллической решетки. Их поверхность была способна катализировать образование цепочек РНК и придавать им определенную конфигурацию.

Дальше — больше: на сцене появляются коацерваты или водно-липидные капли. Гипотезы как недавнего времени, так и современности во многом опираются на теорию А.И. Опарина, изучавшего свойства подобных образований. Коацерваты — это капли раствора, заключенные в оболочку из жиров (липидов). Их мембраны характеризуются и способностью осуществлять обмен веществ. Часть из них, по-видимому, объединилась с цепочками самовоспроизводящихся РНК, в том числе и с теми, которые катализировали синтез самих липидов. Так возникли новые формы жизни, преодолевшие путь от доорганизменного уровня к собственно организменному. Возможность таких образований была подтверждена совсем недавно: ученые экспериментально подтвердили способность РНК в соединении с ионами кальция прикрепляться к липидным мембранам и регулировать их проницаемость.

Умелые помощники

Зарождение жизни на следующем этапе проходило процесс усовершенствования функций образовавшихся организмов. РНК приобрела способность катализировать синтез аминокислотных полимеров, первоначально довольно простых. Венцом настройки нового механизма стала возможность синтезировать белки. Появившиеся образования в несколько раз эффективнее справлялись с биологическими процессами, чем рибозимы.

Изначально синтез пептидов не был упорядоченным. Процесс происходил «как попало», оставляя случаю руководство последовательностью аминокислот в новых цепочках. Со временем закрепилось точное копирование, поскольку именно оно способствовало большей стабильности всей системы. Так появился позволяющий синтезировать определенные белки с необходимыми функциями.

Совершенствование

Оттачивание способности синтезировать нужные белки проходило постепенно. Первым этапом было появление специального вида РНК, которые могли соединять аминокислоты. Следующая фаза сопровождалась построением процесса образования молекул пептида с помощью выстроенных в определенном порядке оснований. Последовательность при этом задавалась РНК-шаблоном. Соотнесением «инструкции» информативной РНК и элементов будущих белков занялся новый тип РНК, названный транспортным. Как и информационная, она и по сей день — важные части синтеза пептидов.

ДНК

Усложнение организмов далее шло по пути усовершенствования способов хранения информации. Предполагают, что первоначально ДНК была одной из фаз жизненного цикла колоний РНК. Она обладала более устойчивой структурой. Ее степень защиты информации была на порядок выше, поэтому спустя какое-то, довольно продолжительное, время ДНК стала главным хранилищем генетического кода.

Одно из свойств нового образования, в свое время не позволившего поставить ДНК во главу теории возникновения жизни, — это неспособность к активным действиям. Оно стало своеобразной платой за усовершенствованные функции хранилища информации. Вся «работа» осталась белкам и РНК.

Симбиоз

Современные представления о возникновении жизни не выводят в качестве предка замкнутый и отгороженный от остальных организм. Ученые больше склоняются в пользу предположения, что на первых этапах существовали сообщества микроскопических подобий клеток, выполнявших разные функции. Подобный симбиоз нетрудно встретить в природе и сегодня. Простейший пример — циано-бактериальные маты, являющиеся одновременно содружеством микроорганизмов и единым целым живым существом.

Биология на современном этапе своего развития видит процессом, характеризующимся не постоянной борьбой и конкуренцией, а скорее всевозрастающим сплочением определенных разноплановых структур, в итоге приведшим к появлению живой клетки, как мы ее сегодня представляем.

Обобщение

Подводя итоги, можно кратко перечислить все этапы формирования жизни, представляющиеся в рамках современных теорий наиболее вероятной версией появления и развития организмов на Земле:

    Образование первичных органических соединений в протопланетных облаках.

    Постепенный выход на первый план реакций, обладающих способностью к самоускорению, и автокаталитических циклов.

    Появление автокаталитических циклов, состоящих из РНК.

    Союз РНК и липидных оболочек.

    Приобретение РНК способности синтезировать белок.

    Появление ДНК и ее утверждение в качестве главного хранилища информации.

    Образование первых одноклеточных организмов на основе симбиоза.

Понимание процессов, приведших к появлению жизни, еще несовершенно. У ученых остается масса вопросов. Не известно точно, как зародилась РНК, многие промежуточные фазы остаются только теоретическими. Однако каждый день ставятся новые эксперименты, проверяются факты и гипотезы. Можно с уверенностью говорить, что наш век подарит миру еще массу открытий, связанных с доисторической эпохой.

Происхождение жизни на Земле - один из наиболее трудных и в то же время актуальный и интересный вопрос в современном естествознании.

Земля сформировалась, вероятно, 4,5-5 млрд. лет назад из гигантского облака космической пыли. частицы которой спрессовались в раскаленный шар. Из него в атмосферу выделялся водяной пар, а из атмосферы на медленно остывавшую Землю в течение миллионов лет в виде дождей выпадала вода. В углублениях земной поверхности образовался доисторический Океан. В нем примерно 3,8 млрд. лет назад зародилась первоначальная жизнь.

Возникновение жизни на Земле

Как произошла сама планета и как на ней появились моря? По этому поводу существует одна широко признанная теория. В соответствии с ней Земля образовалась из облаков космической пыли, содержащей все известные в природе химические элементы, которые спрессовались в шар. Горячий водяной пар вырывался с поверхности этого раскаленного докрасна шара, окутывая его сплошным облачным покровом, Водяной пар в облаках медленно охлаждался и превращался в воду, которая выпадала в виде обильных непрерывных дождей на еще раскаленную, пылающую Землю. На ее поверхности она снова превращалась в водяной пар и возвращалась в атмосферу. За миллионы лет Земля постепенно потеряла так много тепла, что ее жидкая поверхность, остывая, начала твердеть. Так образовалась земная кора.

Прошли миллионы лет, и температура поверхности Земли еще больше понизилась. Ливневые воды перестали испаряться и стали стекать в огромные лужи. Так началось воздействие воды на земную поверхность. А потом из-за понижения температуры произошел настоящий потоп. Вода, которая до этого испарялась в атмосферу и превратилась в ее составную часть, беспрерывно низвергалась на Землю, с громом и молниями обрушивались из облаков мощные ливни.

Мало-помалу в самых глубоких впадинах земной поверхности скапливалась вода, которая уже не успевала совсем испариться. Ее было так много, что постепенно на планете образовался доисторический Океан. Молнии рассекали небо. Но никто этого не видел. На Земле еще не было жизни. Непрерывный ливень начал размывать горы. Вода стекала с них шумными ручьями и бурными реками. За миллионы лет водные потоки глубоко разъели земную поверхность и кое-где появились долины. В атмосфере уменьшалось содержание воды, а на поверхности планеты ее скапливалось все больше.

Сплошной облачный покров становился тоньше, пока в один прекрасный день Земли не коснулся первый луч солнца. Непрерывный дождь кончился. Большую часть суши покрыл доисторический Океан. Из ее верхних слоев вода вымывала огромное количество растворимых минералов и солей, которые попадали в море. Вода из него непрерывно испарялась, образуя облака, а соли оседали, и с течением времени происходило постепенное засоление морской воды. По-видимому, при каких-то существовавших в древности условиях образовались вещества, из которых возникли особые кристаллические формы. Они росли, как и все кристаллы, и давали начало новым кристаллам, которые присоединяли к себе все новые вещества.

Солнечный свет и, возможно, очень сильные электрические разряды служили в этом процессе источником энергии. Может быть, из таких элементов зародились первые обитатели Земли - прокариоты, организмы без оформленного ядра, похожие на современных бактерий. Они были анаэробами, то есть не использовали для дыхания свободный кислород, которого тогда еще не было в атмосфере. Источником пищи для них служили органические соединения, возникшие на еще безжизненной Земле в результате воздействия ультрафиолетового излучения Солнца, грозовых разрядов и тепла, образующегося при извержении вулканов.

Жизнь существовала тогда в тонкой бактериальной пленке на дне водоемов и во влажных местах. Эту эру развития жизни называют архейской. Из бактерий, а возможно, и совершенно независимым путем, возникли и крошечные одноклеточные организмы - древнейшие простейшие животные.

Как выглядела первобытная Земля?

Перенесемся на 4 млрд лет назад. Атмосфера не содержит свободного кислорода, он находится только в составе окислов. Почти никаких звуков, кроме свиста ветра, шипения извергающейся с лавой воды и ударов метеоритов о поверхность Земли. Ни растений, ни животных, ни бактерий. Может быть, так выглядела Земля, когда на ней появилась жизнь? Хотя эта проблема издавна волнует многих исследователей, их мнения на этот счет сильно различаются. Об условиях на Земле того времени могли бы свидетельствовать горные породы, но они давно разрушились в результате геологических процессов и перемещений земной коры.

Теории происхождения жизни на Земле

В этой статье мы кратко расскажем о нескольких гипотезах возникновения жизни, отражающих современные научные представления. Как считает известный специалист в области проблемы возникновения жизни Стэнли Миллер, о возникновении жизни и начале ее эволюции можно говорить с того момента, как органические молекулы самоорганизовывались в структуры, которые смогли воспроизводить самих себя. Но это порождает другие вопросы: как возникли эти молекулы; почему они могли самовоспроизводиться и собираться в те структуры, которые дали начало живым организмам; какие нужны для этого условия?

Есть несколько теорий о происхождении жизни на Земле. Например, одна из давних гипотез гласит, что она занесена на Землю из космоса, но неоспоримых доказательств этого нет. Кроме того, та жизнь, которую мы знаем, удивительно приспособлена для существования именно в земных условиях, поэтому если она и возникла вне Земли, то на планете земного типа. Большинство же современных ученых полагают, что жизнь зародилась на Земле, в ее морях.

Теория биогенеза

В развитии учений о происхождении жизни существенное место занимает теория биогенеза - происхождение живого только от живого. Но многие считают ее несостоятельной, поскольку она принципиально противопоставляет живое неживому и утверждает отвергнутую наукой идею вечности жизни. Абиогенез - идея о происхождении живого из неживого - исходная гипотеза современной теории происхождения жизни. В 1924 г. известный биохимик А. И. Опарин высказал предположение, что при мощных электрических разрядах в земной атмосфере, которая 4-4,5 млрд лет назад состояла из аммиака, метана, углекислого газа и паров воды, могли возникнуть простейшие органические соединения, необходимые для возникновения жизни. Предсказание академика Опарина оправдалось. В 1955 г. американский исследователь С. Миллер, пропуская электрические заряды через смесь газов и паров, получил простейшие жирные кислоты, мочевину, уксусную и муравьиную кислоты и несколько аминокислот. Таким образом, в середине XX века был экспериментально осуществлен абиогенный синтез белковоподобных и других органических веществ в условиях, воспроизводящих условия первобытной Земли.

Теория панспермии

Теория панспермии - это возможности переноса органических соединений, спор микроорганизмов с одного космического тела на другое. Но она совершенно не дает ответа на вопрос, как зародилась жизнь во Вселенной? Возникает необходимость обоснования возникновения жизни в той точке Вселенной, возраст которой, согласно теории Большого взрыва, ограничен 12-14 миллиардами лет. До этого времени не было даже элементарных частиц. А если нет ядер и электронов, нет и химических веществ. Потом в течение нескольких минут возникли протоны, нейтроны, электроны, и материя вступила на путь эволюции.

Для обоснования этой теории используются многократные появления НЛО, наскальные изображения предметов, похожих на ракеты и «космонавтов», а также сообщения якобы о встречах с инопланетянами. При изучении материалов метеоритов и комет в них были обнаружены многие «предшественники живого» - такие вещества, как цианогены, синильная кислота и органические соединения, которые, возможно, сыграли роль «семян», падавших на голую Землю.

Сторонниками этой гипотезы были лауреаты Нобелевской премии Ф.Крик, Л.Оргел. Ф.Крик основывался на двух косвенных доказательствах: универсальности генетического кода: необходимости для нормального метаболизма всех живых существ молибдена, который встречается сейчас на планете крайне редко.

Зарождение жизни на Земле невозможно без метеоритов и комет

Исследователь из Техасского технологического университета, после анализа огромного объема собранной информации, выдвинул теорию о том, как же на Земле смогла образоваться жизнь. Ученый уверен, что появление ранних форм простейшей жизни на нашей планете было бы невозможно без участия упавших на нее комет и метеоритов. О своей работе исследователь поделился на 125-й ежегодной встрече геологического общества Америки, проходившей 31 октября в городе Денвер, Колорадо.

Автор работы, профессор геонауки в Техасском технологическом университете (ТТУ) и куратор музея палеонтологии при университете, Санкар Чаттерджи рассказал, что к такому выводу он пришел после анализа информации о ранней геологической истории нашей планеты и сопоставления этих данных с различными теориями химической эволюции.

Эксперт считает, что такой подход позволяет объяснить один из самых скрытых и не до конца изученных периодов в истории нашей планеты. По мнению многих геологов, основная масса космических «бомбардировок», в которых участвовали кометы и метеориты, приходилась на время около 4 миллиардов лет тому назад. Чаттерджи считает, что самая ранняя жизнь на Земле образовалась в кратерах, оставленных при падении метеоритов и комет. И вероятнее всего это произошло в период «Поздней тяжелой бомбардировки» (3,8-4,1 миллиарда лет назад), когда столкновение мелких космических объектов с нашей планетой резко возросло. На то время приходилось сразу несколько тысяч случаев падения комет. Что интересно, эту теорию косвенно поддерживает Модель Ниццы. Согласно оной реальное число комет и метеоритов, которые должны были упасть на Землю в то время, соответствует реальному числу кратеров на Луне, явившейся в свою очередь своего рода щитом для нашей планеты и не позволившей бесконечной бомбардировке ее уничтожить.

Некоторые ученые предполагают, что результатом этой бомбардировки является заселение жизнью океанов Земли. При этом несколько исследований на эту тему указывают на то, что наша планета имеет больше запасов воды, чем должна была. А излишек этот списывают на кометы, которые прилетели к нам с Облака Оорта, находящегося предположительно в одном световом годе от нас.

Чаттерджи указывает, что образовавшиеся в результате этих столкновений кратеры заполнились растаявшей водой из самих комет, а также необходимыми химическими строительными блоками, необходимыми для образования простейших организмов. При этом ученый считает, что те места, где даже после такой бомбардировки не появилась жизнь, просто оказались непригодны для этого.

«Когда около 4,5 миллиарда лет назад образовалась Земля, она была полностью непригодна для появления на ней живых организмов. Это был настоящий кипящий котел из вулканов, ядовитого горячего газа и постоянно падающих на нее метеоритов», - пишет онлайн-журнал AstroBiology, ссылаясь на ученого.

«А спустя один миллиард лет она стала тихой и спокойно планетой, богатой огромными запасами воды, населенной различными представителями микробной жизни - предками всех живых существ».

Жизнь на Земле могла возникнуть благодаря глине

Группа учёных под руководством Дань Ло (Dan Luo) из Корнеллского университета выступила с гипотезой, что концентратором для древнейших биомолекул могла служить обычная глина.

Изначально исследователи занимались не проблемой происхождения жизни – они искали способ повысить эффективность бесклеточных систем синтеза белка. Вместо того чтобы позволить ДНК и обслуживающим её белкам свободно плавать в реакционной смеси, учёные попробовали загнать их в частицы гидрогеля. Этот гидрогель, словно губка, впитывал реакционную смесь, сорбировал нужные молекулы, и в результате все нужные компоненты оказывались заперты в небольшом объёме – подобно тому, как это происходит в клетке.

Затем авторы исследования попытались использовать в качестве недорогого заменителя гидрогеля глину. Частицы глины оказались похожи на частицы гидрогеля, становясь своеобразными микрореакторами для взаимодействующих биомолекул.

Получив такие результаты, учёные не могли не вспомнить о проблеме происхождения жизни. Частицы глины с их способностью сорбировать биомолекулы могли бы на самом деле послужить самыми первыми биореакторами для самых первых биомолекул, пока те ещё не обзавелись мембранами. В пользу такой гипотезы говорит ещё и то, что вымывание силикатов и других минералов из скал с образованием глины началось, по геологическим прикидкам, как раз перед тем, когда, по мнению биологов, древнейшие биомолекулы начали объединяться в протоклетки.

В воде, точнее в растворе, мало что могло произойти, потому что процессы в растворе идут абсолютно хаотично, а все соединения очень неустойчивы. Глина современной наукой - точнее, поверхность частиц глинистых минералов - рассматривается как матрица, на которой могли образовываться первичные полимеры. Но это тоже только одна из многих гипотез, каждая из которых имеет свои сильные и слабые стороны. Но чтобы смоделировать зарождение жизни в полном масштабе, нужно действительно быть Богом. Хотя на Западе сегодня уже появляются статьи с названиями «Конструирование клетки» или «Моделирование клетки». Например, один из последних нобелевских лауреатов Джеймс Шостак сейчас активно предпринимает попытки создания эффективных клеточных моделей, которые размножаются сами по себе, воспроизводя себе подобных.