Происхождение и развитие гидросферы и атмосферы. Возникновение атмосферы и гидросферы земли и их роль в появлении жизни. Свойства структурных элементов земной коры в районе сшгэс

Введение

1. Гипотезы происхождения Земли и их обоснование

2. Формирование внутренних оболочек Земли в процессе ее геологической эволюции

2.1 Основные этапы эволюции Земли

2.2 Внутренние оболочки Земли

3.1 Гидросфера

3.2 Атмосфера

Заключение

Архей и протерозой - две наиболее крупные эры, в течение которых начала формироваться жизнь на уровне микроорганизмов. Эти две эры объединяют в «надэру» - криптозой (время скрытой жизни). Первые многоклеточные организмы появились в самом конце протерозоя около 600 млн. лет назад.

Примерно 570 млн. лет назад, когда на Земле практически сформировались благоприятные условия для жизни, началось бурное развитие живых организмов. С этого момента наступило «время явной жизни» - фанерозой. Этот отрезок геологической истории подразделяют на 3 эры - палеозой, мезозой и кайнозой. Последняя эра, с точки зрения гео- и биологии, продолжается до сих пор. Следует отметить, что появление и развитие жизни на земле привело к значительному изменению твердой оболочки Земли (литосферы), гидросферы и атмосферы, а возникновение разумной жизни (человека) за короткий временной интервал вызвало глобальные изменения в эволюции планеты. Мезозойская эра характеризуется активным проявлением магматической деятельности, интенсивным процессом горообразования. В этой эре господствовали динозавры.

Различия в составе горных пород от одной эпохи к другой, в свою очередь, обусловлены резкими изменениями природно-климатических и физических условий на планете. Установлено, что климат на Земле многократно менялся, потепления сменялись резкими похолоданиями, происходили поднятия и опускания суши. Случались и крупные космические катастрофы: столкновения с метеоритами, кометами и астероидами. На Земле обнаружено большое число метеоритных кратеров крупных размеров. Самый крупный из них на полуострове Юкатан имеет диаметр более 100 км; его возраст- 65 млн. лет - практически совпадает с окончанием мелового и началом палеогенового периода. Многие палеонтологи именно с этой крупнейшей катастрофой связывают вымирание динозавров.

Изменения климата и температуры во многом обусловлены астрономическими факторами: наклоном земной оси (многократно менялся), возмущениями планет-гигантов, активностью Солнца, движением Солнечной системы вокруг Галактики. Согласно одной из гипотез резкие изменения климата происходят раз в 210- 215 млн. лет (галактический год), когда Солнечная система, обращаясь вокруг центра Галактики, проходит через газопылевое облако. Это способствует ослаблению солнечного излучения и, как следствие, похолоданию на планете. В эти моменты на Земле наступают ледниковые эпохи – появляются и растут полярные шапки. Последняя ледниковая эпоха началась примерно 5 млн. лет назад и продолжается до сих пор. Ледниковая эпоха характеризуется периодическими колебаниями температуры (раз в 50 тысяч лет). При похолоданиях (ледниковый период) ледники могут распространяться от полюсов к экватору до 30- 40 градусов. Сейчас мы живем в «межледниковый» период ледниковой эпохи. Наследство ледниковой эпохи - зона вечной мерзлоты (в России свыше половины ее территории).

2.2 Внутренние оболочки Земли

В настоящее время, как известно, Земля имеет ядро, состоящее в основном из железа и никеля. Вещества, содержащие более легкие элементы (кремний, магний и другие), постепенно «всплывали», образуя мантию и кору Земли. Самые легкие элементы вошли в состав океанов и первичной атмосферы Земли. Материалы, слагающие твердую Землю, непрозрачны и плотны. Поэтому их исследования возможны лишь до глубин, составляющих ничтожную часть радиуса Земли. Самые глубокие пробуренные скважины и имеющиеся в настоящее время проекты ограничены глубинами 10- 15 км, что составляет немногим более 0,1% от радиуса. Поэтому сведения о глубоких недрах Земли получают, используя лишь косвенные методы. К ним относятся сейсмический, гравитационный, магнитный, электрический, электромагнитный, термический, ядерный и другие методы . Наиболее надежным из них является сейсмический. Он основан на наблюдении сейсмических волн, возникающих в твердой Земле при землетрясениях. Сейсмические волны дают возможность составить представление о внутреннем строении Земли и об изменении физических свойств вещества земных недр с глубиной.

Сейсмические волны бывают двух типов: продольные и поперечные. В продольных волнах частицы сдвигаются вдоль направления, в поперечных – перпендикулярно к этому направлению. Скорость продольных волн больше, чем поперечных. Когда сейсмическая волна встречает какую-либо границу раздела, происходит ее отражение и преломление. Наблюдая сейсмические колебания можно определить глубину границ, на которых происходит изменение свойств пород, и величину самих изменений.

Поперечные волны не могут распространяться в жидкой среде, поэтому наличие поперечных волн говорит о том, что литосфера является твердой вплоть до больших глубин. Однако, начиная с глубины 3000 км, поперечные волны распространяться не могут. Отсюда вывод: внутренняя часть литосферы образует ядро, которое находится в расплавленном состоянии. Кроме того само ядро еще делится на две зоны: внутреннее твердое ядро и жидкое внешнее (слой между 2900 и 5100 км).

Твердая оболочка Земли тоже неоднородна – в ней имеется резкая поверхность раздела на глубине около 40 км. Эта граница называется поверхностью Мохоровичича. Область выше поверхности Мохоровича называется корой, ниже мантией.

Мантия распространяется до глубины 2900 км. Она подразделяется на 3 слоя: верхний, промежуточный и нижний. Верхний слой – астеносфера, характеризуется относительно малой вязкостью вещества. В астеносфере находятся очаги вулканов. Понижение температуры плавления вещества астеносферы приводит к образованию магмы, которая по трещинам и каналам земной коры может изливаться на поверхность Земли. Промежуточный и нижний слои находятся в твердом, кристаллическом состоянии.

Верхний слой Земли называют земной корой и подразделяется на несколько слоев. Самые верхние слои земной коры состоят преимущественно из пластов осадочных горных пород, образовавшихся путем осаждения различных мелких частиц, главным образом в морях и океанах. В этих пластах захоронены остатки животных и растений, населявших в прошлом земной шар. Общая мощность (толщина) осадочных пород не превышает 15- 20 км.

Различие скорости распространения сейсмических волн на континентах и на дне океана позволило сделать вывод о том, что на Земле существуют два главных типа земной коры: континентальный и океанический.

Мощность коры континентального типа в среднем 30- 40 км, под многими горами достигает местами 80 км. Обычно ниже осадочных пород выделяют два главных слоя: верхний – «гранитный», близкий по физическим свойствам и составу к граниту и нижний, состоящий из более тяжелых пород - «базальтовый» (предполагается, что он состоит главным образом из базальта). Толщина каждого из этих слоев в среднем 15- 20 км. Однако, во многих местах не удается установить границу между гранитным и базальтовым слоями.

Океаническая кора гораздо тоньше (5- 8 км). По составу и свойствам она близка к веществу нижней части базальтового слоя континентов. Но этот тип коры свойствен только глубоким участкам дна океанов, не менее 4 тыс. м. На дне океанов есть области, где кора имеет строение континентального или промежуточного типа.

3. Возникновение атмосферы и гидросферы Земли и их роль в появлении жизни

3.1 Гидросфера

земля планета оболочка атмосфера гидросфера

Гидросфера – это совокупность всех водных объектов Земли (океанов, морей, озер, рек, подземных вод, болот, ледников, снежного покрова).

Большая часть воды сосредоточена в океане, значительно меньше - в континентальной речной сети и подземных водах. Также большие запасы воды имеются в атмосфере, в виде облаков и водяного пара. Свыше 96% объёма гидросферы составляют моря и океаны, около 2% - подземные воды, около 2% - льды и снега, около 0,02% - поверхностные воды суши. Часть воды находится в твёрдом состоянии в виде ледников, снежного покрова и в вечной мерзлоте, представляя собой криосферу . Основная масса льдарасполагается насуше - главнымобразом, в Антарктиде иГренландии. Общая масса егооколо 2,42*10 22 г. Если быэтот лед растаял, то уровень Мирового океана повысился бы примернона 60 м. При этом 10 % суши оказалось бы затопленной морем.

Поверхностные воды занимают сравнительно малую долю в общей массе гидросферы.

История образования гидросферы

Считается, что при разогреве Земли, кора вместе с гидросферой и атмосферой образовались в результате вулканической деятельности – выброса лавы, пара и газов из внутренних частей мантии. Именно в виде пара часть воды поступила в атмосферу.

Значение гидросферы

Гидросфера находится в постоянном взаимодействии с атмосферой, земной корой и биосферой. Циркуляция воды в гидросфере и ее большая теплоемкость уравнивают климатические условия на различных широтах. Гидросфера поставляет водяной пар в атмосферу водяной пар благодаря инфракрасному поглощению создает значительный парниковый эффект, поднимающий среднюю температуру поверхности Земли примерно на 40 °С. Гидросфера влияет на климат и другими путями. Она запасает большие количества тепла летом и постепенно отдает их зимой, смягчая сезонные колебания температуры на континентах. Она переносит, кроме того, тепло из экваториальных районов в умеренные и даже полярные широты.

Поверхностные воды играют важнейшую роль в жизни нашей планеты, являясь основным источником водоснабжения, орошения и обводнения.

Наличие гидросферы сыграло решающую роль в возникно­вении жизни на Земле. Мы знаем сейчас, что жизнь зародилась в океанах, и прошли миллиарды лет, прежде чем стала обитаемой суша.

3.2 Атмосфера

Атмосфера представляет собой газовую оболочку, окружающую Землю и вращающуюся с ней как единое целое. Атмосфера состоит в основном из газов и различных примесей (пыль, капли воды, кристаллы льда, морские соли, продукты горения). Концентрация газов, составляющих атмосферу, практически постоянна, за исключением воды (H 2 O) и углекислого газа (CO 2). Содержание азота по объему составляет 78,08 %, кислорода – 20,95% , в меньшем количестве содержаться аргон, углекислота, водород, гелий, неон и некоторые другие газы. В нижней части атмосферы содержится также водяной пар (до 3% в тропиках), на высоте 20-25 км имеется слой озона, хотя его количество невелико, но роль его очень значительна.

История образования атмосферы.

Атмосфера образовалась, главным образом, из газов, выделенных литосферой после формирования планеты. На протяжении миллиардов лет атмосфера Земли претерпела значительную эволюцию под влиянием многочисленных физико-химических и биологических процессов: диссипация газов в космическое пространство, вулканическая деятельность, диссоциация (расщепление) молекул в результате солнечного ультрафиолетового излучения, химические реакции между компонентами атмосферы и горными породами, дыхание и обмен веществ живых организмов. Так современный состав атмосферы значительно отличается от первичного, который имел место 4,5 млрд лет назад, когда сформировалась кора. Согласно наиболее распространённой теории, атмосфера Земли во времени пребывала в четырёх различных составах. Первоначально она состояла из лёгких газов (водорода и гелия), захваченных из межпланетного пространства. Это так называемая первичная атмосфер (570-200 млн. л. до н.э.). На следующем этапе активная вулканическая деятельность привела к насыщению атмосферы и другими газами, кроме водорода (углеводородами, аммиаком, водяным паром). Так образовалась вторичная атмосфера (200 млн. л.н.- наших дней). Эта атмосфера была восстановительной. Далее процесс образования атмосферы определялся следующими факторами:

· постоянная утечка водорода в межпланетное пространство;

· химические реакции, происходящие в атмосфере под влиянием ультрафиолетового излучения, грозовых разрядов и некоторых других факторов.

Постепенно эти факторы привели к образованию третичной атмосферы, характеризующейся гораздо меньшим содержанием водорода и гораздо большим - азота и углекислого газа (образованы в результате химических реакций из аммиака и углеводородов).

С появлением на Земле живых организмов, в результате фотосинтеза, сопровождающегося выделением кислорода и поглощением углекислого газа, состав атмосферы начал меняться. Первоначальнокислород расходовался на окисление восстановленных соединений - углеводородов, закисной формы железа, содержавшейся в океанах и др. По окончанию данного этапа содержание кислорода в атмосфере стало расти. Постепенно образовалась современная атмосфера, обладающая окислительными свойствами.

В течение фанерозоя состав атмосферы и содержание кислорода претерпевали изменения. Так, в периоды угленакопления содержание кислорода в атмосфере заметно превышало современный уровень. Содержание углекислого газа могло повышаться в периоды интенсивной вулканической деятельности. В последнее время на эволюцию атмосферы стал оказывать влияние и человек. Результатом его деятельности стал постоянный значительный рост содержания в атмосфере углекислого газа из-за сжигания углеводородного топлива.

Строение атмосферы.

Атмосфера имеет слоистое строение. Выделяют тропосферу, стратосферу, мезосферу и термосферу. На долю тропосферы приходится около 80 % массы атмосферы, на долю стратосферы - около 20 %; масса мезосферы - не более 0,3 %, термосферы - менее 0,05 % отобщей массы атмосферы.

Тропосфера- нижний, наиболее изученный слой атмосферы, высотой в полярных областях 8 - 10 км, в умеренных широтах до 10 - 12 км, на экваторе - 16 - 18 км. В тропосфере сосредоточено примерно 80-90% всей массы атмосферы и почти все водяные пары. В тропосфере протекают физические процессы, которые обусловливают ту или иную погоду. В тропосфере осуществляются все превращения водяного пара. В ней образуются облака и формируются осадки, циклоны и антициклоны, очень сильно развито турбулентное и конвективное перемешивание.

Над тропосферой находится стратосфера. Стратосфера характеризуется постоянством или ростом температуры с высотой и исключительной сухостью воздуха, почти нет водяного пара. Процессы в стратосфере практически не влияют на погоду. Стратосфера располагается на высоте от 11 до 50 км. Характерно незначительное изменение температуры в слое 11-25 км (нижний слой стратосферы) и повышение её в слое 25-40 км от −56,5 до 0,8°С (верхний слой стратосферы). Достигнув на высоте около 40 км значения около 0°С, температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой. Именно в стратосфере располагается слой озоносферы («озоновый слой») (на высоте от 15-20 до 55-60 км), который определяет верхний предел жизни в биосфере.

Важный компонент стратосферы и мезосферы - О 3 , образующийся в результате фотохимических реакций наиболее интенсивно на высоте ~ 30 км. Общая масса О 3 составила бы при нормальном давлении слой толщиной 1,7-4,0 мм, но и этого достаточно для поглощения губительного для жизни УФ-излучения Солнца.

Следующийслой, лежащий над стратосферой, это мезосфера. Мезосфера начинается на высоте 50 км и простирается до 80-90 км. Температура воздуха до высоты 75-85 км понижается до −88 °С. Верхней границей мезосферы является мезопауза, где расположен температурный минимум, выше температура вновь начинает расти. Далее начинается новый слой, который называется термосферой. Температура в ней быстро растет, достигая 1000 – 2000 °С на высоте 400 км. Выше 400 км температура почти не меняется с высотой. Температура и плотность воздуха очень сильно зависят от времени суток и года, а также от солнечной активности. В годы максимума солнечной активности температура и плотность воздуха в термосфере значительно выше, чем в годы минимума.

Далее расположена экзосфера. Газ в экзосфере сильно разрежен, и отсюда идёт утечка его частиц в межпланетное пространство (диссипация). Далееэкзосфера постепенно переходит в так называемый ближнекосмический вакуум, который заполнен сильно разреженными частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные час­тицы кометного и метеорного происхождения. Кроме чрезвычайно разреженных пылевидных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.

Значение атмосферы.

Атмосфера снабжает нас необходимым для дыхания кислородом. Уже на высоте 5 км над уровнем моря у нетренированного человека появляется кислородное голодание и без адаптации работоспособность человека значительно снижается. Здесь кончается физиологическая зона атмосферы.

Плотные слои воздуха - тропосфера и стратосфера - защищают нас от поражающего действия радиации. При достаточном разрежении воздуха, на высотах более 36 км, интенсивное действие на организм оказывает ионизирующая радиация - первичные космические лучи; на высотах более 40 км действует опасная для человека ультрафиолетовая часть солнечного спектра.

Озон, находящийся в верхней атмосфере, служит своеоб­разным щитом, охраняющим нас от действия ультрафиолето­вого излучения Солнца. Без этого щита развитие жизни на суше в ее современных формах вряд ли было бы возможно.

Заключение

Планета Земля образовалась примерно 4,6 млрд. лет назад и прошла несколько этапов эволюции. В течение этих периодов поверхность планеты постоянно изменялась: происходило формирование рельефа планеты, появилась водная оболочка – гидросфера, газовая оболочка – атмосфера. Возникновение гидросферы и атмосферы явилось началом возникновения жизни на планете. Так именно в водной среде зародились первые живые организмы, появление атмосферы способствовало их выходу на сушу. И на сегодняшний день на Земле постоянно происходят землетрясения, извержения вулканов, поверхность Земли постоянно подвержена влиянию не только внутренних процессов, но и внешних (эрозия под действием ветра, воды, ледников и т.п.), также огромное влияние оказывает и деятельность человека - это говорит о том, что наша планета продолжает эволюционировать, и через несколько тысяч лет и более ее облик и состояние может масштабно измениться.

Список литературы

1. Кожевников Н.М., Краснодембский Е.Г., Ляпцев А.В.,Тульверт В.Ф. Концепции современного естествознания. – СПб.: Изд-во СПбГУЭФ, 1999.

2. Кириллин В.А. Страницы истории науки и техники. – М.: Наука, 1989.

3. Левитан Е.П. Эволюционирующая Вселенная. М.: Просвещение, 1993.

4. Бакулин П.И., Кононович Э.В., Мороз В.И. Курс общей астрономии. – М.: Наука, 1997.

5. http://ru.wikipedia.org


Кириллин В.А. Страницы истории науки и техники. – М.: Наука, 1989. – С.367.

Кожевников Н.М., Краснодембский Е.Г., Ляпцев А.В.,Тульверт В.Ф. Концепции современного естествознания. – СПб.: Изд-во СПбГУЭФ, 1999. – С.141.

Земля была расплавленной около 1 млрд. лет. Дальнейшее развитие в результате дифференциации вещества в жидком состоянии привело к расслоению планеты на оболочки и формированию атмосферы и гидросферы.

Атмосфера Земли раннего этапа имела другой компонентный состав, чем сейчас. В ней преобладали гелий, водород, азот, углекислый газ. В дальнейшем часть газов улетучивалась в космос, другая часть участвовала в окислительных процессах, но происходило и пополнение атмосферы газами, поступающими с недр Земли. Только при извержении вулканов в атмосферу поступило газов в 50 раз больше массы современной атмосферы. Первоначальная атмосфера изменялась под воздействием поступающих из недр газов, солнечной радиации, растительности, окислительных процессов, утечки в космос. На рубеже 2-2,2 млрд. лет назад возникла азотно-кислородная атмосфера, а содержание углекислого газа уменьшилось. Содержание углекислого газа сейчас в атмосфере составляет 0,034%. Оно зависит от скорости обмена с океаном и биосферой, что определяется температурой и влажностью.

Гидросфера Земли появилась позже начала образования планеты. Но с раннего архея объем воды стал значительно увеличиваться и 2-2,5 млрд. лет назад её объем приблизился к современному. Об этом свидетельствуют породы этого периода, формировавшиеся в водной среде (зеленокаменные офиолитовые пояса, голубые сланцы). Первичные океаны возникли 3,5-4 млрд. лет назад.

Воды Мирового океана и газы атмосферы возникли в результате преобразования материала мантии и образования и развития земной коры. Основной состав атмосферы – азотно-кислородный при незначительном количестве инертных газов и водорода. Этот состав отличается от состава вулканических газов. Причина этого кроется в изменении атмосферы за геологическое время и под влиянием развития жизни на планете. Зарождение жизни относят ко времени 3,6 млрд. лет назад. За это время вся вода Мирового океана прошла более 300 раз через биогенный цикл, а свободный кислород обновился более миллиона раз. В результате фотосинтеза ежегодно образуется 248 млрд. тонн в год кислорода при потреблении 341 т углекислого газа. Кроме этого, кислород образуется за счет фотодиссоциации водяного пара. Приведенные цифры показывают огромную роль живого вещества в формировании и изменении состава атмосферы за геологическое время. Выветривание пород земной коры сопровождается процессами окисления и гидратации. Свободный кислород связывается, погружаясь в глубину. В породах при метаморфизации наблюдаются восстановительные процессы. В этих процессах образуется вода и углекислота, выделение свободного кислорода не наблюдается.

Излияние базальтов на поверхность Земли приносило ювенильные минерализованные воды и газы. В базальтовой магме содержится 7%воды. Таким образом, образование коры сопровождалось и образованием воды и газов атмосферы. Поступали газы: СО, СО 2 , СН 4 , ΝН 3 , S, H 2 S, H 3 BO 3 , HCl, HFe, Ar, He. Ювенильные воды разрушали алюмосиликатные породы, растворяли Na, К, Rb, Cs, Мg, Са, Сг, Fe. При круговороте воды значительная часть солей задерживалась в океане. В настоящее время установился определенный баланс состава атмосферы и солевого состава гидросферы, происходящие изменения медленны и определяются ходом векового химического изменения под действием физико-химических и биологических факторов.

Живое вещество является не только основным поставщиком кислорода и поглощения углекислого газа. Оно так же концентрирует многие другие элементы: кремний, железо, фосфор, марганец и другие. Этапы развития живого вещества соответствуют изменениям в их взаимоотношении к различным элементам таблицы Менделеева. Так, первичные живые организмы развивались за счет окислительных процессов, следующий этап развития живого вещества использовал фотосинтез и усилил концентрацию Al, Si, Са, Ti, Сг, Mn, Fe, Co, Ni, Сu, Zn и др. Таким образом, живое вещество оказало и оказывает огромное влияние на миграцию химических элементов, а значит и на формирование не только состава атмосферы, но и на процесс преобразования земной коры, образования месторождений полезных ископаемых железо-марганцевых руд, нефти и газа, угля, известняков, доломитов и т.д. Общая масса живого вещества сейчас составляет 2420 млрд. тонн.

Об отсутствии кислорода в атмосфере в начальный период существования Земли свидетельствует отсутствие в морских отложениях минералов кислородных солей: сульфатов, карбонатов, минералов окисного железа. В дальнейшем состав отложений изменяется и свидетельствует о появлении свободного кислорода. Это произошло на рубеже 3 млрд. лет назад.

Установлено также, что из земных недр непрерывно поступают в земную кору и на поверхность флюиды (газы и жидкости с растворенными солями и элементами). Это в первую очередь гелий, водород, углеводородные газы, вода. Но не только флюиды поступают в земную кору и изменяют её. Поднимаются в результате процессов дифференциации и более тяжелые элементы и вещества, также как и опускаются. Но этот процесс идет со скоростями в сотни и тысячи раз медленнее, чем для флюидов. Такие процессы обуславливают метаморфизацию пород, гранитизацию, превращение океанической коры в континентальную и наоборот.

Образование земной коры и атмосферы

Земная кора, гидросфера и атмосфера образовались в основном в результате высвобождения веществ из верхней мантии молодой Земли. За счет этих процессов сформировалась оболочка из породы толщиной менее 0,0001% объема всей планеты. Состав этой оболочки, образующей континентальную и океаническую кору, эволюционировал во времени прежде всего за счет возгонки элементов из мантии в результате частичного плавления на глубине примерно 100 км. Средний химический состав современной коры (рис.1) показывает, что кислород содержится в ней в наибольшем количестве, сочетаясь в разных видах с кремнием, алюминием и другими элементами с образованием силикатов.

земля атмосфера жизнь фотосинтез гидрологический

Рис. 1.

Можно предположить, что летучие элементы выделились (дегазировались) из мантии в результате извержений вулканов, сопровождавших образование коры. Некоторые из этих газов удержались и образовали атмосферу, когда поверхностные температуры стали достаточно низкими, гравитационное притяжение достаточно сильным.


Рис.2.

Эволюция атмосферы и происхождение жизни

Аккреция вещества Земли привела к временному его разогреву и легких молекул первичной атмосферы, прежде всего водорода и гелия, рассеянных в космическом пространстве. Последующее понижение температуры в результате сильного излучения тепла привело к образованию твердой коры. Активный вулканизм мешал этому процессу, но в то же время поставлял большие количества газов, из которых образовалась вторичная атмосфера. В ней, кроме Н 2 , было много других газов, таких, как СН 4 , NH 3 и Н 2 О (рис.3).


Рис. 3.

Наряду с водяными парами уже существовал и древний океан, состоящий из жидкой воды. Углекислоты Н 2 СО 3 было мало, так как ее восстанавливали соединения Fе 3+ , содержавшиеся в земной коре. Примерно 1 млрд. лет атмосфера была восстановительной, имелись возможности для процессов абиогенного образования и накопления многих соединений.

На восстановительную вторичную атмосферу воздействовали большие потоки энергии: коротковолновое ультрафиолетовое излучение, ионизирующее излучение Солнца (сейчас экранируется озоновым слоем), электрические разряды (грозы, коронные разряды), местные источники тепла вулканического происхождения. В этих условиях мог идти активный химический синтез, при котором из газов вторичной атмосферы через такие промежуточные продукты, как синильная кислота, этилен, этан, формальдегид и мочевина, образовались сначала мономеры, а затем и полимеры. Ввиду того, что окисления не происходило, водоемы обогащались аминокислотами, пуриновыми и пиримидиновыми основаниями, сахарами, карбоновыми кислотами, липидами. Образовался «первичный бульон». Происходили процессы осаждения, разделения и адсорбции, а на поверхностях минералов (глина, горячая лава) -- дальнейшие синтетические процессы (рис.4). Это подтверждается результатами анализа древних земных химических ископаемых и их сравнением с внеземным органическим веществом (метеориты), а также многочисленными модельными экспериментами, показавшими, что в смеси газов, воспроизводящей атмосферу, при достаточном притоке энергии действительно происходят процессы синтеза органических веществ. Среди продуктов этого синтеза найдены основные биологически важные соединения, в том числе 14 аминокислот, пурины и пиримидины, сахара, АМФ, АДФ, АТФ, жирные кислоты и порфирины.

По мере возрастающей потери Н 2 в космическое пространство создавалась третичная атмосфера, содержащая большие количества N 2 (из NH 3), СО 2 (из вулканических газов и из СН 4) и паров воды.


Рис. 4.

Около 3,5 млрд. лет назад появились хлорофиллоносные организмы, способные осуществлять фотосинтез, т. е. использовать экзогенный источник энергии (солнечную радиацию) для синтеза из углекислого газа, воды и минеральных элементов всех органических веществ, необходимых для жизни. Эти организмы преобразовывали солнечную энергию в биохимическую.

CO 2(г) + H 2 O (ж) > CH 2 O (тв) + O 2(г) (1)

«Изобретение» фотосинтеза способствовало повышению содержания кислорода в атмосфере и формированию современной, четвертичной атмосферы.

В атмосфере Земли кислород первоначально накапливался путем разложения воды и водяного пара под действием ультрафиолетовых лучей Солнца. Сначала кислород (O 2) быстро потреблялся в процессе окисления восстановленных веществ и минералов. Однако наступил момент, когда скорость его поступления (уже преимущественно в процессе фотосинтеза) превысила потребление и О 2 начал постепенно накапливаться в атмосфере. Около 500 млн лет назад количество кислорода в атмосфере было много больше, чем сейчас, но впоследствии в результате интенсивной вулканической деятельности снизилось до современного. Биосфера под смертельной угрозой своего собственного отравляющего побочного продукта была вынуждена приспосабливаться к таким изменениям. Она осуществляла это посредством развития новых типов биогеохимического метаболизма, которые поддерживают разнообразие жизни и на современной Земле.

Предполагают, что жизнь на Земле началась в океанах около 4,2--3,8 млрд. лет назад. Древнейшие из известных ископаемых -- бактерии из пород с возрастом около 3,5 млрд. лет. В породах этого возраста имеются свидетельства достаточно развитого обмена веществ, при котором использовалась солнечная энергия для синтеза органического вещества. Самые ранние из этих реакций, вероятно, были основаны на сере (S), поступающей из вулканических выходов:

CO 2(г) + 2H 2 S > CH 2 O (тв) + 2S (тв) + H 2 O (ж) (2)

(органическое вещество)

Постепенно возникла атмосфера современного состава. К тому же кислород в стратосфере претерпел фотохимические реакции, приведшие к образованию озона (О 3), защищающего Землю от ультрафиолетового излучения. Этот экран позволил высшим организмам выйти на сушу.

Итак, происхождение атмосферы неразрывно связано с образованием Земли. Эволюция атмосферы происходила (и происходит) под влиянием следующих факторов:

  • · аккреции вещества межпланетного пространства;
  • · выделения газов при вулканической деятельности;
  • · химического взаимодействия газов атмосферы с компонентами гидросферы и литосферы;
  • · диссоциации молекул газов, составляющих воздух, под влиянием солнечного ультрафиолетового и космического излучения;
  • · биогенных процессов в живом веществе биосферы;
  • · антропогенной деятельности.

Атмосфера возникла в начальные периоды формирования земной коры. Существуют две гипотезы ее образования. В первой атмосфера рассматривается как производная первичного материала, оставшегося от упрощенных флюидов, которые когда-то обрамляли расплавленную Землю. По второй гипотезе, атмосфера рассматривается как вторичное образование, возникшее при освобождении свободных химических элементов и соединений из лавы, извергавшейся на земную поверхность. Благодаря этой лаве была создана первичная земная кора. Большинство ученых придерживаются второй гипотезы происхождения атмосферы, считая, что в противном случае любая первичная атмосфера на ранней стадии развития Земли была бы сравнительно быстро ей утеряна.

Таким образом, условно можно считать, что источником веществ, составляющих первичную атмосферу, служили продукты выплавления горных пород земной коры, мантии и ядра. Считается, что она была бескислородной. Крупнейший американский геохимик Г. Юри высказал мнение, что атмосфера могла состоять из смеси водяного пара, водорода, метана, аммиака и сернистого водорода. Английский геохимик П. Клауд считает, что в ранней атмосфере преобладали вода, углекислый газ, окись углерода, азот, хлористый водород, водород и сера. Следовательно, атмосфера состояла только из летучих и легких газообразных веществ, которые в момент формирования Земли входили в состав твердых веществ. Свободной воды не существовало, она была связана в гидроокислах, азот - в нитридах и, возможно, в нитритах, кислород - в окислах металлов, углерод - в карбидах и карбонатитах и т. д.

Увеличение мощности атмосферы и возникновение гидросферы объясняется освобождением из пород верхней мантии при интенсивных вулканических процессах водяного пара и газов. Действительно, газы, выделяющиеся при извержении современных вулканов, содержат большое количество водяного пара. Например, при извержении вулканов гавайского типа * в газах при температуре 1000-1200°С содержится около 80% воды и менее 6% углекислого газа. Встречается также значительное количество хлора (40%), метана (до 3-5%) и аммиак. Из лав при высокой температуре, кроме водяного пара, выделяются такие соединения, как борная, соляная и фтористая кислоты, сероводород и др.

* (Вулканы гавайского типа характеризуются излиянием базальтовой подвижной магмы, бедной газами; застывание происходит медленно. )

Основываясь на химическом анализе газовых пузырьков в кварцитах катархейского и архейского возраста, советский литолог Ю. П. Казанский попытался определить состав древней атмосферы. По его мнению, в архее и катархее атмосфера имела азотно-аммиачно-углекислый состав. В ней кроме преобладающего углекислого газа (до 60%) находились азот, сероводород, аммиак, серный газ, пары соляной и фтористой кислот. Первичная атмосфера была довольно разреженной, ее температура у земной поверхности мало отличалась от температуры так называемого лучистого равновесии * . Сравнительно низкая температура способствовала конденсации водяного пара из вулканических газов. Таким образом водяной пар превращался в жидкость, которая, заняв пониженные участки, дала начало формированию гидросферы.

* (Температура лучистого равновесия определяется отношением величины потока солнечного тепла, поглощенного поверхностью, к величине потока уходящего (отраженного) излучения земной поверхности. Последняя пропорциональна четвертой степени температуры этой поверхности. )

Доказательством наличия гидросферы не только в архее, но и даже в катархее является обнаружение на Земле древнейших осадочных пород в Гренландии и Южной Африке, возраст которых оценивается в 3,8 млрд. лет. Причем надо отметить, что это возраст метаморфизма, а, следовательно, время их образования, должен быть еще более ранним.

При описании состава первичного океана необходимо остановиться на двух источниках привноса растворенных соединений. С одной стороны, это растворенные в воде атмосферные газы, а с другой - соли и соединения, входящие в состав горных пород, обнаженных на земной поверхности в пределах древних первичных континентов. Перешедшие из атмосферы в воды океана угольная и другие кислоты, сера, сероводород и аммиак создавали высокую кислотность древнейших океанических вод. Высокая агрессивность природных вод способствовала интенсивному разложению обнаженных на земной поверхности вулканических горных пород и усиленному извлечению из них щелочей и щелочноземельных элементов и соединений. Со временем доля последних возросла, одновременно с этим снизилась кислотность океанических вод и сравнительно быстро установилось кислотно-щелочное равновесие.

"Все анионы морской воды возникли в результате дегазации мантии, т. е. удаления из нее газов, а катионы - при выветривании горных пород", - таков один из основных тезисов известного геохимика, академика А. П. Виноградова. Действительно, содержание в морской воде таких анионов, как хлор и бром, в десятки и сотни раз превышает их количество в горных породах. Следовательно, они могли возникнуть только в результате дегазации мантии. Исходя из этого можно предположить, что соленость первичного океана должна была быть близкой к современной, хотя содержание катионов могло сильно отличаться и приближалось к современному только по мере возрастающего разрушения и растворения горных пород первичных континентов.

Об отсутствии кислорода в древней атмосфере и океане свидетельствует наличие в большом количестве не только в изверженных, но и в осадочных горных породах элементов и соединений, не подвергшихся окислению. Так, например, в катархейских карбонатных породах имеется много неизмененных зерен пирита и уранинита и отсутствует окисленная сера. Все эти породы характеризуются большой величиной отношения закисного железа к окисному.

Ввиду того, что свободного кислорода в атмосфере длительное время не было, озоновый экран отсутствовал. Атмосфера легко пропускала ультрафиолетовое излучение Солнца. В таких условиях не могло быть и речи о возможном существовании каких-либо живых организмов на суше. Под воздействием ультрафиолетового излучения в водах морей и океанов начали образовываться сложные органические соединения вплоть до аминокислот. Этому, возможно, содействовала и относительно высокая температура земной поверхности, так как насыщенность атмосферы углекислотой способствовала задержке теплового излучения.

Свободный кислород первоначально расходовался на окисление аммиака, и при этом выделялся свободный азот. Метан и окись углерода окислялись до углекислоты, основная часть которой уходила в океан. Сера и сероводород окислялись до сернистого и серного ангидрита. В океане осаждались карбонатные и сульфатно-карбонатные осадки, а морская вода становилась хлоридно-карбонатно-сульфатной.

Появление гидросферы и атмосферы было весьма важным качественным рубежом в истории Земли. Их развитие усложнило и дифференцировало процессы, протекающие в древнейшей географической оболочке. Земная кора, гидросфера и атмосфера вступили в сложные взаимоотношения путем обмена энергии и веществ. Активно происходили процессы преобразования горных пород на земной поверхности. В бескислородной атмосфере процесс выветривания протекал весьма своеобразно в обстановке повышенных температур и высокой кислотности природных вод и атмосферы.

Только в раннем протерозое, по мнению Ю. П. Казанского, атмосфера стала кислородно-азотно-углекислой. Подтверждением этого является наличие не только мощных толщ джеспилитов, т. е. пород, состоящих из кварца и окисного железа - гематита, но и разнообразных красноцветных пород, пигментирующее вещество которых состоит из окисного железа. Эти породы могли образоваться только при наличии в атмосфере свободного кислорода. Однако наряду с окислительными обстановками в протерозое существовали и восстановительные условия.

Главнейшими газами атмосферы были углекислый газ, аммиак, азот, а сопутствующими - кислород, серный ангидрит, сероводород, пары соляной и фтористой кислот, метан. По сравнению с археем общее количество кислот сильно снизилось. Тенденция к снижению паров кислот, метана, соединений серы и аммиака существовала на протяжении всего протерозойского времени. Одновременно общее количество азота в атмосфере продолжало увеличиваться.

Имеется и другая точка зрения по поводу появления свободного кислорода в атмосфере. По расчетам Л. Беркнера и Я. Маршалла, его содержание в атмосфере в одну тысячную долю от современного (так называемая точка Юри) было достигнуто примерно 1,2 млрд. лет назад, т. е. в середине рифея. С этим выводом хорошо согласуются многие палеонтологические и геохимические материалы.

Наличие свободного кислорода, пусть даже в небольших количествах, благоприятствовало появлению организмов, потребляющих кислород, остатки которых найдены в породах протерозоя.

Критическим уровнем содержания свободного кислорода в биологическом отношении является так называемая точка Пастера, когда количество кислорода в атмосфере составляло одну сотую от современной и организмы взамен анаэробного брожения стали пользоваться более эффективным потреблением энергии - окислением при дыхании. По расчетам Л. Беркнера и Л. Маршалла, данный уровень был достигнут около 600 млн. лет назад. В это время произошел экологический взрыв - массовое распространение животных почти всех известных в настоящее время типов.

С изменением содержания кислорода в древней атмосфере тесно связано количество углекислоты. Углекислый газ попал в атмосферу, а затем в гидросферу, являясь продуктом дегазации мантии. Он возник в результате взаимодействия гранита с водой при высоких температурах, разложении карбидов, высокотемпературной диссоциации карбонатитов, а также путем окисления метана и, главное, как продукт, выделяющийся при вулканических извержениях.

Углекислый газ удалялся из атмосферы и гидросферы благодаря химическим реакциям (образование карбонатов) или биологическим путем, когда огромные массы его расходовались на образование скелетов организмов.

Так, в катархее и архее карбонатных пород известно очень мало. Только в раннем протерозое, когда в атмосфере появился кислород, а океаническая вода стала хлоридно-карбонатной, их объем стал увеличиваться. Большое содержание углекислого газа в морской воде и высокий щелочной резерв последней обеспечивали образование мощных известково-доломитовых и доломитовых толщ.

В конце протерозоя количество растворенного в морской воде углекислого газа и его концентрация в атмосфере уменьшились, однако все это связано с усилением поглощения углекислого газа водорослями в процессе фотосинтеза. Морская вода приобрела хлоридно-сульфатный характер, и среда стала нейтральной, что, по-видимому, привело к появлению твердого скелета у организмов.

Планета Земля состоит из металлического ядра и охватывающих его двух концентрических оболочек: мантии и земной коры. Залегающая под земной корой мантия имеет переменную температуру от 1000 до 3000 °С, плотность от 3,2 до 5 г/см 3 и состоит из полностью или час-тично расплавленных минералов горных пород, способных течь как высоковязкая жидкость. Мантийное вещество состоит преимущественно из силикатов, испытывающих фазовые переходы при изме-нении температуры и давления. Мантия постоянно подогревается со стороны горячего ядра, вследствие чего в ней непрерывно образуют-ся мощные конвективные потоки. Кроме того, на перемешивание рас-плавленного вещества мантии существенное влияние оказывает при-ливное воздействие Луны.

Земная кора — это менее плотное вещество, которое более тяже-лая мантия вытолкнула из себя. Плотность горных пород укладывается в диапазоне от 2 до 3,2 г/см 3 . С позиций геохимика — это наружная оболочка планеты, имеющая по сравнению с мантией избыток кремнезема, щелочи, воды и недостаток магния и железа. Средний химический состав земной коры следующий: SiO, 2 — 53,5%; А1 2 0 3 — 15,9%; СаО — 9,4%; FeO — 7,6%; MgO —5,4%; Na 2 O —2,7%; С0 2 — 1,0%; H z O — 0,78%. С позиций геофизика земная кора — это относительно рыхлый чехол, лежащий на более плотной мантии. С позиций гидролога — это область, в которой вода может находить-ся в жидкой фазе.

С позиций гидротехника земная кора — это прочная горная по-рода, способная выдержать нагрузку в миллиарды тонн, создаваемую весом водохранилища и плотины. Однако земная кора не является абсолютной «твердью», она «плавает» в подкоровом субстрате горяче-го мантийного вещества и при этом стремится к достижению изоста- зии - состоянию гидростатического равновесия. Достаточно значи-мые изменения гравитационной нагрузки на земную кору приводят к изменению изостатического равновесия. Создание крупных водохранилищ вызывает не только осадку припо-верхностной части земной коры (геологической среды), но и проги-бает всю толщу земной коры как упругую пластину, плавающую в тя-желой жидкости.

Схематический разрез земной коры

а — состояние изостазии; б— состояние прогиба;
1 — область влияния силы веса водохранилища на геологическую среду;
2 — прогибающаяся земная кора; 3 — "граница Мохо";
4 — погружение подошвы земной коры в малтийное вещество

Из земных недр ежегодно выносится на поверхность около 9 ·10 9 т магмы, пепла, паров и газов. Если всю массу, вынесенную за всю ис-торию вулканических извержений, равномерно распределить по по-верхности Земли, то получится слой толщиной в 34 км. Это означает, что земная кора является продуктом длительной переработки веще-ства верхней мантии посредством физического и химического вывет-ривания, переосаждения, а также преобразования растениями и живыми организмами.

Вся история геологического развития Земли связана с выделени-ем или поглощением тепла. Земля — это огромная тепловая машина. Через поверхность Земли теряется часть ее внутреннего тепла. Сред-непланетарное значение удельного потока тепла, поступающего из недр, равно 59 мВт/м 2 . Характеристика энергетических процессов, происходящих в геосферах Земли, приводится в таблице ниже.

Энергетика сильных возмущений в геосферах

Мощность падающего на Землю солнечного излучения

Энергия вращения Земли

Мощность теплового потока через земную поверхность

Мощность приливного воздействия Луны

Энергия землетрясений с магнитудой 8,5

Энергия вулканических извержений

До 10 18 Д ж

Энергия обрушений склонов и лавин

Энергия подводных оползней

Энергия смерчей, ураганов, торнадо, циклонов

Энергия, потребляемая человечеством за сутки

Энергия ядерного взрыва

До 2,4 · 10 17 Дж

С позиций современной гидротехнической науки земная кора — это прочная горная порода, способная без каких-либо перемещений выдержать нагрузку в миллиарды тонн, создаваемую весом водохра-нилищ и плотин. Однако земная кора не является «твердью», она пла-вает в подкоровом субстрате горячей мантии и при этом стремится к достижению состояния изостазии. В задачах тектонофизики земную кору рассматривают как упругую пластину, плавающую в тяжелой высоковязкой жидкости, которая чутко реагирует на приложение внешних сил и напряжений.

Любые значимые нагрузки на земную кору приводят к изменению изостатического равновесия. В частности, такими нагрузками явля-ются крупные водохранилища весом в десятки и сотни миллиардов тонн. К 2010 г. на Земле построено и эксплуатируется более 50 водо-хранилищ, объем каждого из которых превосходит 25 млрд м 3 . Свой-ство изостазии современная гидротехника во внимание не принима-ет. В то же время многолетний прогиб всей толщи земной коры может быть одной из причин необъясненных процессов, происходящих в створах больших плотин.

Литосфера (земная кора и постилающая ее верхняя мантия) — это сложное многослойное образование с нерегулярно меняющимися свой-ствами. В качестве примера в таблице ниже представлены свойства струк-турных элементов земной коры в районе Саяно-Шушенской ГЭС.

Мощность h эффективно-упругой части литосферы (земной коры), в пределах которой она заметно проявляет упругие свойства и слабо проявляет вязкие свойства, для разных районов Земли составляет примерно 35—40 км. На этих глубинах температура горных пород приближается к 600—800 °С, поэтому здесь породы пе-реходят из класса упругих в класс пластичных и упруговязких. Мо-дуль упругости Е массива горных пород в пределах толщи земной коры может изменяться от 2 . 10 4 до 12 . 10 4 МПа. Среднее значение модуля Юнга для земной коры Е = 10 11 Па. Изгибная жесткость EJ зем-ной коры может изменяться в пределах от 5 -10 22 до 35 . 10 22 Н. м 2 .

На глубинах более 30—40 км температура горных пород приближа-ется к температуре солидуса, легкоплавкие минералы плавятся, в ре-зультате вязкость мантийного вещества снижается на несколько поряд-ков. Считается, что ниже подошвы земной коры (упругой части литос-феры) вязкость горячего мантийно-астеносферного вещества характеризуется величинами порядка 10 18 — 10 20 Па. с.

Подвижность мантийного вещества является основной причиной возникновения больших горизонтальных напряжений и тектоничес-ких движений в земной коре. Извержения вулканов, землетрясения, образование разрывов и складок — это проявления внутренней ак-тивности Земли. Изливающаяся на поверхность магма —- это флюид-но-силикатный расплав, содержащий соединения с кремнеземом и растворенные летучие вещества, а также присутствующие в виде пу-зырьков газа. Кристаллизация магмы происходит постепенно по мере падения ее температуры. Вначале выделяются высокотемпературные минералы с образованием таких горных пород, как базальты и габ-бро, затем — низкотемпературные минералы с образованием диори-тов и андезитов, затем гранитов и риолитов и т.д. Наличие в магме легкоотделяемых компонентов приводит к вулканическим процессам, а наличие трудноотделяемых — к интрузивным процессам.

Свойства структурных элементов земной коры в районе СШГЭС

Характеристика слоя

Мощность слоя, км

Коэффициент Пуассона η

Е · 10 4 МПа

Зона выветривания и разгрузки

Приповерхностная часть верхнекорового гранитного комплекса

Приповерхностная часть верхнекорового метаморфического комплекса

Пхубинная часть верхнекорового комплекса

Среднекоровый мегакомплекс

Нижнекоровый мегакомплекс

Верхняя мантия

О вязкости горячей магмы можно судить по вязкости изливающей-ся лавы. Жидкие базальтовые лавы имеют температуру 1000—1200 °С и плотность до 2,8 г/см 3 . Высоковязкие лавы имеют температуру 700—900 °С и плотность 2,2 г/см 3 . Коэффициент вязкости горячей магмы примерно равен 1000 Па. с, что в миллион раз больше вязкости воды. Для сравнения можно сказать, что коэффициент вязкости рас-плава стекла при 1400 °С равен 1350 Па. с. Вязкость магмы резко воз-растает по мере ее остывания и соответствующего увеличения в ее объеме доли затвердевших кристаллов. При увеличении в магме объем-ной доли кристаллов до 0,6 ее вязкость увеличивается до 10 10 Па. с.

Нижним ярусом континентальной земной коры является тол-стый базальтовый слой, на котором покоится гранитный слой, по-крытый мощным чехлом осадочных пород. На долю интрузивных и эффузивных магматических пород приходится примерно 95 % объе-ма земной коры. Граница между корой и мантией подвижна: повы-шение температуры мантии смещает границу вверх, а понижение температуры — вниз.

Границей раздела земной коры и мантии принято считать «по-верхность М», залегающую на глубинах 30—60 км на континентах и 5—10 км под дном океана. Эта поверхность определяет-ся глубиной, на которой происходит резкое увеличение скорости сей-смических волн от 7 до 8 км/с. Особое значение границы М заключа-ется в том, что на ее уровне примерно соблюдается архимедово рав-новесие земной коры, плавающей в мантийном веществе.

Ниже «поверхности М» залегает также астеносфера — слой верх-ней мантии с повышенной электропроводностью и пониженной вязкостью. Эта особенность астеносферы объясняется плавлением мантийного вещества в пределах 1—2 %, которое проявляется в виде тонкой пленки, обволакивающей кристаллы при температуре около 1200 °С. Астеносферный слой расположен ближе всего под океанами и глубже под континентами.

Земля — единственная планета Солнечной системы, на поверх-ности которой вода может находиться в жидком состоянии. Масса воды в современной гидросфере достигает 1,51 - 10 18 т. Большая часть воды сосредоточена в Мировом океане — 1,42 . 10 18 т и в мате-риковых льдах — 0,023 . 10 18 т. На пресные воды суши приходится около 0,001 . 10 18 т. Помимо свободной воды часть ее в виде грунтовых вод пропитывает континентальную и океаническую кору. Суммарная масса таких вод достигает 0,066 . 10 18 т. Средняя соленость океаничес-ких вод достигает 35 %о (промилле или тысячных долей процента).

Кроме жидкой фазы часть воды (0,713 . 10 18 т) связана в гидроси-ликатах земной коры. Всего же на Земле в ее верхних геосферах со-средоточено примерно 2,233 . 10 18 т воды. Воды океанов и морей по-крывают около 2/3 поверхности Земли, средняя глубина Мирового океана близка к 3,8 км. В океанской воде растворены практически все химические элементы, главными из которых являются катионы натрия, магния, кальция, калия и анионы хлора, НСО э, С0 3 , брома.

В верхних слоях океана в каждом литре воды растворено в сред-нем 50 мл углекислого газа, 13 мл азота, до 8 мл кислорода. Холодные океанические воды высоких широт насыщены газами в большей сте-пени, чем теплые воды тропических широт. Всего в океане растворе-но С0 2 около 1,4 . 10 14 т, то есть почти в 60 раз больше, чем в атмосфе-ре (2,4 . 10 12 т). Кислорода в океане растворено около 8 -10 12 т или в 150 раз меньше, чем его содержится в атмосфере. Ежегодно реки сно-сят с суши в океаны около 2,53 . 10 10 т терригенного материала, из них примерно 2,23 . 10 10 т/год приходится на взвеси, а остальное — на растворенные и органические вещества.