Решение диофантовых уравнений с помощью алгоритма евклида. Диофантовы уравнения

Диофантовые уравнения

Способы решения диофантовых уравнений

Наиболее изучены диофантовы уравнения первой и второй степени. Рассмотрим сначала уравнения первой степени. Так как решение линейного уравнения с одним неизвестным не представляет интереса, то обратимся к уравнениям с двумя неизвестными.Мы рассмотрим два метода решения этих уравнений.

Первый способ решения таких уравнений- алгоритм Евклида. Можно найти наибольший делитель натуральных чисел a и b, не раскладывая эти числа на простые множители, применяя процесс деления с остатком. Для этого надо разделить большее из этих чисел на меньшее, потом меньшее из чисел на остаток при первом делении, затем остаток при первом делении на остаток при втором делении и вести этот прицесс до тех пор, пока не произойдёт деление без остатка. Последний отличный от нуля остаток и есть искомый НОД(a,b). Чтобы доказать это утверждение, представим описанный процесс в виде следующей цепочки равенств:если a>b ,то

Здесь r1,….,rn-положительные остатки, убывающие с возрастанием номера. Из первого равенства следует,что общий делитель чисел a и b делит r1 и общий дилитель b и r1 делит а,поэтому НОД (a,b) = НОД (r1 ,r2)=….= НОД (rn-1, rn) = НОД (rn,0)= rn.Обратимся снова к системе(1).Из первого равенства, выразив остаток r1 чирез а и b ,получим r1=а- bq0. Подставляя его во второе равенство,найдём r2=b(1+q0q1)-aq1. Продолжая этот процесс дальше,мы сможем выразить все остатки через а и b, в том числе и последний rn=Аа+Вb. В результате нами доказано предложение:если d-наибольший общий делитель натуральных чисел а и b,то найдутся такие целые числа А и В,что d= Аа+Вb. Заметим,что коэффициенты А и В имеют разные знаки; если НОД(a,b)=1,то Аа+Вb=1. Как найти числа А и В видно из алгоритма Евклида.

Перейдём теперь к решению линейного уравнения с двумя неизвестными. Оно имеет вид:

Возможны два случая: либо c делится на d= НОД(a,b), либо нет. В первом случае можно разделить обе части на d и свести задачу к решению в целых числах уравнения a1x+b1y=c1, коэффициенты которого а1=а/d и b1=b/d взаимно просты. Во втором случае уравнение не имеет целочисленных решений: при любых целых x и y число аx+by делится на d и поэтому не может равнятся числу с,которое на d не делится. Итак, мы можем ограничиться случаем, когда в уравнении (2) коэффициенты взаимно просты. На основании предыдущего предложения найдутся такие целые числа x0 и y0,что ax0+by0=1, откуда пара (сx0,cy0) удовлетворяет уравнению (2) Вместе с ней уравнению (2) удовлетворяет бесконечное множество пар (x,y) целых чисел, которые можно найти по формулам

x=cx0+bt,y=cy0-at. (3)

Здесь t-любое целое число. Нетрудно показать,что других целочисленных решений нет уравнение ax+by=c не имеет. Решение, записанное в виде (3), называется общим решением уравнеия (2). Подставив вместо t конкретное целое число, получим его частное решение. Найдём, например, целочисленные решения уже встречавшегося нам уравнения 2x+5y=17. Применив к числам 2 и 5 алгоритм Евклида, получим 2*3-5=1. Значит пара cx0=3*17,cy0=-1*17 удовлетворяет уравнению 2x+5y=17. Поэтому общее решение исходного уравнения таково x=51+5t, y=-17-2t,где t принимает любые целые значения. Очевидно, неотрицательные решения отвечают тем t , для которых выполняются неравенства

Отсюда найдем -51 ?t? -17 . Этим неравенствам удовлетворяют числа -10, -9. 52

Соответствующие частные решения запишутся в виде пар (1,3), (6,1).

Применим этот же метод к решению одной из древних китайских задач о птицах.

Задача: Сколько можно купить на 100 монет петухов, кур и цыплят, если всего надо купить 100 птиц, причем петух стоит 5 монет, курица - 4, а 4 цыпленка - 1 монету?

Для решения этой задачи обозначим искомое число петухов через х, кур - через y, а цыплят через 4z (из условия видно, что число цыплят должно делится на 4). Составим систему уравнений:

которую надо решить в целых неотрицательных числах. Умножив первое уравнение системы на 4, а второе -- на (-- 1) и сложив результаты, придем к уравнению -- х+15z=300 с целочисленными решениями х= -- 300+ 15t, z = t. Подставляя эти значения в первое уравнение, получим y = 400 -- 19t. Значит, целочисленные решения системы имеют вид х= --300+15t, y = 400--19t, z = t. Из условия задачи вытекает, что

откуда 20?t?21 1/19, т.е. t = 20 или t = 21. Итак, на 100 монет можно купить 20 кур и 80 цыплят, или 15 петухов, 1 курицу и 84 цыпленка

Второй метод решения диофантовых уравнений первой степени по своей сути не слишком отличается от рассмотренного в предыдущем пункте, но он связан с ещё одим интересным математическим понятием. Речь идёт о непрерывных или цепных дробях. Чтобы определить их вновь обратимся к алгоритму Евклида. Из первого равенства системы (1) вытекает, что дробь а/b можно записать в виде суммы целой части и правильной дроби: a/b=q0+r1/b . Но r1/b=1/b, и на основании второго равенства той же системы имем b/r1=q1+r2/r1. Значит, a/b=q0+1/q1+r2/r1. Далее получим a/b=q0+1/q1+1/q2+r3/r2. Продолжим этот процесс до тех пор, пока не придём к знаменателю qn. В результате мы представим обыкновенную дробь a/b в следующем виде: a/b=q0+1/q1+1/q2+1/…1/qn. Эйлер назвал дроби такого вида непрерывными. Приблизительно в то же время в Германии появился другой термин- цепная дробь. Так за этими дробями и сохранились оба названия. В качестве примера представим дробь 40/3t в виде цепной: 40/3t=1+9/3t=1/3t/9=1+1/3+4/9=1+1/3+1/9/4=1+1/3+1/2+1/4 .

Цепные дроби обладают следующим важным свойством: если действительное число а записать в виде непрерывной дроби, то подходящая дробь Pk/Qk даёт наилучщее приближение числа a среди всех дробей, знаменатели которых не превосходят Qk . Именно в процессе поиска наилучшего приблежения значений квадратных корней итальянский математик Пиетро Антонио Катальди (1552-1626) пришёл в 1623году к цепным дробям, с чего и началось их изучение. В заключение вернёмся к цепным дробям и отметим их преимущество и недостаток по сравнению, например, с десятичными. Удобство заключается в том, что их свойства не связаны ни с какой системой исчисления. По этой причине цепные дроби эффективно используются в теоретических исследованиях. Но широкого практического применения они не получили, так как для них нет удобных правил выполнения арифметических действий, которые имеются для десятичных дробей.

Рассмотрим Диофантовы уравнения и решим их.

1 Решить в целых числах уравнение 3x+5y=7.

x=7-5y/3=6-3y-2y+1/3=2-y+1-2y/3,

y=1-3k/2=1-2k-k/2=-k+1-k/2,

y=1-3(1-2t)/2=-1+3t,

x=7-5(-1+3t)/3=4-5t

(t-любое число).

2 Решить в целых числах уравнение 6xІ+5yІ=74.

6xІ-24=50-5yІ, или 6(xІ-4)=5(10-yІ), откуда xІ-4=5u,т.е. 4+5u?0, откуда u?-4/5.

Аналогично:

10-yІ=6u, т.е. 10-6u?0, u?5/3.

Целое число u удовлетворяет неравенству

4/5?u?5/3, значит. u=0 и u=1.

При u=0, получим 10=yІ, где y-не целое, что неверно. Пусть u=1, тогда xІ=9, yІ=4.

Ответ: {x1=3, {x2=3, {x3=-3, {x4=-3,

{y1=2, {y2=-2, {y3=2, {y4=-2 .

3 Решить в целых числах уравнение xі+yі-3xy=2.

Если x и y оба нечётны или одно из них нечётно, то левая часть уравнения есть нечётное число, а правая-чётное. Если же x=2m и y=2n, то 8mі+8nі-12mn=2, т.е. 2(2mі+2nі-3mn)=1, что невозможно ни при каких целых m и n.

4 Доказать, что уравнение 2xІ+5yІ=7 не имеет решений в целых числах.

Доказательство.

Из уравнения видно, что y должен быть нечётным числом. Положив y=2z+1, получим 2xІ-20zІ-20z-5=7, или xІ-10zІ-10z=6, откуда следует что x есть чётное число. Положим x=2u. Тогда 2uІ-5z(z=1)=3, что невозможно, так как z(z+1) есть чётное число.

5 Доказать, что при любом целом положительном значении а уравнение xІ+yІ=аі разрешимо в целых числах.

Доказательство.

Положим x+y=аІ, x-y=а, откуда x=a(a+1)/2 и y=a(a-1)/2. Поскольку при любом целом значении а в числителе каждой из данных дробей стоит произведение чётного и нечётного чисел, определённые таким образом x и y представляют сорбой целые числа и удовлетворяют исходному уравнению.

6 Решите в целых числах уравнение (x+1)(xІ+10=yі.

Непосредственно видим, что пары чисел (0;1) и (-1;0) являются решениями уравнения. Других решений нет, так как

xі<(x+1)(xІ+1)<(x+1)(x+1)І=(x+1) і, то (x+1)(xІ+1)?yі

ни для какого целого y (распологающегося между кубами последовательных целых чисел).

10 и еще один способ решения квадратных уравнений

1. СПОСОБ: Разложение левой части уравнения на множители. 2. СПОСОБ: Метод выделения полного квадрата. 3. СПОСОБ: Решение квадратных уравнений по формуле. 4. СПОСОБ: Графическое решение квадратного уравнения...

10 способов решения квадратных уравнений

Квадратные уравнения - это фундамент, на котором покоится величественное здание алгебры. Квадратные уравнения находят широкое применение при решении тригонометрических, показательных, логарифмических...

Диофантовые уравнения

Задачи Диофантовой «Арифметики» решаются с помощью уравнений, проблемы решения уравнеий скорее относятся к алгебре, чем к арифметике. Почему же тогда мы говорим, что эти уравнения относятся к арифметическим? Дело в том...

Линейные диофантовы уравнения

Диофант (Diophantos) представляет одну из занимательных загадок в истории математики. Мы не знаем, кем был Диофант, точные года его жизни, нам не известны его предшественники, которые работали бы в той же области, что и он...

Логические задачи и методы их решения

Математическая модель системы слежения РЛС

В производстве всегда существовала проблема, сущность которой заключалась в переводе системы из некоторого начального фазового состояния в некоторое заранее заданное конечное состояние. Причем точность перехода должна быть максимальной...

Математические уравнения и их использование в решении задач

Уравнением с одним неизвестным называется запись вида А (х)=В (х) - выражения от неизвестного х. В эти выражения помимо чисел, знаков арифметических операций и обозначений функций могут входить и другие буквы, которые обозначают переменные...

Методические особенности обучения решению текстовых задач учащихся начальной школы

Решить задачу - это значит через логически верную последовательность действий и операций с имеющимися в задаче явно или косвенно числами, величинами, отношениями выполнить требование задачи (ответить на ее вопрос)...

Методы геометрии чисел для решения диофантовых уравнений

Теорема Лагранжа о четырех квадратах. Теорема: Всякое натуральное может быть представлено в виде суммы четырех квадратов целых чисел (*) Ясно, что достаточно доказать существование представления (*) лишь для бесквадратных чисел...

Нестандартные методы решения задач по математике

К числу наиболее сложных задач на вступительных конкурсных экзаменах по математике относятся задачи, решение которых сводится к рассмотрению функциональных уравнений вида или где, --- некоторые функции и...

Нестандартные методы решения уравнений и неравенств

Существуют и другие нестандартные методы решения уравнений и неравенств, помимо использования свойств функции. Данная глава посвящена дополнительным методам решения...

Муниципальное бюджетное общеобразовательное учреждение

средняя общеобразовательная школа №1

г. Павлово.

Научно-исследовательская работа

Методы решения диофантовых уравнений.

Отделение: физико-математическое

Секция: математика

Выполнил:

ученик 8 А класса Трухин Николай (14 лет)

Научный руководитель:

учитель математики

Лефанова Н. А.

г. Павлово

2013 г.

Оглавление

I Введение…………………………………………………………………………3

II Обзор литературы……………………………………………………………....5

III Основная часть…………………………………………………………………6

IV Заключение…………………………………………………………………...15

V Список литературы……………………………………………………………16

VI Приложение…………………………………………………………………..17

    Введение.

В 2011-2012 году я выполнял исследовательскую работу на тему: «Решение уравнений в Древней Греции и Индии». При работе над ней я познакомился с трудами Диофанта Александрийского и Мухаммеда аль - Хорезми. В своей прошлой работе я рассмотрел некоторые способы решения уравнений первой степени с двумя неизвестными, познакомился с некоторыми старинными задачами, приводящими к решению уравнений первой степени с двумя неизвестными.

Мухаммед Бен Мусса аль – Хорезми, - или Магомед сын Моисея Хорезмского, состоящий членом «дома мудрости» в Иране, около 820 года нашего летоисчисления написал книгу, где учил решать простые и сложные вопросы арифметики, которые необходимы людям при дележе наследства, составлении завещаний, разделе имущества и судебных делах, в торговле, всевозможных сделках. С именем аль – Хорезми связаны понятия «алгебра», «арабские цифры», «алгоритм». Он отделил алгебру от геометрии, внёс большой вклад в математику исламского средневековья. Мухаммед аль – Хорезми был известен и уважаем, как при жизни, так и после смерти.

Но мне захотелось больше узнать о Диофанте. И тема моего исследования в этом году: «Методы решения диофантовых уравнений»

Диофант Александрийский - один из самых своеобразных древнегреческих математиков, труды которого имели большое значение для алгебры и теории чисел. Из работ Диофанта самой важной является «Арифметика», из 13 книг которой, только 6 сохранились до наших дней. В сохранившихся книгах содержится 189 задач с решениями. В первой книги изложены задачи, приводящиеся к определенным уравнениям первой и второй степени. Остальные пять книг содержат в основном неопределенные уравнения (неопределенными называются уравнения, содержащие более чем одно неизвестное). В этих книгах ещё нет систематической теории неопределённых уравнений, методы решения меняются от случая к случаю. Диофант довольствуется одним решением, целым или дробным, лишь бы оно было положительным. Тем не менее, методы решения неопределённых уравнений, составляют основной вклад Диофанта в математику. В символике Диофанта был один только знак для неизвестного. Решая неопределённые уравнения, он применял в качестве нескольких неизвестных произвольные числа, вместо которых можно было взять и любые другие, что и сохраняло характер общности его решений.

Цель моей работы:

1.Продолжить знакомство с диофантовыми уравнениями.

2.Исследовать методы перебора и рассеивания (измельчения) при решении диофантовых уравнений.

3.Исследовать возможность применения диофантовых уравнений для решения некоторых практических задач.

II . Обзор литературы.

При написании работы мной использовалась следующая литература:

Мной использована информация о Диофанте и аль – Хорезми.

Книга посвящена методам Диофанта при решении неопределённых уравнений. В ней рассказывается о жизни и самого Диофанта. Эта информация использована мной в работе.

В книги рассказывается об истории алгебры с древних времён. Я использовал информацию о теории уравнений, начиная с древности.

В этой книге собрано около 200 статей, посвященных основным понятиям математики и её приложения. Мной были использованы материалы статей «Алгебра», «Уравнения», «Диофантовы уравнения»

Из книги взяты тексты задач для практического использования.

    По теме мной использовался сайт:

http :// ru . wikipedia . org (информация об аль – Хорезми и Диофанте. О методах решения диофантовых уравнений).

    Основная часть

В наши дни каждый, кто занимался математикой, слышал о диофантовых уравнениях. Алгебраические уравнения с целыми коэффициентами, решаемые во множестве целых (реже рациональных) чисел, вошли в историю математики как диофантовы. Наиболее изучены диофантовы уравнения 1 и 2 степени. В содержании моей работы включены задачи, которые сводятся к решению уравнения первой степени с двумя неизвестными

(1)

Рассмотрим задачу.

Задача 1. В клетке находится x фазанов и у кроликов. Сколько в клетке фазанов и кроликов, если общее количество ног равно 62.

Общее число ног можно записать с помощью уравнения 2х+4у=62 (2)

Это равенство, которое я составил по условию задачи, называют уравнением с двумя переменными. Данное уравнение называют линейным уравнением. Линейные уравнения играют важную роль при решении различных задач. Напомню основные положения, связанные с этим понятием.

Линейным уравнением с двумя переменными называется уравнение вида ax +by =c , где x и у – переменные, а, b и с – некоторые числа.

Однозначно определить из уравнения (2) значения x и y нельзя. Даже если ограничиться только натуральными значениями переменных, здесь могут быть такие случаи: 1 и 15, 3 и 14, 5 и 13 и т. д.

Пара чисел (a , b ) называется решением уравнения с двумя переменными, если при замене x на а и y на b получаем истинное равенство.

Каждому уравнению с двумя переменными соответствует множество его решений, т. е. множество, состоящее из всех пар чисел (a , b ), при подстановке которых в уравнение получается истинное равенство. При этом, конечно, если заранее указаны множества Х и Y , которые могут принимать неизвестные x и у, то надо брать лишь такие пары (a , b ), для которых а принадлежит Х и b принадлежит Y .

Пару чисел (a , b ) можно изобразить на плоскости точкой М, имеющей координаты а и b , М= М (a , b ). Рассматривая изображения всех точек множества решений уравнения с двумя неизвестными, получим некоторое подмножество плоскости. Его называют графиком уравнения.

Можно доказать, что графиком линейного уравнения с двумя переменными, в котором хотя бы один из коэффициентов не равен нулю, является прямая линия. Для построения графика этого уравнения достаточно взять две точки с координатами и провести через них прямую. Графический метод решения я использовал в предыдущей работе.

Два уравнения с двумя переменными, имеющие одни и те же решения называются равносильными.

Например, равносильны уравнения х+2у=5 и 3х+6у=15 – любая пара чисел, удовлетворяющая одному из этих уравнений, удовлетворяет и второму.

Уравнения с двумя переменными обладают такими же свойствами, как и уравнения с одной переменной:

1) если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение, равносильное данному;

2) если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.

Существует несколько способов решения диофантовых уравнений:

    Метод перебора вариантов

    Использование алгоритма Евклида

    С использованием цепной дроби

    Метод рассеивания (измельчения)

    При помощи программирования на языке программирования Паскаль

В своей работе я исследовал методы – перебор вариантов и рассеивание (измельчения)

Рассматривая способ перебора вариантов, необходимо учитывать количество возможных решений уравнения. Например, этот способ можно применить, решая следующую задачу:

Задача 2 . Андрей работает летом в кафе. За каждый час ему платят 10 р. И высчитывают 2 р. за каждую разбитую тарелку. На прошедшей неделе он заработал 180 р. Определите, сколько часов он работал и сколько разбил тарелок, если известно, что он работает не более 3 ч в день.

Решение.

Пусть x часов он всего работал в неделю, тогда 10х р. ему заплатили, но он разбил у тарелок, и с него вычли р. Имеем уравнение 10х – 2у =180 , причем x меньше или равен 21. Получим: 5х-у=90, 5х=90+у, х=18+у:5.

Так как x целое число, то у должно нацело делится на 5, чтобы в правой части получилось целое число. Возможны четыре случая

    у=0, х=18, т. е. решением является пара – (18, 0);

    у=5, х=19, (19, 5);

    у=10, х=20, (20, 10);

    у=15, х=21, (21, 15).

Эту задачу я решил, используя способ перебора вариантов. Ответ содержит четыре возможных варианта. Я попробовал решить этим способом ещё несколько задач.

Задача 3. Из двухрублевых и пятирублевых монет составлена сумма в 23 рубля. Сколько среди этих монет двухрублевых?

Решение.

Пусть x – количество двухрублевых монет, у – количество пятирублевых монет. Составим и решим уравнение: 2х+5у=23; 2х=23–5у; x = (23 – 5у):2; x =(22+1 – 5у):2, почленно поделим 22 на 2 и (1 – 5у) на 2, получим: x = 11 + (1 – 5у):2.

Так как x и y натуральные числа по условию задачи, то левая часть уравнения есть натуральное число, значит, и правая часть должна быть натуральным числом. К тому же, чтобы получить в правой части число натуральное, нужно чтобы выражение (1 – 5у) нацело делилось на 2. Осуществим перебор вариантов.

    y =1, х=9, то есть двухрублевых монет может быть 9;

    у=2, при этом выражение (1 – 5у) не делится нацело на 2;

    у=3, х=4, то есть двухрублевых монет может быть 4;

    при у больше или равном 4 значение x не является числом натуральным.

Таким образом, ответ в задаче следующий: среди монет 9 или 4 двухрублевых.

Задача 4. Шехерезада рассказывает свои сказки великому правителю. Всего она должна рассказать 1001 сказку. Сколько ночей потребуется Шехерезаде, чтобы рассказать все свои сказки, если x ночей она будет рассказывать по 3 сказки, а остальные сказки по 5 за у ночей

Решение.

Сказочнице потребуется x + у ночей, где x и у – натуральные корни уравнения 3х+5у=1001

x = (1001 – 5у):3; так как x – натуральное число, то и в правой части равенства также должно быть натуральное число, а значит выражение (1001 – 5у) должно нацело делиться на 3.

Осуществим перебор вариантов.

у=1, 1001 – 5у=1001-5= 996, 996 делится на 3, следовательно, х=332; решение (332;1);

у=2, 1001– 10=991, 991 не делится на 3;

у=3, 1001 – 15 = 986; 986 не делится на3;

у =4, 1001 – 20 = 981, 981 делится на 3, следовательно, x = 327, решение (327;4) и т. д.

В этой задаче существует 67 пар возможных корней, я не стал показывать все решения данной задачи, т. к. это занимает много времени.

Уравнение ax + by = c (1) в приведённых задачах я решал способом перебора вариантов. Я уяснил для себя, что способ перебора вариантов не всегда эффективен для решения данной задач, так как для нахождения всех решений уравнения требуются значительные временные затраты. И, на мой взгляд, в настоящее время он неактуален.

Поэтому я решил задачу про Шехерезаду, используя метод рассеивания (измельчения).

Метод рассеивания – это общий метод для решения в целых числах неопределённых уравнений первой степени с целыми коэффициентами.

Итак, решим задачу про Шехерезаду методом рассеивания:

Обратимся к уравнению 3х + 5у = 1001.

Перепишем его иначе: 3х= 1001- 5у; 3х= 1001 - 2у - 3у;

x = – y +
и обозначим x l = у + x

В результате уравнение примет вид 3х 1 = 1001 – 2у или

у = –x l
.

Если вновь произвести замену у 1 = у + х 1 , то придем к уравнению

x 1 + 2у 1 = 1001. Заметим, что коэффициенты при неизвестных уменьшились - измельчились.

Здесь коэффициент при x 1 , равен 1, а поэтому при любом целом у 1 = t число х 1 тоже целое. Остается выразить исходные переменные через t :

х 1 = 1001 – 2 t , следовательно, у = – 1001 + 3 t , а x = 2002 – 5 t . Итак, получаем бесконечную последовательность (2002 – 5 t , – 1001 + 3 t ) целочисленных решений. Внешний вид формул для нахождения значений переменных отличается от решений, полученных ранее, но с учетом условия задачи, корни получаются те же самые. Так, пара (332;1) получается при t =334.

На мой взгляд, этот метод не только более удобный (у него есть алгоритм действий), но и интересный. Известно, что этот метод в первые применил в начале VI в. индийский математик Ариабхатта.

В прошлом году я показывал решение древней индийской задачи Брахмагупты методам рассеивания, которое предложил сам Брахмагупта. Решение было нерациональным.

Оно представлено ниже:

«Найти два целых числа, зная, что разность произведений первого на 19 и второго на 8 равно 13. »

В задаче требуется найти все целые решения уравнений.

Решение:

(1) 19x – 8y = 13

Выражаю y – неизвестное с наименьшим по абсолютной величине коэффициентом через x , получаю:

(2) y = (19x 13)/8

Нужно теперь узнать, при каких целых значениях x соответствующие значения y являются тоже целыми числами. Перепишу уравнение (2) следующим образом:

(3) y = 2x + (3x – 13)/8

Из (3) следует, что y при целом x принимает целое значение только в том случае, если выражение (3x -13)/8 является целым числом, скажем y 1 . Полагая

(4) (3x - 13)/8 = y 1 ,

вопрос сводится к решению в целых числах уравнения (4) с двумя неизвестными x и y 1 ; его можно записать так:

(5) 3x – 8y 1 = 13.

Это уравнение имеет по сравнению с первоначальным (1) преимущество, что 3 – наименьшее из абсолютных величин коэффициентов при неизвестных – меньше, чем в (1), т.е. 8. Это было достигнуто благодаря тому, что коэффициент при x (19) был заменен остатком от деления на 8.

Продолжая тем же способом, мы получим из (5):

(6) x = (8y 1 +13)/3 = 2y 1 + (2y 1 + 13)/3.

Итак, неизвестное x при целом y 1 только тогда принимает целые значения, когда (2y 1 + 13)/3 есть целое число, скажем y 2 :

(7) (2y 1 + 1)/3 = y 2 ,

или

(8) 3y 2 2 y 1 = 13.

(9) y 1 = (3y 2 - 13)/2 = y 2 + (y 2 - 13)/2

Полагая

(10) (y 2 - 13)/2 = y 3 ,

получаю

(11) y 2 2 y 3 = 13.

Это самое простое из всех рассмотренных неопределенных уравнений, так как один из коэффициентов равен 1.

Из (11) получаю:

(12) y 2 = 2y 3 + 13.

Отсюда видно, что y 2 принимают целые значения при любых целых значениях y 3 . Из равенств (6), (9), (12), (3) путем последовательных подстановок можно найти следующие выражения для неизвестных x и y уравнения (1):

x = 2y 1 + y 2 = 2(y 2 + y 3 ) + y 2 = 3y 2 + 2y 3 = 3(2y 2 + 13) + 2y 3 = 8y 3 + 39;

у = 2x + y 1 = 2(8y 3 + 39) + y 2 + y 3 = 19y 3 +91.

Таким образом, формулы

x = 8y 3 + 39,

y = 19y 3 + 91.

При y 3 = 0, + 1,+ 2, + 3, … дают все целые решения уравнения (1).

В следующей таблице приведены примеры таких решений.

Таблица 1.

y3

x

y

Решим эту задачу рационально. В решении используется определённый алгоритм.

Задача 5.

Найти два числа, если разность произведений первого на 19 и второго на 8 равна 13.

Решение. Требуется решить уравнение 19х - 8у = 13

Перепишем его иначе: 8y =19x –13; 8y =16x +3x –13; у = 2х +

и обозначим y 1 = у - 2х.

В результате уравнение примет вид 8у 1 = Зx - 13 или x = 2y 1
.

Если вновь произвести замену х 1 = x - 2у 1 , то придем к уравнению

3x l - 2у 1 = 13.

Коэффициенты при неизвестных уменьшились - измельчились. Дальнейшее измельчение: y 1 = x l +
, то получим у 2 =у 1 –х 1 .

В результате последнее уравнение преобразуется к виду х 1 - 2у 2: = 13. Здесь коэффициент при х 1 , равен 1, а поэтому при любом целом у 2 = t число х 1 тоже целое.

Остается выразить исходные переменные через t :

вначале выразим х 1 =2t +13, y 1 = 3t +13; а затем x = 8 t +39, y = 19 t + 91.

Итак, получаем бесконечную последовательность (39 + 8 t , 91 + 19 t ) целочисленных решений . Уравнение ax + by = c (1) в приведённых задачах я решал способом рассеивания (измельчения).

IV . Заключение.

Изучая диофантовы уравнения для их решения, я использовал методы перебора вариантов и рассеивания (измельчения). Этими методами я решал, как современные, так и древние задачи. В содержании моей работы были включены задачи, которые сводятся к решению уравнений первой степени с двумя переменными ах+b у=с (1)

В ходе своей работы я сделал выводы:

    Метод перебора требует значительные временные затраты, а значит он не очень удобен и рационален.

    Более рациональным, на мой взгляд, является метод рассеивания. Когда я решал старинную индийскую задачу этим методом, я понял, что существует определённый алгоритм решения. Мне было достаточно полученных в школе знаний. Я убедился, что методы решения дофантовых уравнений с развитием математики постоянно совершенствуются.

На следующий год я хочу продолжить изучение методов решения диофантовых уравнений.

V . Список литературы

    Г. И. Глейзер «История математики в школе» М.: изд. «Просвещение» 1964г. 376с.

    И. Г. Башмакова «Диофант и диофантовы уравнения» М.: изд. «Наука» 1972г. 68с.

    В. А. Никифоровский «В мире уравнений» М.: изд. «Наука» 1987г. 176с.

    А. П. Савин «Энциклопедический словарь юного математика» М.: изд. «Педагогика» 1985г.

    Г. М. Возняк, В. Ф. Гусев «Прикладные задачи на экстремумы» М.: изд. «Просвещение» 1985г. 144с.

    http :// ru . wikipedia . org

VI . Приложение.

    На фермерском хозяйстве нужно провести водопровод длиной 167м. Имеются трубы длиной 5м и 7м. Сколько нужно использовать тех и других труб, чтобы сделать наименьшее количество соединений (трубы не резать)?

Учитывая, что количество как одних, так и других труб может изменяться, количество 7 – метровые трубы обозначаем через х, 5 – метровые – через у

Тогда 7х – длина 7 – метровых труб, 5у – длина 5 – метровых труб.

Отсюда получаем неопределённое уравнение:

7х+5у=167

Выпазив, например, переменную у через переменную х , получим:

Методом перебора легко найти соответствующие пары значений х и у , которые удовлетворяют уравнению 7х+5у=167

(1;32), (6;25), (11;18), (16;11), (21;4).

Из этих решений наиболее выгодное последнее, т. е. х=21; у=4.

Многие старинные способы отгадывания чисел и дат рождения основываются на решении диофантовых уравнений. Так, например, чтобы отгадать дату рождения (месяц и число) собеседника, достаточно узнать у него сумму, получаемую от сложения двух произведений: числа даты (х ) на 12 и номера месяца (у ) на 31.

2. Пусть сумма произведений, о которых идёт речь, равна 330. Найти дату рождения.

Решим неопределённое уравнение

12 х + 31 у = 330.

С помощью метода рассеивания получим:

х = 43 – 31 у 4 ,

у = 6 – 12 у 4 .

Ввиду ограничений, легко констатировать, что единственным решением является

у 4 = 1, х = 12, у = 6.

Итак, дата рождения: 12-е число 6-го месяца, т.е. 12 июня.

Министерство образования и науки Российской Федерации

Государственное образовательное учреждение высшего

профессионального образования

«Тобольская государственная социально-педагогическая академия

им. Д.И. Менделеева»

Кафедра математики, ТиМОМ

Некоторые диофантовы уравнения

Курсовая работа

студента III курса ФМФ

Матаева Евгения Викторовича

Научный руководитель:

к.ф.-м.н.Валицкас А.И.

Оценка: ____________

Тобольск – 2011

Введение……………………………………………………………………........ 2

§ 1. Линейные диофантовы уравнения………………………………….. 3

§ 2. Диофантово уравнение x 2 y 2 = a ………………………………….....9

§ 3. Диофантово уравнение x 2 + y 2 = a …………………………………... 12

§ 4. Уравнение х 2 + х + 1 = 3у 2 …………………………………………….. 16

§ 5. Пифагоровы тройки………………………………………………….. 19

§ 6. Великая теорема Ферма………………………………………………23

Заключение……………………………………………………………….….....29

Список литературы........... ………………………………………………..30

ВВЕДЕНИЕ

Диофантово уравнение – это уравнение вида P (x 1 , … , x n ) = 0 , где левая часть представляет собой многочлен от переменных x 1 , … , x n с целыми коэффициентами. Любой упорядоченный набор (u 1 ; … ; u n ) целых чисел со свойством P (u 1 , … , u n ) = 0 называется (частным) решением диофантова уравнения P (x 1 , … , x n ) = 0 . Решить диофантово уравнение – значит найти все его решения, т.е. общее решение этого уравнения.

Нашей целью будет научиться находить решения некоторых диофантовых уравнений, если эти решения имеется.

Для этого, необходимо ответить на следующие вопросы:

а. Всегда ли диофантово уравнение имеет решение, найти условия существования решения.

б. Имеется ли алгоритм, позволяющий отыскать решение диофантова уравнения.

Примеры: 1. Диофантово уравнение 5 x – 1 = 0 не имеет решений.

2. Диофантово уравнение 5 x – 10 = 0 имеет решение x = 2 , которое является единственным.

3. Уравнение ln x – 8 x 2 = 0 не является диофантовым.

4. Часто уравнения вида P (x 1 , … , x n ) = Q (x 1 , … , x n ) , где P (x 1 , … , x n ) , Q (x 1 , … , x n ) – многочлены с целыми коэффициентами, также называют диофантовыми. Их можно записать в виде P (x 1 , … , x n ) – Q (x 1 , … , x n ) = 0 , который является стандартным для диофантовых уравнений.

5. x 2 y 2 = a – диофантово уравнение второй степени с двумя неизвестными x и y при любом целом a. Оно имеет решения при a = 1 , но не имеет решений при a = 2 .

§ 1. Линейные диофантовы уравнения

Пусть a 1 , … , a n , с Z . Уравнение вида a 1 x 1 + … + a n x n = c называется линейным диофантовым уравнением с коэффициентами a 1 , … , a n , правой частью c и неизвестными x 1 , … , x n . Если правая часть с линейного диофантова уравнения нулевая, то такое диофантово уравнение называется однородным.

Наша ближайшая цель – научиться находить частные и общие решения линейных диофантовых уравнений с двумя неизвестными. Очевидно, что любое однородное диофантово уравнение a 1 x 1 + … + a n x n = 0 всегда имеет частное решение (0; … ; 0).

Очевидно, что линейное диофантово уравнение, все коэффициенты которого равны нулю, имеет решение только в случае, когда его правая часть равна нулю. В общем случае имеет место следующая

Теорема (о существовании решения линейного диофантова уравнения). Линейное диофантово уравнение a 1 x 1 + … + a n x n = c , не все коэффициенты которого равны нулю, имеет решение тогда и только тогда, когда НОД(a 1 , … , a n ) | c.

Доказательство. Необходимость условия очевидна: НОД(a 1 , … , a n ) | a i (1 i n ) , так что НОД(a 1 , … , a n ) | (a 1 x 1 + … + a n x n ) , а значит, делит и

c = a 1 x 1 + … + a n x n .

Пусть D = НОД(a 1 , … , a n ) , с = Dt и a 1 u 1 + … + a n u n = D – линейное разложение наибольшего общего делителя чисел a 1 , … , a n . Умножая обе части на t , получим a 1 (u 1 t ) + … + a n (u n t ) = Dt = c , т.е. целочисленная

n -ка (x 1 t ; … ; x n t) является решением исходного уравнения с n неизвестными.

Теорема доказана.

Эта теорема даёт конструктивный алгоритм для нахождения частных решений линейных диофантовых уравнений.

Примеры: 1. Линейное диофантово уравнение 12x+21y = 5 не имеет решений, поскольку НОД(12, 21) = 3 не делит 5 .

2. Найти частное решение диофантова уравнения 12x+21y = 6 .

Очевидно, что теперь НОД(12, 21) = 3 | 6 , так что решение существует. Запишем линейное разложение НОД(12, 21) = 3 = 122 + 21(–1) . Поэтому пара (2; –1) – частное решение уравнения 12x+21y = 3 , а пара (4; –2) – частное решение исходного уравнения 12x+21y = 6 .

3. Найти частное решение линейного уравнения 12x + 21y – 2z = 5 .

Так как (12, 21, –2) = ((12, 21), –2) = (3, –2) = 1 | 5 , то решение существует. Следуя доказательству теоремы, вначале найдём решение уравнения (12,21)х–2у=5 , а затем, подставив линейное разложение наибольшего общего делителя из предыдущей задачи, получим решение исходного уравнения.

Для решения уравнения 3х – 2у = 5 запишем линейное разложение НОД(3, –2) = 1 = 31 – 21 очевидно. Поэтому пара чисел (1; 1) является решением уравнения 3 x – 2 y = 1 , а пара (5; 5) – частным решением диофантова уравнения 3х – 2у = 5 .

Итак, (12, 21)5 – 25 = 5 . Подставляя сюда найденное ранее линейное разложение (12, 21) = 3 = 122 + 21(–1) , получим (122+21(–1))5 – 25 = 5 , или 1210 + 21(–5) – 25 = 5 , т.е. тройка целых чисел (10; –5; 5) является частным решением исходного диофантова уравнения 12x + 21y – 2z = 5 .

Теорема (о структуре общего решения линейного диофантова уравнения). Для линейного диофантова уравнения a 1 x 1 + … + a n x n = c справедливы следующие утверждения:

(1) если = (u 1 ; … ; u n ), = (v 1 ; … ; v n ) – его частные решения, то разность (u 1 – v 1 ; … ; u n – v n ) – частное решение соответствующего однородного уравнения a 1 x 1 + … + a n x n = 0 ,

(2) множество частных решений линейного диофантова однородного уравнения a 1 x 1 + … + a n x n = 0 замкнуто относительно сложения, вычитания и умножения на целые числа,

(3) если M – общее решение данного линейного диофантова уравнения, а L – общее решение соответствующего ему однородного диофантова уравнения, то для любого частного решения = (u 1 ; … ; u n ) исходного уравнения верно равенство M = + L .

Доказательство. Вычитая равенство a 1 v 1 + … + a n v n = c из равенства a 1 u 1 + … + a n u n = c , получим a 1 (u 1 – v 1 ) + … + a n (u n – v n ) = 0 , т. е. набор

(u 1 – v 1 ; … ; u n – v n ) – частное решение линейного однородного диофантова уравнения a 1 x 1 + … + a n x n = 0 . Таким образом, доказано, что

= (u 1 ; … ; u n ), = (v 1 ; … ; v n ) M L .

Это доказывает утверждение (1).

Аналогично доказывается утверждение (2):

, L z Z L z L .

Для доказательства (3) вначале заметим, что M + L . Это следует из предыдущего: M+L .

Обратно, если = (l 1 ; … ; l n ) L и = (u 1 ; … ; u n ) M , то M :

a 1 (u 1 + l 1 )+ …+a n (u n + l n ) = (a 1 u 1 + … + a n u n )+(a 1 l 1 + … + a n l n ) = c + 0 = c .

Таким образом, + L M , и в итоге M = + L .

Теорема доказана.

Доказанная теорема имеет наглядный геометрический смысл. Если рассмотреть линейное уравнение a 1 x 1 + … + a n x n = c , где х i R , то как известно из геометрии, оно определяет в пространстве R n гиперплоскость, полученную из плоскости L c однородным уравнением a 1 x 1 + … +a n x n =0 , проходящей через начало координат, сдвигом на некоторый вектор R n . Поверхность вида + L называют также линейным многообразием с направляющим пространством L и вектором сдвига . Таким образом, доказано, что общее решение М диофантова уравнения a 1 x 1 + … + a n x n = c состоит из всех точек некоторого линейного многообразия, имеющих целые координаты. При этом координаты вектора сдвига тоже целые, а множество L решений однородного диофантова уравнения a 1 x 1 + … + a n x n = 0 состоит из всех точек направляющего пространства с целыми координатами. По этой причине часто говорят, что множество решений произвольного диофантова уравнения образует линейное многообразие с вектором сдвига и направляющим пространством L .

Пример: для диофантова уравнения х – у = 1 общее решение M имеет вид (1+у; у), где у Z , его частное решение = (1; 0) , а общее решение L однородного уравнения х – у = 0 запишется в виде (у; у) , где у Z . Таким образом, можно нарисовать следующую картинку, на которой решения исходного диофантова уравнения и соответствующего однородного диофантова уравнения изображены жирными точками в линейном многообразии М и пространстве L соответственно.

2. Найти общее решение диофантова уравнения 12x + 21y – 2z = 5 .

Частное решение (10; –5; 5) этого уравнения было найдено ранее, найдём общее решение однородного уравнения 12x + 21y – 2z = 0 , эквивалентного диофантову уравнению 12 x + 21 y = 2 z .

Для разрешимости этого уравнения необходимо и достаточно выполнение условия НОД(12, 21) = 3 | 2z, т.е. 3 | z или z = 3t для некоторого целого t . Сокращая обе части на 3 , получим 4x + 7y = 2t . Частное решение (2; –1) диофантова уравнения 4x + 7y = 1 найдено в предыдущем примере. Поэтому (4t ; –2t) – частное решение уравнения 4x + 7y = 2t при любом

t Z . Общее решение соответствующего однородного уравнения

(7 u ; –4 u ) уже найдено. Таким образом, общее решение уравнения 4x + 7y = 2t имеет вид: (4t + 7 u ; –2t – 4 u ) , а общее решение однородного уравнения 12x + 21y – 2z = 0 запишется так:

(4t + 7 u ; –2t – 4 u ; 3t) .

Нетрудно убедиться, что этот результат соответствует сформулированной выше без доказательства теореме о решениях однородного диофантова уравнения а 1 х 1 + … + а n х n = 0 : если Р = , то Р и

(u ; t ) P – общее решение рассматриваемого однородного уравнения.

Итак, общее решение диофантова уравнения 12x + 21y – 2z = 5 выглядит так: (10 + 4t + 7 u ; –5 – 2t – 4 u ; 5 + 3t) .

3. На примере предыдущего уравнения проиллюстрируем другой метод решения диофантовых уравнений от многих неизвестных, который состоит в последовательном уменьшении максимального значения модулей его коэффициентов.

12x + 21y – 2z = 5 12x + (102 + 1)y – 2z = 5

12x + y – 2(z – 10y) = 5

Таким образом, общее решение рассматриваемого уравнения можно записать и так: (x; 5 – 12x + 2u ; 50 – 120x + 21u) , где x, u – произвольные целые параметры.

§ 2. Диофантово уравнение x 2 y 2 = a

Примеры: 1. При a = 0 получаем бесконечное число решений: x = y или x = – y для любого y Z .

2. При a = 1 имеем x 2 y 2 = 1 (x + y )(x y ) = 1 . Таким образом, число 1 разложено в произведение двух целых множителей x + y и x y (важно, что x , y – целые!). Поскольку у числа 1 всего два разложения в произведение целых множителей 1 = 11 и 1 = (–1)(–1) , то получаем две возможности: .

3. Для a = 2 имеем x 2 y 2 = 2 (x + y )(x y ) = 2. Действуя аналогично предыдущему, рассматриваем разложения

2=12=21=(–1)(–2)=(–2)(–1), составляем системы: , которые, в отличие от предыдущего примера, не имеют решений. Так что нет решений и у рассматриваемого диофантова уравнения x 2 y 2 = 2.

4. Предыдущие рассмотрения наводят на некоторые выводы. Решения уравнения x 2 y 2 = a находятся по разложению a = km в произведение целых чисел из системы . Эта система имеет целые решения тогда и только тогда, когда k + m и k m чётны, т.е. когда числа k и m одной чётности (одновременно чётны или нечётны). Таким образом, диофантово уравнение x 2 – y 2 = a имеет решение тогда и только тогда, когда a допускает разложение в произведение двух целых множителей одной чётности. Остаётся только найти все такие a .

Теорема (об уравнении x 2 y 2 = a ). (1) Уравнение x 2 y 2 = 0 имеет бесконечное множество решений .

(2) Любое решение уравнения получается имеет вид , где a = km – разложение числа a в произведение двух целых множителей одной чётности.

(3) Уравнение x 2 y 2 = a имеет решение тогда и только тогда, когда a 2 (mod 4).

Доказательство. (1) уже доказано.

(2) уже доказано.

(3) () Пусть вначале диофантово уравнение x 2 y 2 = a имеет решение. Докажем, что a 2 (mod 4) . Если a = km – разложение в произведение целых чисел одной чётности, то при чётных k и m имеем k = 2 l , m = 2 n и a = km = 4 ln 0 (mod 4) . В случае же нечётных k , m их произведение a также нечётно, разность a – 2 нечётна и не делится на 4 , т.е. снова

a 2 (mod 4).

() Если теперь a 2 (mod 4) , то можно построить решение уравнения x 2 y 2 = a . Действительно, если a нечётно, то a = 1 a – разложение в произведение целых нечётных чисел, так что – решение диофантова уравнения. Если же a чётно, то ввиду a 2 (mod 4) получаем, что 4 | a , a = 4 b = 2(2 b ) – разложение в произведение целых чётных чисел, так что – решение диофантова уравнения.

Теорема доказана.

Примеры: 1. Диофантово уравнение x 2 y 2 = 2012 не имеет решений, т.к. 2010 = 4502 + 2 2 (mod 4).

2. Диофантово уравнение x 2 y 2 = 2011 имеет решения, т.к.

2011 3 (mod 4). Имеем очевидные разложения

2011 = 12011 = 20111 = (–1)(–2011) = (–2011)(–1),

по каждому из которых находим решения (комбинации знаков любые). Других решений нет, т.к. число 2011 простое (?!).

§ 3. Диофантово уравнение x 2 + y 2 = a

Примеры: 1. 0 = 0 2 + 0 2 , 1 = 0 2 + 1 2 , k 2 = 0 2 + k 2 . Таким образом, очевидно, любой квадрат тривиальным образом представим в виде суммы двух квадратов.

2. 2 = 1 2 + 1 2 , 5 = 1 2 + 2 2 , 8 = 2 2 + 2 2 , 10 = 1 2 + 3 2 , 13 = 2 2 + 3 2 , 17 = 1 2 + 4 2 , 18 = 3 2 + 3 2 , 20 = 2 2 + 4 2 , …

3. Решений нет для a = 3, 6 = 23, 7, 11, 12 = 2 2 3, 14 = 27, 15 = 35, 19, 21 = 37, 22 = 211, 23, 24 = 32 3 , …

Анализ приведённых результатов способен навести на мысль, что отсутствие решений каким-то образом связано с простыми числами вида

4 n +3 , присутствующими в разложении на множители чисел, не представимых в виде сумм двух квадратов.

Теорема (о представлении натуральных чисел суммами двух квадратов). Натуральное число a представимо в виде суммы двух квадратов тогда и только тогда, когда в его каноническом разложении простые числа вида 4 n + 3 имеют чётные показатели степеней.

Доказательство. Вначале докажем, что если натуральное число a представимо в виде суммы двух квадратов, то в его каноническом разложении все простые числа вида 4 n + 3 должны иметь чётные показатели степеней. Предположим, вопреки доказываемому, что a = р 2 k +1 b = x 2 + y 2 , где

р – простое число вида 4 n +3 и b p . Представим числа х и у в виде

х = Dz , y = Dt , где D = НОД(x , y ) = р s w , p w ; z , t , s N 0 . Тогда получаем равенство р 2 k +1 b = D 2 (z 2 + t 2 ) = р 2 s w 2 (z 2 + t 2 ) , т.е. р 2( k s )+1 b = w 2 (z 2 + t 2 ) . В левой части равенства присутствует p (нечётная степень не равна нулю), значит, на простое число p делится один из множителей в правой части. Поскольку p w , то р | (z 2 + t 2 ) , где числа z , t взаимно просты. Это противоречит следующей лемме (?!).

Лемма (о делимости суммы двух квадратов на простое число вида

4 n + 3 ). Если простое число р = 4 n +3 делит сумму квадратов двух натуральных чисел, то оно делит каждое из этих чисел.

Доказательство. От противного. Пусть x 2 + y 2 0(mod p ) , но x 0(mod p ) или y 0 (mod p ) . Поскольку x и y симметричны, их можно менять местами, так что можно предполагать, что x p .

Лемма (об обратимости по модулю p ). Для любого целого числа x , не делящегося на простое число p , существует обратный элемент по модулю p такое целое число 1 u < p , что xu 1 (mod p ).

Доказательство. Число x взаимно простое с p , поэтому можно записать линейное разложение НОД(x , p ) = 1 = xu + pv (u , v Z ) . Ясно, что xu 1(modp ) , т.е. u – обратный элемент к x по модулю p . Если u не удовлетворяет ограничению 1 u < p , то поделив u с остатком на p , получим остаток r u (mod p ) , для которого xr xu 1 (mod p ) и 0 r < p .

Лемма об обратимости по модулю p доказана.

Умножая сравнение x 2 + y 2 0 (mod p ) на квадрат u 2 обратного элемента к x по модулю p , получим 0 = 0u 2 x 2 u 2 + y 2 u 2 = (xu) 2 + (yu) 2 1 + t 2 (mod p).

Таким образом, для t = yu выполнено сравнение t 2 –1 (mod p ) , которое и приведём к противоречию. Ясно, что t p : иначе t 0 (mod p ) и 0 t 2 –1 (mod p ) , что невозможно. По теореме Ферма имеем t p –1 1 (mod p ), что вместе с t 2 –1 (mod p ) и p = 4 n + 3 приводит к противоречию:

1 t p–1 = t 4n+3–1 = t 2(2n+1) = (t 2 ) 2n+1 (–1) 2n+1 = –1 (mod p).

Полученное противоречие показывает, что допущение о x 0 (mod p ) было не верным.

Лемма о делимости суммы двух квадратов на простое число 4 n +3 доказана.

Таким образом, доказано, что число, в каноническое разложение которого входит простое число p = 4 n + 3 в нечётной степени, не представимо в виде суммы двух квадратов.

Докажем теперь, что любое число, в каноническом разложении которого простые числа p = 4 n + 3 участвуют только в чётных степенях, представимо в виде суммы двух квадратов.

Идея доказательства основана на следующем тождестве:

(а 2 + b 2 )(c 2 + d 2 ) = (ac – bd) 2 + (ad + bc) 2 ,

которое можно получить из известного свойства модуля комплексных чисел – модуль произведения равен произведению модулей. Действительно,

| z || t | = | zt | | a + bi || c + di | = |(a + bi )(c + di )|

|a + bi| 2 |c + di| 2 = |(ac – bd) + (ad + bc)i| 2

(а 2 + b 2 )(c 2 + d 2 ) = (ac – bd) 2 + (ad + bc) 2 .

Из этого тождества следует, что если два числа u, v представимы в виде суммы двух квадратов: u = x 2 + y 2 , v = z 2 + t 2 , то и их произведение uv представимо в виде суммы двух квадратов: uv = (xz yt ) 2 + (xt + yz ) 2 .

Любое натуральное число a > 1 можно записать в виде a = р 1 … р k m 2 , где р i – попарно различные простые числа, m N . Для этого достаточно найти каноническое разложение , записать каждую степень вида r в виде квадрата (r ) 2 при чётном = 2, или в виде r = r (r ) 2 при нечётном = 2 + 1 , а затем сгруппировать отдельно квадраты и оставшиеся одиночные простые числа. Например,

29250 = 23 2 5 3 13 = 2513(35) 2 , m = 15.

Число m 2 обладает тривиальным представлением в виде суммы двух квадратов: m 2 = 0 2 + m 2 . Если доказать представимость в виде суммы двух квадратов всех простых чисел р i (1 i k ) , то используя тождество, будет получено и представление числа a. По условию, среди чисел р 1 , … , р k могут встретиться только 2 = 1 2 + 1 2 и простые числа вида 4 n + 1 . Таким образом, осталось получить представление в виде суммы двух квадратов простого числа р = 4т + 1 . Это утверждение выделим в отдельную теорему (см. ниже)

Например, для a = 29250 = 2513(15) 2 последовательно получаем:

2 = 1 2 + 1 2 , 5 = 1 2 + 2 2 , 13 = 2 2 + 3 2 ,

25 = (11 – 12) 2 + (12 + 11) 2 = 1 2 + 3 2 ,

2513 = (12 – 33) 2 + (13 + 32) 2 = 7 2 + 9 2 ,

29250 = 2513(15) 2 = (715) 2 + (915) 2 = 105 2 + 135 2 .

Теорема доказана.

§ 4. Уравнение х+ х + 1 = 3у

Займемся теперь уравнением х+x+1=Зу. Оно уже имеет свою историю. В 1950 г. Р. Облат высказал предположение, что, кроме решения

x =у=1 . оно не имеет иных решений в натуральных числах х, у , где х есть нечетное число. В том же году Т. Нагель указал решение x = 313, у =181. Метод, аналогичный изложенному выше для уравнения х+х-2у=0 , позволит нам определить все решения уравнения x +х+1=3у (1)

в натуральных числах x , у. Предположим, что (х, у) есть решение уравнения (1) в натуральных числах, причем х > 1 . Можно легко убедиться, что уравнение(18) не имеет решений в натуральных числах x , у , где х = 2, 3. 4, 5, 6, 7, 8, 9; поэтому должно быть х10.

Покажем, что 12у<7 x +3, 7у>4 x + 2. 4у> 2 x +1 . (2)

Если бы было 12y > 7x+3 , мы имели бы 144у > 49 x +42 x +9 . а так как, в виду (18), 144у= 48 x + 48 x + 48 , то было бы х < 6 x +3 9, откуда

Диофант Александрийский - древнегреческий математик, который жил еще в III веке н. э. О нем говорят как об «отце алгебры». Это автор «Арифметики» - книги, которая посвящена нахождению положительных рациональных решений неопределённых уравнений. Диофант - первый греческий математик, который рассматривал дроби наравне с другими числами. Он первым среди античных учёных предложил развитую математическую символику, которая позволяла формулировать полученные им результаты в достаточно компактном виде. В честь Диофанта назван кратер на видимой стороне Луны.

Диофантово уравнение представляет собой алгебраическое уравнение с налагаемым дополнительным условием, состоящем в том, что все его решения должны представлять собой целые числа. В большинстве случаев данного рода уравнения решаются довольно сложно. Теорема Ферма - это прекрасный пример диофантового уравнения, которое так и не решено спустя 350 лет.

Допустим, нам необходимо решить в целых числах \[(x,y)\] уравнение:

Чтобы решить данного вида задание применим алгоритм Евклида, которое говорит, что для любых двух натуральных чисел \ таких, что \[Н.О.Д.(а,b) = 1\] существуют целые числа \ такие, что \[ах + bу = 1.\]

Этапы решения:

1. Найдем решение уравнения \ применив алгоритм Евклида.

2. Найдем частное решение уравнения (1) по правилу 2.

3. Запишем общее решение данного уравнения (1).

1. Найдем представление: \ Для решения применим алгоритм Евклида.

Из этого равенства выразим

\[ 1 = 3 - 2^1=3-(5-3)^1=3-5^1+3\cdot 1=3^2-5\cdot1=(8-5^1)^2 -5^1=8^2-5\cdot2-5^1=5^x(-3)-8\cdot(-2) \]

Итак, \

2. Частное решение уравнения \[(1): x_о = 19m; y_о =19n.\]

Отсюда получим: \[ x_о =19^x(-3)=57; у_о =19^x(-2)=-38 \]

Пара (-57; -38) - частное решение (1).

3.Общее решение уравнения (1):

\[\left\{\begin{matrix} x=-57+8n\\ y=-3+n, n \in Z \end{matrix}\right.\]

Где взять решение диофантова уравнения?

Решить уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Пункт 5. Линейные диофантовы уравнения с двумя неизвестными.

Обычно, произвольное уравнение (но, как правило, все-таки с целыми коэффициентами) получает титул "диофантово", если хотят подчеркнуть, что его требуется решить в целых числах, т.е. найти все его решения, являющиеся целыми. Имя Диофанта - выдающегося Александрийского математика - появляется здесь не случайно. Диофант интересовался решением уравнений в целых числах еще в третьем веке нашей эры и, надо сказать, делал это весьма успешно.

Отступление про Диофанта и его исторический след.

Третий и последний период античного общества - период господства Рима. Рим завоевал Сиракузы в 212 году, Карфаген - в 146 году, Грецию - в 146, Месопотамию - в 46, Египет - в 30 году до нашей эры. Огромные территории оказались на положении колоний, но римляне не трогали их культуры и экономического устройства пока те исправно платили налоги и поборы. Установленный римлянами на столетия мир, в отличие от всех последующих великих миров и рейхов, принес всей завоеванной территории самый длинный период безвоенного существования, торговли и культурного обмена.

Александрия оказалась центром античной математики. Велись оригинальные исследования, хотя компилирование, пересказ и комментирование становились и стали основным видом научной деятельности. Александрийские ученые, если угодно, приводили науку в порядок, собирая разрозненные результаты в единое целое, и многие труды античных математиков и астрономов дошли до нас только благодаря их деятельности. Греческая наука с ее неуклюжим геометрическим способом выражения при систематическом отказе от алгебраических обозначений угасала, алгебру и вычисления (прикладную математику) александрийцы почерпнули с востока, из Вавилона, из Египта.

Основной труд Диофанта (ок. 250 г.) - "Арифметика". Уцелели только шесть книг оригинала, общее их число - предмет догадок. Мы не знаем, кем был Диофант, - возможно, что он был эллинизированный вавилонянин. Его книга - один из наиболее увлекательных трактатов, сохранившихся от греко-римской древности. В ней впервые встречается систематическое использование алгебраических символов, есть особые знаки для обозначения неизвестного, минуса, обратной величины, возведения в степень. Папирус N 620 Мичиганского университета, купленный в 1921 году, принадлежит эпохе Диофанта и наглядно это подтверждает. Среди уравнений, решаемых Диофантом, мы обнаруживаем такие, как x 2 - 26 y 2 = 1 и x 2 - 30 y 2 = 1, теперь известные нам как частные случаи "уравнения Пелля", причем Диофант интересуется их решениями именно в целых числах.

Книга Диофанта неожиданно оказала еще и огромное косвенное влияние на развитие математической науки последних трех столетий. Дело в том, что юрист из Тулузы Пьер Ферма (1601 - 1665), изучая "Арифметику" Диофанта, сделал на полях этой книги знаменитую пометку: "Я нашел воистину удивительное доказательство того, что уравнение x n + y n = z n при n > 2, не имеет решений в целых числах, однако поля этой книги слишком малы, чтобы здесь его уместить". Это одно из самых бесполезных математических утверждений получило название "Великой теоремы Ферма" и, почему-то, вызвало настоящий ажиотаж среди математиков и любителей (особенно после назначения в 1908 году за его доказательство премии в 100 000 немецких марок). Попытки добить эту бесполезную теорему породили целые разделы современной алгебры, алгебраической теории чисел, теории функций комплексного переменного и алгебраической геометрии, практическая польза от которых уже не подлежит никакому сомнению. Сама теорема, кажется, благополучно доказана в 1995 году; Пьер Ферма, конечно, погорячился на полях "Арифметики", ибо он физически не мог придумать подобного доказательства, требующего колоссальной совокупности математических знаний. Элементарного доказательства великой теоремы Ферма пока никто из жителей нашей планеты найти не смог, хотя над его поиском бились лучшие умы последних трех столетий. Однако, до сих пор тысячи психически нездоровых любителей-"ферматистов" в жажде славы и денег бомбят своими письмами академические институты и университеты и почти ежегодно один из сотрудников кафедры алгебры и дискретной математики Уральского госуниверситета, где я работаю, вынужден вести с таким психом дипломатическую переписку на заранее заготовленном бланке:

"Уважаемый.............................! В Вашем доказательстве на странице №......, в строке №........, содержится ошибка..............................................................".

Пусть требуется решить линейное диофантово уравнение:

ax + by = c ,

где a , b , c О Z ; a и b - не нули.

Попробуем порассуждать, глядя на это уравнение.

Пусть (a , b ) = d . Тогда a = a 1 d ; b = b 1 d и уравнение выглядит так:

a 1 d· x + b 1 d· y = c , т.е. (a 1 x + b 1 y ) = c .

Теперь и ежику ясно, что у такого уравнения имеется решение (пара целых чисел x и y ) только тогда, когда d | c . Поскольку очень хочется решать это уравнение дальше, то пусть d | c . Поделим обе части уравнения на d , успокоимся, и всюду далее будем считать, что (a , b ) = 1. Так можно.

Рассмотрим несколько случаев.

Случай 1. Пусть c = 0, уравнение имеет вид ax + by = 0 - " однородное линейное диофантово уравнение". Немножко потрудившись, находим, что

x = - b a y .

Так как x должен быть целым числом, то y = at , где t - произвольное целое число (параметр). Значит x = - bt и решениями однородного диофантова уравнения ax + by = 0 являются все пары вида {- bt , at }, где t = 0; ±1; ±2;... Множество всех таких пар называется общим решением линейного однородного диофантова уравнения, любая же конкретная пара из этого множества называется частным решением.

Дорогие читатели, не правда ли, что все названия уже до боли знакомы? "Однородное уравнение", "общее решение" - все это мы уже слышали и в курсе линейной алгебры и в лекциях по дифференциальным уравнениям. При разборе следующего случая эта аналогия буквально выпирает на первый план, что, конечно, не случайно, но исследование единства великого государства линейности на материке математики выходит за рамки этой скромной книжки.

Случай 2. Пусть теперь c 0. Этот случай закрывается следующей теоремой.

Теорема. Пусть (a , b ) = 1, { x 0 , y 0 } - частное решение диофантова уравнения ax + by = c . Тогда его общее решение задается формулами:

м
н
о
x = x 0 - bt
y = y 0 + at .

Таким образом, и в теории линейных диофантовых уравнений общее решение неоднородного уравнения есть сумма общего решения соответствующего однородного уравнения и некоторого (любого) частного решения неоднородного уравнения. Вот оно - проявление единства линейного мира! (Однажды, перед экзаменом по дифференциальным уравнениям, мне снился кошмар, будто все линейные пространства решений сговорились между собой и требовали от меня прибавить к ним частное решение, так как они не хотели содержать нулевой вектор, а хотели быть линейными многообразиями. Я отказался, а наутро, на экзамене, мне досталась однородная система!)

Доказательство. То, что правые части указанных в формулировке теоремы равенств действительно являются решениями, проверяется их непосредственной подстановкой в исходное уравнение. Покажем, что любое решение уравнения ax + by = c имеет именно такой вид, какой указан в формулировке теоремы. Пусть { x * , y *} - какое-нибудь решение уравнения ax + by = c . Тогда ax * + by * = c , но ведь и ax 0 + by 0 = c . Следуя многолетней традиции доказательства подобных теорем, вычтем из первого равенства второе и получим:

a (x *- x 0) + b (y *- y 0) = 0

Однородное уравнение. Далее, глядя на случай 1, рассмотрение которого завершилось несколькими строками выше, пишем сразу общее решение: x *- x 0 = - bt , y *- y 0 = at , откуда моментально, используя навыки третьего класса средней школы, получаем:

м
н
о
x * = x 0- bt ,
y * = y 0 + at.

"Все это, конечно, интересно", - скажет читатель, - "Но как же искать то самое частное решение { x 0 , y 0 }, ради которого и затеяна вся возня этого пункта и которое, как теперь выясняется, нам так нужно?". Ответ до глупости прост. Мы договорились, что (a , b ) = 1. Это означает, что найдутся такие u и v из Z , что au + bv = 1 (если вы это забыли, вернитесь в пункт 4), причем эти u и v мы легко умеем находить с помощью алгоритма Евклида. Умножим теперь равенство au + bv = 1 на c и получим: a (uc ) + b (vc ) = c , т.е. x 0 = uc , y 0 = vc . Вот и все!

Пример. Вы - хроноп, придуманный Хулио Кортасаром в книжке "Из жизни хронопов и фамов". Вам нужно расплатиться в магазине за синюю пожарную кишку, ибо красная в хозяйстве уже давно есть. У вас в кармане монеты достоинством только в 7 и 12 копеек, а вам надо уплатить 43 копейки. Как это сделать? Решаем уравнение:

7 x + 12 y = 43

Включаем алгоритм Евклида:

12 = 7· 1 + 5
7 = 5· 1 + 2
5 = 2· 2 + 1
2 = 1· 2

Значит, наибольший общий делитель чисел 7 и 12 равен 1 , а его линейное выражение таково:

1 = 5 - 2· 2 = 5 - (7 - 5) · 2 = (12 - 7) - (7 - (12 - 7) · 2) = 12· 3 + 7· (- 5),

т.е. u = - 5, v = 3. Частное решение:

x 0 = uc = (- 5) · 43 = - 215
y 0 = vc = 3 · 43 = 129.

Итак, вы должны отобрать у кассира 215 семикопеечных монет и дать ему 129 двенадцатикопеечных. Однако процедуру можно упростить, если записать общее решение неоднородного диофантова уравнения:

x = -215 - 12 t
y = 129 + 7 t

и, легко видеть, что при t = - 18, получаются вполне разумные x = 1, y = 3, поэтому дубасить кассира необязательно.