Свет и гравитация. Гравитационное отклонение света. Гравитация и свет

Принцип гравитационного линзирования

Экспериментальные данные

Направления исследований

Как правило, гравитационные линзы, способные существенно исказить изображение фонового объекта, представляют собой достаточно большие сосредоточения массы: галактики и скопления галактик. Более компактные объекты, например, звёзды, тоже отклоняют лучи света, однако на столь малые углы, что зафиксировать такое отклонение не представляется возможным. В этом случае можно лишь заметить кратковременное увеличение яркости объекта-линзы в тот момент, когда линза пройдёт между Землёй и фоновым объектом. Если объект-линза яркий, то заметить такое изменение нереально. Если же компактный объект-линза излучает мало или же не виден совсем, то такая кратковременная вспышка вполне может наблюдаться. События такого типа называются микролинзированием. Интерес здесь связан не с самим процессом линзирования, а с тем, что он позволяет обнаружить массивные и невидимые никаким иным способом компактные тела.

Ещё одним направлением исследований микролинзирования стала идея использования каустик для получения информации как о самом объекте-линзе, так и о том источнике, чей свет она фокусирует. Подавляющее большинство событий микролинзирования вполне описывается предположением о примерной сферической симметрии обоих объектов. Однако в 2-3% всех случаев наблюдается сложная кривая яркости, с дополнительными короткими пиками, которая свидетельствует о формировании каустик в линзированных изображениях, см. например M. Dominik, Mon.Not.Roy.Astron.Soc. 353 (2004) 69 (astro-ph/0309581). Такая ситуация может иметь место, если линза имеет неправильную форму, например, если линза состоит из двух или более тёмных массивных тел. Наблюдение таких событий безусловно интересно для изучения природы тёмных компактных объектов. Примером успешного определения параметров двойной линзы с помощью изучения каустик может служить недавний случай микролинзирования OGLE-2002-BLG-069, описанный в статье astro-ph/0502018 . Кроме того, имеются предложения по использованию каустического микролинзирования для выяснения геометрической формы источника, либо для изучения профиля яркости протяжённого фонового объекта, и в частности для изучения атмосфер звёзд-гигантов.

См. также

  • SDSSJ0946+1006 - система с двойными кольцами Эйнштейна.

Ссылки

  • ЧЕРЕПАЩУК А.М. Гравитационное микролинзирование и проблема скрытой массы.

Гравитационные линзы в культурном контексте

  • Линор Линза - Линза гравитационная - арт-имя русской художницы.

Wikimedia Foundation . 2010 .

Смотреть что такое "Гравитационное отклонение света" в других словарях:

    Света нейтронной звездой (модель) Гравитационная линза массивное тело (планета, звезда) или система тел (галактика, скопление галактик), искривляющая своим гравитационным полем направление распространения излучения, подобно тому, как искривляет… … Википедия

    Гравитация (всемирное тяготение, тяготение) (от лат. gravitas «тяжесть») дальнодействующее фундаментальное взаимодействие в природе, которому подвержены все материальные тела. По современным данным, является универсальным взаимодействием в том… … Википедия

Если посмотреть на Солнце через 150 миллионов километров космоса, который разделяет наш мир от ближайшей звезды, свет, который вы видите, не показывает Солнце на текущий момент, а каким оно было 8 минут и 20 секунд назад. Это потому что свет движется не мгновенно (а со скоростью света, хаха): его скорость составляет 299 792,458 километра в секунду. Именно такое время нужно свету, чтобы преодолеть путь от фотосферы Солнца до нашей планеты. Но силе тяжести не обязательно нужно вести себя так же; возможно, как предсказывала теория Ньютона, гравитационная сила представляет собой мгновенное явление и ощущается всеми объектами с массой во Вселенной, через все эти огромные космические расстояния, одновременно.

Так ли это в действительности? Если Солнце бы мгновенно исчезло, полетела бы Земля сразу же по прямой линии или же продолжила вращаться вокруг местоположения Солнца в течение еще 8 минут и 20 секунд? По общей теории относительности, ответ ближе ко второму варианту, поскольку не масса определяет гравитацию, а искривление пространства, которое определяется суммой всей материи и энергии в нем. Если бы Солнце исчезло, пространство стало бы не искривленным, а плоским, но эта трансформация была бы не мгновенной. Поскольку пространство-время - это ткань, переход стал бы неким «переливанием», которое отправило бы гигантскую рябь - гравитационные волны - через Вселенную, подобную ряби от брошенного в пруд камня.

Скорость этой ряби определяется так же, как и скорость всего остального в ОТО: ее энергией и массой. Поскольку гравитационные волны не обладают массой, но имеют конечную энергию, они должны двигаться со скоростью света. А это значит, что Земля притягивается не к тому месту, где находится в пространстве Солнце, а к тому, где оно было чуть больше восьми минут назад.

Если бы это была единственная разница между теориями гравитации Эйнштейна и Ньютона, мы немедленно заключили бы, что Эйнштейн ошибался. Орбиты планет так хорошо изучены и так точно и долго записывались (с конца 1500-х!), что если бы гравитация просто притягивала планеты к месту Солнца со скоростью света, предсказанные положения планет сильно не соответствовали бы их актуальному положению. Необходима блестящая логика, чтобы понять, что законы Ньютона требуют невероятной скорости гравитации такой точности, что если бы это было единственное ограничение, скорость гравитации должна была бы быть больше чем в 20 миллиардов раз быстрее скорости света.

Но в ОТО есть еще один кусок головоломки, который имеет большое значение: орбитальная скорость планеты по мере ее движения вокруг Солнца. Земля, например, тоже движется, «покачиваясь» на волнах гравитации и часто опускаясь не там, где поднималась. Налицо два эффекта: скорость каждого объекта влияет на то, как он испытывает силу гравитации, а с ней и изменения в гравитационных полях.

Но что особенно интересно, так это то, что изменения в гравитационном поле при конечной скорости гравитации и эффекты зависимых от скорости взаимодействий почти точно уравновешиваются. Именно неточность этого равновесия позволяет нам определить экспериментально, какая теория соответствует нашей Вселенной: ньютонова модель «бесконечной скорости гравитации» или эйнштейнова модель «скорость гравитации равна скорости света». В теории, мы знаем, что скорость гравитации должна соответствовать скорости света. Но гравитационная сила Солнца слишком слабая, чтобы измерить этот эффект. На самом деле, изменить его очень сложно, поскольку когда нечто движется с постоянной скоростью в постоянном гравитационном поле, никакого наблюдаемого эффекта нет вовсе. В идеале, нам нужна была бы система, в которой массивный объект движется с изменяющейся скорость через меняющееся гравитационное поле. Другими словами, нам нужна система, состоящая из тесной пары вращающихся наблюдаемых останков звезд, хотя бы одна из которых будет нейтронной.

По мере вращения нейтронных звезд, они пульсируют, и эти импульсы видны нам на Земле всякий раз, когда полюс нейтронной звезды проходит через нашу линию визирования. Предсказания теории гравитации Эйнштейна невероятно чувствительны к скорости света, так что с самого первого обнаружения бинарной системы пульсаров в 1980-х годах, PSR1913+16 (Халса-Тейлора), мы свели скорость гравитации до равной скорости света с погрешностью измерения всего в 0,2%.

Конечно, это непрямое измерение. Мы смогли осуществить косвенное измерение другого типа в 2002 году, когда в результате случайного совпадения Земля, Юпитер и очень мощный радиоквазар (QSO J0842+1835) выстроились на одну линию визирования. По мере движения Юпитера между Землей и квазаром, гравитационное искривление Юпитера позволило нам измерить скорость гравитации, исключить бесконечную скорость и определить, что она где-то между 2,55 х 10 8 и 3,81 х 10 8 метров в секунду, что полностью соответствует предсказаниям Эйнштейна.

В идеале, мы могли бы измерить скорость этой ряби напрямую за счет прямого обнаружения гравитационных волн. LIGO нашла первую такую, в конце концов. К сожалению, из-за нашей неспособности правильно триангулировать место рождения этих волн, мы не знаем, с какой стороны они пришли. Рассчитав дистанцию между двумя независимыми детекторами (в Вашингтоне и Луизиане) и измерив разницу во времени прибытия сигнала, мы можем определить, что скорость гравитации соответствует скорости света и определить самые жесткие ограничения по скорости.

Тем не менее, самые жесткие ограничения дают нам косвенные измерения от очень редких систем пульсаров. Лучшие результаты на настоящий момент говорят нам, что скорость гравитации между 2,993 х 10 8 и 3,003 х 10 8 метров в секунду, что прекрасно подтверждает ОТО и ужасно сказывается на альтернативных теориях гравитации (прости, Ньютон).

Окт 6, 2017 Геннадий

Всякое ускоренно движущееся тело, как утверждает теория Эйнштейна, испускает гравитационные волны. Мир вокруг нас заполнен ими, и в этом факте ничего не меняет то обстоятельство, что техника сегодняшнего дня еще не справилась с обнаружением этих волн. Ведь оттого, что четыреста лет назад человек и не подозревал о существовании радиоволн, инфракрасных и ультрафиолетовых лучей, они не переставали излучаться звездами, просто земными предметами.

Нам не хватает только системы приборов, способной показать волны . Чтобы посылаемые радиостанцией электромагнитные колебания могли быть восприняты радиослушателями, их переводят в звуковые колебания. С одного «языка» техники на другой.

Гравитационные волны, говоря образно, новый незнакомый нам язык природы. Чтобы он был воспринят, надо сделать перевод, преобразование колебаний тяготения в механические или электромагнитные, например в световые. (А еще подобным научным исследованиям вовсе не помешает, например вложение денег , ведь инвестирование в науку всегда было очень перспективным).

Мне язык света кажется, во всяком случае, на первых порах, более удобным. А «переводимым текстом» могут послужить сравнительно мощные гравитационные волны, идущие к нам от рождающихся и двигающихся звезд и целых галактик.

При этом нужно использовать одно самое общее свойство, присущее гравитационной волне. Она является полем тяготения, а всякое поле тяготения влияет на распространение света. Это не только предсказано теорией относительности, но и вот уже сорок лет, как проверено на опыте и подтверждено.

Поле тяготения и перебрасывает мостик между гравитационной и световой волнами. Ведь всякое такое поле служит своего рода линзой, в которой луч света преломляется. Происходит его искривление и одновременно сдвиг фаз световой волны. Конечно, величина поля тяготения будет сравнительно мала, и искривление им луча практически заметить будет невозможно. Но вот сдвиг фаз обнаружить гораздо легче, тем более что прибор, способный отметить сдвиг фаз световой волны, уже существует. Это обычный (для физика, во всяком случае) интерферометр. В нем луч света от какого-то источника разделяется на два, проходящие разные расстояния и среды, а затем лучи совмещаются. Складываясь, оба луча дают так называемую интерференционную картину - чередования темных и светлых полос. При сдвиге фаз волны какого-либо из разделенных лучей эта картина смещается.

Теперь представим себе, что два взаимно перпендикулярных световых луча пересекутся с гравитационной волной. Всякая линза по-разному изменяет лучи, идущие через нее в разных направлениях.

Это относится и к линзе - полю тяготения. И вновь совмещенные два луча уже не совпадут полностью. Результат - смещение полос интерференционной картины. Смещение происходить будет редко - с частотой, равной частоте гравитационной волны. Но из расчетов следует, что чем меньше эта частота, тем лучше. Видимо, этим методом удастся обнаруживать волны, имеющие всего одно колебание в год, в пять, в десять, в сотню лет.

Смещение полос в интерференционной картине должно быть очень невелико, но физика владеет методами, с помощью которых можно измерять фантастически малые величины. Главная трудность не в том, чтобы заметить и измерить колебания, вызванные гравитационной волной, а в том, чтобы выделить их среди других колебаний - случайных. Всякого рода шумы заставляют интерференционную картину беспорядочно смещаться. Даже случайные колебания молекул будут вызывать смещения полос, большие, чем вызванные волнами тяготения. Нужно будет отделить «самозванцев» от истинных посланцев космоса.

Представьте себе, что вы находитесь в парке между четырьмя столбами с радиорепродукторами. По радио передается понравившаяся вам песня, и вы хотите записать слова постоянно повторяющегося припева. Это было бы не трудно, и хватило бы одного репродуктора, если бы у каждого столба не играл мощный шумовой оркестр. А теперь придется поставить у каждого столба по магнитофону, записать все звуки, а потом, сравнив четыре записи, отбросить все, что в них не совпадает, и выделить одинаковые для всех пленок слова припева. Если припев повторили не четыре или пять, а сто, тысячу раз, задача соответственно облегчается.

Ради припева никто не будет проделывать такую процедуру, но для обнаружения волн тяготения можно сделать и большее. Вместо одного интерферометра придется взять несколько и поставить их в совершенно одинаковые условия. Затем выделить колебания картин, одинаковые для всех интерферометров. Эти колебания и выдадут нам, наконец, гравитационные волны.

Перевод будет сделан - первый, приближенный, но очень важный. Важен здесь будет не только сам факт экспериментального подтверждения предсказаний Эйнштейна; волны, родившиеся при космических катастрофах, смогут сильно пополнить наши сведения об истории и строении мира.

Инженеры из лондонской компании Therefore сконструировали действующий прототип лампочки, которая работает на силе гравитации. Достаточно подвесить к устройству сумку с балластом или любой другой груз весом около 10 кг - и светодиоды будут светиться около 30 минут. По идее, внутри коробки - устройство вроде гиревого механизма, которое обеспечивает вращение колёсиков с постоянной скоростью, как в обычных настенных механических часах с гирьками. Вероятно, здесь катушка с генератором вращается в магнитном поле и создаёт переменный ток, питающий лампочку.

Лампочка GravityLight уже собрала на краудфандинговом сайте Indiegogo около $317 тыс., почти в шесть раз окупив первоначальный план.

Лампочки GravityLight предлагается поставлять в Африку, Индию и Южную Америку. В этих районах мира более 1,5 миллиардов человек живёт без электричества, используя для освещения керосиновые лампы.

GravityLight позиционируется как более разумная замена керосинке. В некоторых районах жители отдают от 10% до 20% своего дохода на покупку керосина. В одной только Индии в больницы ежегодно поступает 2,5 миллиона человек с ожогами от керосина, а вечер с керосиновой лампой сравним с вдыханием дыма от двух пачек сигарет, так что многие даже некурящие люди страдают от рака лёгких.

Лампочки на гравитации имеют преимущественно перед солнечными батареями, которые требуется устанавливать в хорошо освещённых местах и дополнительно оборудовать аккумуляторами для накапливания заряда - чтобы светить вечером и ночью. Здесь же всё просто. Поднял за три секунды десятикилограммовый мешок - и лампочка светит полчаса. Вместо мешка можно использовать какие-то декоративные элементы, например, камни или вазоны с цветами. Такую лампу можно повесить даже в тёмном подвале, в отличие от фотоэлементов.

Разработчики из Therefore - не какие-то начинающие любители, а опытные профессионалы, которые уже 20 лет занимаются дизайном и проектированием разных приборов. Они отлично понимают, что стоимость 5 долларов получится только при массовом производстве, поэтому и предлагают профинансировать начальный тираж 1000 штук, которые отправят для испытания в индийские и африканские деревни. По результатам испытания будет разработана более удобная версия устройства и дополнительные аксессуары.

Наверное, такая лампа была бы хорошим подарком не только для Африки и Индии, но и для жителей России, Европы и США. Всё-таки довольно оригинальный гаджет, которого нет ни у кого из соседей. К тому же он реально дешевле, эффективнее и экологичнее, чем обычные солнечные панели. А если сделать для грузиков колодец 10-20 метров, то лампочка может светить и целые сутки, а то и больше.

Отыскивая пределы возможностей телескопа Хаббл, международная команда астрономов побила рекорд космической дистанции наблюдений, измерив свойства самой далекой галактики из ранее наблюдавшихся во Вселенной. Эта неожиданно яркая зарождающаяся галактика, названная GN-z11, видна такой, какой она была 13,4 миллиарда лет назад, всего лишь через 400 миллионов лет после Большого взрыва. Галактика GN-z11 расположена в созвездии Большой медведицы.

«Мы сделали наибольший шаг назад во времени, за пределы того, что мы считали возможным сделать с помощью телескопа Хаббл. Мы видим галактику GN-z11 в то время, когда возраст Вселенной составлял всего три процента от нынешнего». — пояснил главный исследователь Паскаль Оеш из Йельского университета.

Астрономы приблизились к первым галактикам, сформировавшимся во Вселенной. Новые наблюдения Хаббла приводят исследователей в ту область, которая, как считалось ранее, может быть достигнута только с помощью космического телескопа Джеймса Уэбба (его запуск запланирован на 2018 год).

Измерения дают убедительные доказательства, что некоторые необычные и неожиданно яркие галактики, ранее обнаруженные на изображениях Хаббла, на самом деле находятся на запредельных расстояниях. Ранее команда ученых оценила расстояние до GN-z11, определив ее цвет с помощью Хаббла и космического телескопа Спитцера. Теперь, впервые для галактики на такой экстремальной дистанции, команда использовала хаббловскую Широкоугольную камеру-3. Для точного измерения расстояния до GN-z11 свет был спектроскопически разделен на составляющие цвета.

Астрономы измеряют большие дистанции, определяя «красное смещение» галактики. Это явление — результат расширения Вселенной. Каждый далекий объект во Вселенной кажется удаляющимся от нас, потому что его свет растягивается в более длинные и более красные световые волны, проходя через расширяющееся пространство, чтобы достигнуть наших телескопов. Чем больше красное смещение, тем дальше галактика.

«Наши спектроскопические наблюдения показывают, что галактика дальше, чем мы первоначально думали, прямо на пределе расстояния, на котором Хаббл может наблюдать», — говорит Габриэль Браммер, соавтор исследования из Института космического телескопа.

До того, как астрономы измерили расстояние до галактики GN-z11, наибольшим расстоянием, измеренным спектроскопически, было красное смещение 8,68 (13,2 миллирада лет в прошлое). Теперь команда подтвердила для GN-z11 красное смещение 11,1, примерно на 200 миллионов лет ближе к Большому взрыву. «Это выдающееся достижение для Хаббла. Ему удалось побить все предыдущие рекорды расстояния, годами удерживавшиеся более крупными наземными телескопами», — говорит исследователь Питер ван Доккум из Йельского университета. — «Этот новый рекорд, скорее всего, устоит до запуска космического телескопа Джейма Уэбба».

Галактика GN-z11 в 25 раз меньше Млечного Пути, и в своих звездах содержит только один процент массы нашей галактики. Тем не менее, новорожденная GN-z11 быстро растет, формируя новые звезды примерно в 20 раз быстрее, чем наша галактика сегодня. Это делает экстремально далекую галактику достаточно яркой для астрономов, чтобы можно было провести детальные исследования с помощью телескопов Хаббла и Спитцера.

Результаты исследований дают удивительные ключи к разгадке природы ранней Вселенной. «Потрясающе, что такая массивная галактика существует всего лишь через 200 или 300 миллионов лет с момента начала формирования самых первых звёзд. Это требует очень быстрого роста, производства звезд с чудовищной скоростью, чтобы так быстро сформировалась галактика в миллиард солнечных масс», — поясняет Гарт Иллинворт, исследователь из Калифорнийского университета.

Эти открытия — увлекательный анонс к исследованиям, которыми займется космический телескоп Джеймс Уэбб после своего запуска в космос в 2018 году. «Это новое открытие показывает, что телескоп Уэбб наверняка обнаружит много таких молодых галактик, заглянув туда, где формируются первые галактики», — говорит Иллингворт.

В команду исследователей входят ученые из Йельского университета, Научного института космического телескопа и Калифорнийского университета.

На этом видео показано расположение галактики GN-z11 на видимом небосводе.

Своеобразный голубой пузырь, окружающий звезду WR 31a — это туманность Вольфа-Райе, межзвездное облако пыли, водорода, гелия и других газов. Такие туманности обычно имеют сферическую или кольцевую форму. Они возникают при взаимодействии быстрого звёздного ветра с внешними слоями водорода, выброшенного звездами Вольфа-Райе. Этот пузырь, сформировавшийся примерно 20 000 лет назад, расширяется со скоростью около 220 000 километров в час!

К сожалению, жизненный цикл звезды Вольфа-Райе продолжается всего лишь несколько сотен тысяч лет — мгновение в космических масштабах. Начиная свою жизнь с массой минимум в 20 раз больше солнечной, звезда Вольфа-Райе теряет половину своей массы менее чем за 100 000 лет.

И звезда WR 31a в этом случае — не исключение. В конце концов она закончит свою жизнь впечатляющей вспышкой , а выброшенное взрывом звёздное вещество станет основой для следующего поколения звёзд и планет.