Закон радиоактивного распада постоянная радиоактивного распада активность. радиоактивность. Радиоактивные ряды. Какие химические элементы являются радиоактивными

Необходимое условие радиоактивного распада заключается в том, что масса исходного ядра должна превышать сумму масс продуктов распада. Поэтому каждый радиоактивный распад происходит с выделением энергии .

Радиоактивность подразделяют на естественную и искусственную. Первая относится к радиоактивным ядрам, существующим в природных условиях, вторая - к ядрам, полученным посредством ядерных реакций в лабораторных условиях. Принципиально они не отличаются друг от друга.

К основным типам радиоактивности относятся α-, β- и γ-распады. Прежде чем характеризовать их более подробно, рассмотрим общий для всех видов радиоактивности закон протекания этих процессов во времени.

Одинаковые ядра претерпевают распад за различные времена, предсказать которые заранее нельзя. Поэтому можно считать, что число ядер, распадающихся за малый промежуток времени dt , пропорционально как числу N имеющихся ядер в этот момент, так и dt :

Интегрирование уравнения (3.4) дает:

Соотношение (3.5) называют основным законом радиоактивного распада. Как видно, число N еще не распавшихся ядер убывает со временем экспоненциально.

Интенсивность радиоактивного распада характеризуют числом ядер, распадающихся в единицу времени. Из (3.4) видно, что эта величина | dN / dt | = λN . Ее называют активностью A . Таким образом активность:

.

Ее измеряют в беккерелях (Бк) , 1 Бк = 1 распад / с; а также в кюри (Ки) , 1 Ки = 3.7∙10 10 Бк.

Активность в расчете на единицу массы радиоактивного препарата называют удельной активностью.

Вернемся к формуле (3.5). Наряду с постоянной λ и активностью A процесс радиоактивного распада характеризуют еще двумя величинами: периодом полураспада T 1/2 и средним временем жизни τ ядра.

Период полураспада T 1/2 - время, за которое исходное число радиоактивных ядер в среднем уменьшится в двое:

,
откуда
.

Среднее время жизни τ определим следующим образом. Число ядер δN (t ), испытавших распад за промежуток времени (t , t + dt ), определяется правой частью выражения (3.4): δN (t ) = λNdt . Время жизни каждого из этих ядер равно t . Значит сумма времен жизни всех N 0 имевшихся первоначально ядер определяется интегрированием выражения tδN (t ) по времени от 0 до ∞. Разделив сумму времен жизни всех N 0 ядер на N 0 , мы и найдем среднее время жизни τ рассматриваемого ядра:

Заметим, что τ равно, как следует из (3.5) промежутку времени, за которое первоначальное количество ядер уменьшается в e раз.

Сравнивая (3.8) и (3.9.2), видим, что период полураспада T 1/2 и среднее время жизни τ имеют один и тот же порядок и связаны между собой соотношением:

.

Сложный радиоактивный распад

Сложный радиоактивный распад может протекать в двух случаях:

Физический смысл этих уравнений состоит в том, что количество ядер 1 убывает за счет их распада, а количество ядер 2 пополняется за счет распада ядер 1 и убывает за счет своего распада. Например, в начальный момент времени t = 0 имеется N 01 ядер 1 и N 02 ядер 2. С такими начальными условиями решение системы имеет вид:

Если при этом N 02 = 0, то

.

Для оценки значения N 2 (t ) можно использовать графический метод (см. рисунок 3.2) построения кривых e −λt и (1 − e −λt ). При этом ввиду особых свойств функции e −λt очень удобно ординаты кривой строить для значений t , соответствующих T , 2T , … и т.д. (см. таблицу 3.1). Соотношение (3.13.3) и рисунок 3.2 показывают, что количество радиоактивного дочернего вещества возрастает с течением времени и при t >> T 2 (λ 2 t >> 1) приближается к своему предельному значению:

и носит название векового , или секулярного равновесия . Физический смысл векового уравнения очевиден.

t e −λt 1 − e −λt
0 1 0
1T 1/2 = 0.5 0.5
2T (1/2) 2 = 0.25 0.75
3T (1/2) 3 = 0.125 0.875
... ... ...
10T (1/2) 10 ≈ 0.001 ~0.999


Рисунок 3.3. Сложный радиоактивный распад.
Так как, согласно уравнению (3.4), λN равно числу распадов в единицу времени, то соотношение λ 1 N 1 = λ 2 N 2 означает, что число распадов дочернего вещества λ 2 N 2 равно числу распадов материнского вещества, т.е. числу образующихся при этом ядер дочернего вещества λ 1 N 1 . Вековое уравнение широко используется для определения периодов полураспада долгоживущих радиоактивных веществ. Этим уравнением можно пользоваться при сравнении двух взаимно превращающихся веществ, из которых второе имеет много меньший период полураспада, чем первое (T 2 << T 1 ) при условии, что это сравнение производится в момент времени t >> T 2 (T 2 << t << T 1 ). Примером последовательного распада двух радиоактивных веществ является превращение радия Ra в радон Rn. Известно, что 88 Ra 226 , испуская с периодом полураспада T 1 >> 1600 лет α-частицы, превращается в радиоактивный газ радон (88 Rn 222), который сам является радиоактивным и испускает α-частицы с периодом полураспада T 2 ≈ 3.8 дня . В этом примере как раз T 1 >> T 2 , так что для моментов времени t << T 1 решение уравнений (3.12) может быть записано в форме (3.13.3).

Для дальнейшего упрощения надо, чтобы начальное количество ядер Rn было равно нулю (N 02 = 0 при t = 0). Это достигается специальной постановкой опыта, в котором изучается процесс превращения Ra в Rn. В этом опыте препарат Ra помещается в стеклянную колбочку с трубкой, соединенной с насосом. Во время работы насоса выделяющийся газообразный Rn сразу же откачивается, и концентрация его в колбочке равна нулю. Если в некоторый момент при работающем насосе изолировать колбочку от насоса, то с этого момента, который можно принять за t = 0, количество ядер Rn в колбочке начнет возрастать по закону (3.13.3):N Ra и N Rn - точным взвешиванием, а λ Rn - по определению периода полураспада Rn, который имеет удобное для измерений значение 3.8 дня . Таким образом, четвертая величина λ Ra может быть вычислена. Это вычисление дает для периода полураспада радия T Ra ≈ 1600 лет , что совпадает с результатами определения T Ra методом абсолютного счета испускаемых α-частиц.

Радиоактивность Ra и Rn была выбрана в качестве эталона при сравнении активностей различных радиоактивных веществ. За единицу радиоактивности - 1 Ки - приняли активность 1 г радия или находящегося с ним в равновесии количества радона. Последнее легко может быть найдено из следующих рассуждений.

Известно, что 1 г радия претерпевает в секунду ~3.7∙10 10 распадов . Следовательно.

1. Радиоактивность. Основной закон радиоактивного распада. Активность.

2. Основные виды радиоактивного распада.

3. Количественные характеристики взаимодействия ионизирующего излучения с веществом.

4. Естественная и искусственная радиоактивность. Радиоактивные ряды.

5. Использование радионуклидов в медицине.

6. Ускорители заряженных частиц и их использование в медицине.

7. Биофизические основы действия ионизирующего излучения.

8. Основные понятия и формулы.

9. Задачи.

Интерес медиков к естественной и искусственной радиоактивности обусловлен следующим.

Во-первых, все живое постоянно подвергается действию естественного радиационного фона, который составляют космическая радиация, излучение радиоактивных элементов, залегающих в поверхностных слоях земной коры, и излучение элементов, попадающих в организм животных вместе с воздухом и пищей.

Во-вторых, радиоактивное излучение применяется в самой медицине в диагностических и терапевтических целях.

33.1. Радиоактивность. Основной закон радиоактивного распада. Активность

Явление радиоактивности было открыто в 1896 г. А. Беккерелем, который наблюдал спонтанное испускание солями урана неизвестного излучения. Вскоре Э. Резерфорд и супруги Кюри установили, что при радиоактивном распаде испускаются ядра Не (α-частицы), электроны (β-частицы) и жесткое электромагнитное излучение (γ-лучи).

В 1934 г. был открыт распад с вылетом позитронов (β + -распад), а в 1940 г. был открыт новый тип радиоактивности - спонтанное деление ядер: делящееся ядро разваливается на два осколка сравнимой массы с одновременным испусканием нейтронов и γ -квантов. Протонная радиоактивность ядер наблюдалась в 1982 г.

Радиоактивность - способность некоторых атомных ядер самопроизвольно (спонтанно) превращаться в другие ядра с испусканием частиц.

Атомные ядра состоят из протонов и нейтронов, которые имеют обобщающее название - нуклоны. Количество протонов в ядре определяет химические свойства атома и обозначается Z (это порядковый номер химического элемента). Количество нуклонов в ядре называют массовым числом и обозначают А. Ядра с одинаковым порядковым номером и различными массовыми числами называются изотопами. Все изотопы одного химического элемента имеют одинаковые химические свойства. Физические свойства изотопов могут различаться весьма сильно. Для обозначения изотопов используют символ химического элемента с двумя индексами: A Z Х. Нижний индекс - порядковый номер, верхний - массовое число. Часто нижний индекс опускают, так как на него указывает сам символ элемента. Например, пишут 14 С вместо 14 6 С.

Способность ядра к распаду зависит от его состава. У одного и того же элемента могут быть и стабильный, и радиоактивный изотопы. Например, изотоп углерода 12 С стабилен, а изотоп 14 С радиоактивен.

Радиоактивный распад - явление статистическое. Способность изотопа к распаду характеризует постоянная распада λ.

Постоянная распада - вероятность того, что ядро данного изотопа распадется за единицу времени.

Вероятность распада ядра за малое время dt находится по формуле

Учитывая формулу (33.1), получим выражение, определяющее количество распавшихся ядер:

Формула (33.3) называется основным законом радиоактивного распада.

Число радиоактивных ядер убывает со временем по экспоненциальному закону.

На практике вместо постоянной распада λ часто используют другую величину, называемую периодом полураспада.

Период полураспада (Т) - время, в течение которого распадается половина радиоактивных ядер.

Закон радиоактивного распада с использованием периода полураспада записывается так:

График зависимости (33.4) показан на рис. 33.1.

Период полураспада может быть как очень большим, так и очень маленьким (от долей секунды до многих миллиардов лет). В табл. 33.1 представлены периоды полураспада для некоторых элементов.

Рис. 33.1. Убывание количества ядер исходного вещества при радиоактивном распаде

Таблица 33.1. Периоды полураспада для некоторых элементов

Для оценки степени радиоактивности изотопа используют специальную величину, называемую активностью.

Активность - число ядер радиоактивного препарата, распадающихся за единицу времени:

Единица измерения активности в СИ - беккерель (Бк), 1 Бк соответствует одному акту распада в секунду. На практике более упот-

ребительна внесистемная единица активности - кюри (Ки), равная активности 1 г 226 Ra: 1 Ки = 3,7х10 10 Бк.

С течением времени активность убывает так же, как убывает количество нераспавшихся ядер:

33.2. Основные виды радиоактивного распада

В процессе изучения явления радиоактивности были обнаружены 3 вида лучей, испускаемых радиоактивными ядрами, которые получили названия α-, β- и γ-лучей. Позже было установлено, что α- и β-частицы - продукты двух различных видов радиоактивного распада, а γ-лучи являются побочным продуктом этих процессов. Кроме того, γ-лучи сопровождают и более сложные ядерные превращения, которые здесь не рассматриваются.

Альфа-распад состоит в самопроизвольном превращении ядер с испусканием α-частиц (ядра гелия).

Схема α-распада записывается в виде

где Х, Y - символы материнского и дочернего ядер соответственно. При записи α-распада вместо «α« можно писать «Не».

При этом распаде порядковый номер Z элемента уменьшается на 2, а массовое число А - на 4.

При α-распаде дочернее ядро, как правило, образуется в возбужденном состоянии и при переходе в основное состояние испускает γ-квант. Общее свойство сложных микрообъектов заключается в том, что они обладают дискретным набором энергетических состояний. Это относится и к ядрам. Поэтому γ-излучение возбужденных ядер обладает дискретным спектром. Следовательно, и энергетический спектр α-частиц является дискретным.

Энергия испускаемых α-частиц практически для всех α-активных изотопов лежит в пределах 4-9 МэВ.

Бета-распад состоит в самопроизвольном превращении ядер с испусканием электронов (или позитронов).

Установлено, что β-распад всегда сопровождается испусканием нейтральной частицы - нейтрино (или антинейтрино). Эта частица практически не взаимодействует с веществом, и в дальнейшем рассматриваться не будет. Энергия, выделяющаяся при β-распаде, распределяется между β-частицей и нейтрино случайным образом. Поэтому энергетический спектр β-излучения сплошной (рис. 33.2).

Рис. 33.2. Энергетический спектр β-распада

Существует два вида β-распада.

1. Электронный β - -распад заключается в превращении одного ядерного нейтрона в протон и электрон. При этом появляется еще одна частица ν" - антинейтрино:

Электрон и антинейтрино вылетают из ядра. Схема электронного β - -распада записывается в виде

При электронном β-распаде порядковый номер Z-элемента увеличивается на 1, массовое число А не изменяется.

Энергия β-частиц лежит в диапазоне 0,002-2,3 МэВ.

2. Позитронный β + -распад заключается в превращении одного ядерного протона в нейтрон и позитрон. При этом появляется еще одна частица ν - нейтрино:

Сам электронный захват не порождает ионизирующих частиц, но он сопровождается рентгеновским излучением. Это излучение возникает, когда место, освободившееся при поглощении внутреннего электрона, заполняется электроном с внешней орбиты.

Гамма-излучение имеет электромагнитную природу и представляет собой фотоны с длиной волны λ ≤ 10 -10 м.

Гамма-излучение не является самостоятельным видом радиоактивного распада. Излучение этого типа почти всегда сопровождает не только α-распад и β-распад, но и более сложные ядерные реакции. Оно не отклоняется электрическим и магнитным полями, обладает относительно слабой ионизирующей и очень большой проникающей способностями.

33.3. Количественные характеристики взаимодействия ионизирующего излучения с веществом

Воздействие радиоактивного излучения на живые организмы связано с ионизацией, которую оно вызывает в тканях. Способность частицы к ионизации зависит как от ее вида, так и от ее энергии. По мере продвижения частицы в глубь вещества она теряет свою энергию. Этот процесс называют ионизационным торможением.

Для количественной характеристики взаимодействия заряженной частицы с веществом используется несколько величин:

После того как энергия частицы станет ниже энергии ионизации, ее ионизирующее действие прекращается.

Средний линейный пробег (R) заряженной ионизирующей частицы - путь, пройденный ею в веществе до потери ионизирующей способности.

Рассмотрим некоторые характерные особенности взаимодействия различных видов излучения с веществом.

Альфа-излучение

Альфа-частица практически не отклоняется от первоначального направления своего движения, так как ее масса во много раз больше

Рис. 33.3. Зависимость линейной плотности ионизации от пути, пройденного α-частицей в среде

массы электрона, с которым она взаимодействует. По мере ее проникновения в глубь вещества плотность ионизации сначала возрастает, а при завершении пробега (х = R) резко спадает до нуля (рис. 33.3). Это объясняется тем, что при уменьшении скорости движения возрастает время, которое она проводит вблизи молекулы (атома) среды. Вероятность ионизации при этом увеличивается. После того как энергия α-частицы станет сравнимой с энергией молекулярно-теплового движения, она захватывает два электрона в веществе и превращается в атом гелия.

Электроны, образовавшиеся в процессе ионизации, как правило, уходят в сторону от трека α-частицы и вызывают вторичную ионизацию.

Характеристики взаимодействия α-частиц с водой и мягкими тканями представлены в табл. 33.2.

Таблица 33.2. Зависимость характеристик взаимодействия с веществом от энергии α-частиц

Бета-излучение

Для движения β -частицы в веществе характерна криволинейная непредсказуемая траектория. Это связано с равенством масс взаимодействующих частиц.

Характеристики взаимодействия β -частиц с водой и мягкими тканями представлены в табл. 33.3.

Таблица 33.3. Зависимость характеристик взаимодействия с веществом от энергии β-частиц

Как и у α-частиц, ионизационная способность β-частиц растет при уменьшении энергии.

Гамма-излучение

Поглощение γ -излучения веществом подчиняется экспоненциальному закону, аналогичному закону поглощения рентгеновского излучения:

Основными процессами, отвечающими за поглощение γ -излучения, являются фотоэффект и комптоновское рассеяние. При этом образуется относительно небольшое количество свободных электронов (первичная ионизация), которые обладают очень высокой энергией. Они-то и вызывают процессы вторичной ионизации, которая несравненно выше первичной.

33.4. Естественная и искусственная

радиоактивность. Радиоактивные ряды

Термины естественная и искусственная радиоактивность являются условными.

Естественной называют радиоактивность изотопов, существующих в природе, или радиоактивность изотопов, образующихся в результате природных процессов.

Например, естественной является радиоактивность урана. Естественной является и радиоактивность углерода 14 С, который образуется в верхних слоях атмосферы под действием солнечного излучения.

Искусственной называют радиоактивность изотопов, которые возникают в результате деятельности человека.

Таковой является радиоактивность всех изотопов, получаемых на ускорителях частиц. Сюда же можно отнести и радиоактивность почвы, воды и воздуха, возникающую при атомном взрыве.

Естественная радиоактивность

В начальный период изучения радиоактивности исследователи могли использовать лишь естественные радионуклиды (радиоактивные изотопы), содержащиеся в земных породах в достаточно большом количестве: 232 Th, 235 U, 238 U. С этих радионуклидов начинаются три радиоактивных ряда, заканчивающиеся стабильными изотопами РЬ. В дальнейшем был обнаружен ряд, начинающийся с 237 Np, с конечным стабильным ядром 209 Bi. На рис. 33.4 показан ряд, начинающийся с 238 U.

Рис. 33.4. Уран-радиевый ряд

Элементы этого ряда являются основным источником внутреннего облучения человека. Например, 210 Pb и 210 Po поступают в организм вместе с пищей - они концентрируются в рыбе и моллюсках. Оба этих изотопа накапливаются в лишайниках и поэтому присутствуют в мясе северного оленя. Наиболее весомым из всех естественных источников радиации является 222 Rn - тяжелый инертный газ, получающийся при распаде 226 Ra. На него приходится около половины дозы естественной радиации, получаемой человеком. Образуясь в земной коре, этот газ просачивается в атмосферу и попадает в воду (он хорошо растворим).

В земной коре постоянно присутствует радиоактивный изотоп калия 40 К, который входит в состав природного калия (0,0119 %). Из почвы этот элемент поступает через корневую систему растений и с растительной пищей (зерновые, свежие овощи и фрукты, грибы) - в организм.

Еще одним источником естественной радиации является космическое излучение (15 %). Его интенсивность возрастает в горных районах вследствие уменьшения защитного действия атмосферы. Источники природного радиационного фона указаны в табл. 33.4.

Таблица 33.4. Составляющая природного радиоактивного фона

33.5. Использование радионуклидов в медицине

Радионуклидами называют радиоактивные изотопы химических элементов с малым периодом полураспада. В природе такие изотопы отсутствуют, поэтому их получают искусственно. В современной медицине радионуклиды широко используются в диагностических и терапевтических целях.

Диагностическое применение основано на избирательном накоплении некоторых химических элементов отдельными органами. Йод, например, концентрируется в щитовидной железе, а кальций - в костях.

Введение в организм радиоизотопов этих элементов позволяет обнаруживать области их концентрации по радиоактивному излучению и получать таким образом важную диагностическую информацию. Такой метод диагностики называется методом меченых атомов.

Терапевтическое использование радионуклидов основано на разрушающем действии ионизирующего излучения на клетки опухолей.

1. Гамма-терапия - использование γ-излучения высокой энергии (источник 60 Со) для разрушения глубоко расположенных опухолей. Чтобы поверхностно расположенные ткани и органы не подвергались губительному действию, воздействие ионизирующего излучения осуществляется в разные сеансы по разным направлениям.

2. Альфа-терапия - лечебное использование α-частиц. Эти частицы обладают значительной линейной плотностью ионизации и поглощаются даже небольшим слоем воздуха. Поэтому терапевтическое

применение альфа-лучей возможно при непосредственном контакте с поверхностью органа или при введении внутрь (с помощью иглы). Для поверхностного воздействия применяется радоновая терапия (222 Rn): воздействие на кожу (ванны), органы пищеварения (питье), органы дыхания (ингаляции).

В некоторых случаях лечебное применение α -частиц связано с использованием потока нейтронов. При этом методе в ткань (опухоль) предварительно вводят элементы, ядра которых под действием нейтронов испускают α -частицы. После этого больной орган облучают потоком нейтронов. Таким способом α -частицы образуются непосредственно внутри органа, на который они должны оказать разрушительное воздействие.

В таблице 33.5 указаны характеристики некоторых радионуклидов, используемых в медицине.

Таблица 33.5. Характеристика изотопов

33.6. Ускорители заряженных частиц и их использование в медицине

Ускоритель - установка, в которой под действием электрических и магнитных полей получаются направленные пучки заряженных частиц с высокой энергией (от сотен кэВ до сотен ГэВ).

Ускорители создают узкие пучки частиц с заданной энергией и малым поперечным сечением. Это позволяет оказывать направленное воздействие на облучаемые объекты.

Использование ускорителей в медицине

Ускорители электронов и протонов применяются в медицине для лучевой терапии и диагностики. При этом используются как сами ускоренные частицы, так и сопутствующее рентгеновское излучение.

Тормозное рентгеновское излучение получают, направляя пучок частиц на специальную мишень, которая и является источником рентгеновских лучей. От рентгеновской трубки это излучение отличается значительно большей энергией квантов.

Синхротронное рентгеновское излучение возникает в процессе ускорения электронов на кольцевых ускорителях - синхротронах. Такое излучение обладает высокой степенью направленности.

Прямое действие быстрых частиц связано с их высокой проникающей способностью. Такие частицы проходят поверхностные ткани, не вызывая серьезных повреждений, и оказывают ионизирующее действие в конце своего пути. Подбором соответствующей энергии частиц можно добиться разрушения опухолей на заданной глубине.

Области применения ускорителей в медицине показаны в табл. 33.6.

Таблица 33.6. Применение ускорителей в терапии и диагностике

33.7. Биофизические основы действия ионизирующего излучения

Как уже отмечалось выше, воздействие радиоактивного излучения на биологические системы связано с ионизацией молекул. Процесс взаимодействия излучения с клетками можно разделить на три последовательных этапа (стадии).

1. Физическая стадия состоит в передаче энергии излучения молекулам биологической системы, в результате чего происходит их ионизация и возбуждение. Длительность этой стадии 10 -16 -10 -13 с.

2. Физико-химическая стадия состоит из различного рода реакций, приводящих к перераспределению избыточной энергии возбужденных молекул и ионов. В результате появляются высокоактивные

продукты: радикалы и новые ионы с широким спектром химических свойств.

Длительность этой стадии 10 -13 -10 -10 с.

3. Химическая стадия - это взаимодействие радикалов и ионов между собой и с окружающими молекулами. На этой стадии формируются структурные повреждения различного типа, приводящие к изменению биологических свойств: нарушаются структура и функции мембран; возникают поражения в молекулах ДНК и РНК.

Длительность химической стадии 10 -6 -10 -3 с.

4. Биологическая стадия. На этой стадии повреждения молекул и субклеточных структур приводят к разнообразным функциональным нарушениям, к преждевременной гибели клетки в результате действия механизмов апоптоза или вследствие некроза. Повреждения, полученные на биологической стадии, могут передаваться по наследству.

Продолжительность биологической стадии от нескольких минут до десятков лет.

Отметим общие закономерности биологической стадии:

Большие нарушения при малой поглощенной энергии (смертельная для человека доза облучения вызывает нагрев тела всего на 0,001°С);

Действие на последующие поколения через наследственный аппарат клетки;

Характерен скрытый, латентный период;

Разные части клеток обладают различной чувствительностью к излучению;

Прежде всего поражаются делящиеся клетки, что особенно опасно для детского организма;

Губительное действие на ткани взрослого организма, в которых есть деление;

Сходство лучевых изменений с процессами патологии раннего старения.

33.8. Основные понятия и формулы

Продолжение таблицы

33.9. Задачи

1. Какова активность препарата, если в течение 10 мин распадается 10 000 ядер этого вещества?

4. Возраст древних образцов дерева можно приближенно определить по удельной массовой активности изотопа 14 6 C в них. Сколько лет тому назад было срублено дерево, которое пошло на изготовление предмета, если удельная массовая активность углерода в нем составляет 75 % от удельной массы активности растущего дерева? Период полураспада радона Т = 5570 лет.

9. После Чернобыльской аварии в некоторых местах загрязненность почвы радиоактивным цезием-137 была на уровне 45 Ки/км 2 .

Через сколько лет активность в этих местах снизится до относительно безопасного уровня 5 Ки/км 2 . Период полураспада цезия-137 равен Т = 30 лет.

10. Допустимая активность йода-131 в щитовидной железе человека должна быть не более 5 нКи. У некоторых людей, находившихся в зоне Чернобыльской катастрофы, активность йода-131 доходила до 800 нКи. Через сколько дней активность снижалась до нормы? Период полураспада йода-131 равен 8 суткам.

11. Для определения объема крови у животного используется следующий метод. У животного берут небольшой объем крови, отделяют эритроциты от плазмы и помещают их в раствор с радиоактивным фосфором, который ассимилируется эритроцитами. Меченые эритроциты снова вводят в кровеносную систему животного, и через некоторое время определяют активность пробы крови.

В кровь некоторого животного ввели ΔV = 1 мл такого раствора. Начальная активность этого объема была равна А 0 = 7000 Бк. Активность 1 мл крови, взятой из вены животного через сутки, оказалась равной 38 импульсов в минуту. Определить объем крови животного, если период полураспада радиоактивного фосфора равен Т = 14,3 суток.

Под радиоактивным распадом , или просто распадом , понимают естественное радиоактивное превращение ядер, происходящее самопроизвольно. Атомное ядро, испытывающее радиоактивный распад, называется материнским , возникающее ядро - дочерним .

Теория радиоактивного распада строится на предположении о том, что радиоактивный распад является спонтанным процессом, подчиняющимся законам статистики. Поскольку отдельные радиоактивные ядра распадаются независимо друг от друга, можно считать, что число ядер dN , распавшихся в среднем за интервал времени от t до t + dt , пропорционально промежутку времени dt и числу N нераспавшихся ядер к моменту времени t :

где - постоянная для данного радиоактивного вещества величина, называемая постоянной радиоактивного распада ; знак минус указывает, что общее число радиоактивных ядер в процессе распада уменьшается.

Разделив переменные и интегрируя, т.е.

(256.2)

где - начальное число нераспавшихся ядер (в момент времени t = 0), N - число нераспавшихся ядер в момент времени t . Формула (256.2) выражает закон радиоактивного распада , согласно которому число нераспавшихся ядер убывает со временем по экспоненте.

Интенсивность процесса радиоактивного распада характеризуют две величины: период полураспада и среднее время жизни радиоактивного ядра. Период полураспада - время, за которое исходное число радиоактивных ядер в среднем уменьшается вдвое. Тогда, согласно (256.2),

Периоды полураспада для естественно-радиоактивных элементов колеблются от десятимиллионных долей секунды до многих миллиардов лет.

Суммарная продолжительность жизни dN ядер равна . Проинтегрировав это выражение по всем возможным t (т. е. от 0 до ) и разделив на начальное число ядер , получим среднее время жизни радиоактивного ядра:

(учтено (256.2)). Таким образом, среднее время жизни радиоактивного ядра есть величина, обратная постоянной радиоактивного распада .

Активностью А нуклида (общее название атомных ядер, отличающихся числом протонов Z и нейтронов N ) в радиоактивном источнике называется число распадов, происходящих с ядрами образца в 1 с:

(256.3)

Единица активности в СИ - беккерель (Бк): 1 Бк - активность нуклида, при которой за 1 с происходит один акт распада. До сих пор в ядерной физике применяется и внесистемная единица активности нуклида в радиоактивном источнике - кюри (Ки): 1 Ки = 3,7×10 10 Бк. Радиоактивный распад происходит в соответствии с так называемыми правилами смещения , позволяющими установить, какое ядро возникает в результате распада данного материнского ядра. Правила смещения:


для -распада

(256.4)

для -распада

(256.5)

где - материнское ядро, Y - символ дочернего ядра, - ядро гелия ( -частица), - символическое обозначение электрона (заряд его равен –1, а массовое число-нулю). Правила смещения являются ничем иным, как следствием двух законов, выполняющихся при радиоактивных распадах,- сохранения электрического заряда и сохранения массового числа: сумма зарядов (массовых чисел) возникающих ядер и частиц равна заряду (массовому числу) исходного ядра.

Возникающие в результате радиоактивного распада ядра могут быть, в свою очередь, радиоактивными. Это приводит к возникновению цепочки , или ряда, радиоактивных превращений , заканчивающихся стабильным элементом. Совокупность элементов, образующих такую цепочку, называется радиоактивным семейством .

Из правил смещения (256.4) и (256.5) вытекает, что массовое число при -распаде уменьшается на 4, а при -распаде не меняется. Поэтому для всех ядер одного и того же радиоактивного семейства остаток от деления массового числа на 4 одинаков. Таким образом, существует четыре различных радиоактивных семейства, для каждого из которых массовые числа задаются одной из следующих формул:

А = 4n , 4n +1, 4n +2, 4n +3,

где п - целое положительное число. Семейства называются по наиболее долгоживущему (с наибольшим периодом полураспада) «родоначальнику»: семейства тория (от ), нептуния (от ), урана (от ) и актиния (от ). Конечными нуклидами соответственно являются , , , , т. е. единственное семейство нептуния (искусственно-радиоактивные ядра) заканчивается нуклидом Bi , а все остальные (естественно-радиоактивные ядра) - нуклидами Рb .

§ 257. Закономерности -распада

В настоящее время известно более двухсот -активных ядер, главным образом тяжелых (A > 200, Z > 82). Только небольшая группа -активных ядер приходится на области с А = 140 ¸ 160 (редкие земли). -Распад подчиняется правилу смещения (256.4). Примером -распада служит распад изотопа урана с образованием Th :

Скорости вылетающих при распаде -частиц очень велики и колеблются для разных ядер в пределах от 1,4×10 7 до 2×10 7 м/с, что соответствует энергиям от 4 до 8,8 МэВ. Согласно современным представлениям, -частицы образуются в момент радиоактивного распада при встрече движущихся внутри ядра двух протонов и двух нейтронов.

Частицы, испускаемые конкретным ядром, обладают, как правило, определенной энергией. Более тонкие измерения, однако, показали, что энергетический спектр -частиц, испускаемых данным радиоактивным элементом, обнаруживает «тонкую структуру», т. е. испускается несколько групп -частиц, причем в пределах каждой группы их энергии практически постоянны. Дискретный спектр -частиц свидетельствует о том, что атомные ядра обладают дискретными энергетическими уровнями.

Для -распада характерна сильная зависимость между периодом полураспада и энергией Е вылетающих частиц. Эта взаимосвязь определяется эмпирическим законом Гейгера - Нэттола (1912) (Д. Нэттол (1890-1958) - английский физик, Х. Гейгер (1882-1945) - немецкий физик), который обычно выражают в виде связи между пробегом (расстоянием, проходимым частицей в веществе до ее полной остановки) -частиц в воздухе и постоянной радиоактивного распада :

(257.1)

где А и В - эмпирические константы, . Согласно (257.1), чем меньше период полураспада радиоактивного элемента, тем больше пробег, а следовательно, и энергия испускаемых им -частиц. Пробег -частиц в воздухе (при нормальных условиях) составляет несколько сантиметров, в более плотных средах он гораздо меньше, составляя сотые доли миллиметра ( -частицы можно задержать обычным листом бумаги).

Опыты Резерфорда по рассеянию -частиц на ядрах урана показали, что -частицы вплоть до энергии 8,8 МэВ испытывают на ядрах резерфордовское рассеяние, т. е. силы, действующие на -частицы со стороны ядер, описываются законом Кулона. Подобный характер рассеяния -частиц указывает на то, что они еще не вступают в область действия ядерных сил, т. е. можно сделать вывод, что ядро окружено потенциальным барьером, высота которого не меньше 8,8 МэВ. С другой стороны, -частицы, испускаемые ураном, имеют энергию 4,2 МэВ. Следовательно, -частицы вылетают из -радиоактивного ядра с энергией, заметно меньшей высоты потенциального барьера. Классическая механика этот результат объяснить не могла.

Объяснение -распада дано квантовой механикой, согласно которой вылет -частицы из ядра возможен благодаря туннельному эффекту (см. §221) - проникновению -частицы сквозь потенциальный барьер. Всегда имеется отличная от нуля вероятность того, что частица с энергией, меньшей высоты потенциального барьера, пройдет сквозь него, т. е., действительно, из -радиоактивного ядра -частицы могут вылетать с энергией, меньшей высоты потенциального барьера. Этот эффект целиком обусловлен волновой природой -частиц.

Вероятность прохождения -частицы сквозь потенциальный барьер определяется его формой и вычисляется на основе уравнения Шредингера. В простейшем случае потенциального барьера с прямоугольными вертикальными стенками (см. рис. 298, а ) коэффициент прозрачности, определяющий вероятность прохождения сквозь него, определяется рассмотренной ранее формулой (221.7):

Анализируя это выражение, видим, что коэффициент прозрачности D тем больше (следовательно, тем меньше период полураспада), чем меньший по высоте (U ) и ширине (l ) барьер находится на пути -частицы. Кроме того, при одной и той же потенциальной кривой барьер на пути частицы тем меньше, чем больше ее энергия Е . Таким образом качественно подтверждается закон Гейгера - Нэттола (см. (257.1)).

§ 258. -Распад. Нейтрино

Явление -распада (в дальнейшем будет показано, что существует и (-распад) подчиняется правилу смещения (256.5)

и связано с выбросом электрона. Пришлось преодолеть целый ряд трудностей с трактовкой -распада.

Во-первых, необходимо было обосновать происхождение электронов, выбрасываемых в процессе -распада. Протонно-нейтронное строение ядра исключает возможность вылета электрона из ядра, поскольку в ядре электронов нет. Предположение же, что электроны вылетают не из ядра, а из электронной оболочки, несостоятельно, поскольку тогда должно было бы наблюдаться оптическое или рентгеновское излучение, что не подтверждают эксперименты.

Во-вторых, необходимо было объяснить непрерывность энергетического спектра испускаемых электронов (типичная для всех изотопов кривая распределения -частиц по энергиям приведена на рис. 343).

Каким же образом -активные ядра, обладающие до и после распада вполне определенными энергиями, могут выбрасывать электроны со значениями энергии от нуля до некоторого максимального ? Т. е. энергетический спектр испускаемых электронов является непрерывным? Гипотеза о том, что при -распаде электроны покидают ядро со строго определенными энергиями, но в результате каких-то вторичных взаимодействий теряют ту или иную долю своей энергии, так что их первоначальный дискретный спектр превращается в непрерывный, была опровергнута прямыми калориметрическими опытами. Так как максимальная энергия определяется разностью масс материнского и дочернего ядер, то распады, при которых энергия электрона < , как бы протекают с нарушением закона сохранения энергии. Н. Бор даже пытался обосновать это нарушение, высказывая предположение, что закон сохранения энергии носит статистический характер и выполняется лишь в среднем для большого числа элементарных процессов. Отсюда видно, насколько принципиально важно было разрешить это затруднение.

В-третьих, необходимо было разобраться с несохранением спина при -распаде. При -распаде число нуклонов в ядре не изменяется (так как не изменяется массовое число A ), поэтому не должен изменяться и спин ядра, который равен целому числу при четном А и полуцелому при нечетном А . Однако выброс электрона, имеющего спин /2, должен изменить спин ядра на величину /2.

Последние два затруднения привели В. Паули к гипотезе (1931) о том, что при -распаде вместе с электроном испускается еще одна нейтральная частица - нейтрино . Нейтрино имеет нулевой заряд, спин /2 и нулевую (а скорее< 10 -4 ) массу покоя; обозначается . Впоследствии оказалось, что при - распаде испускается не нейтрино, а антинейтрино (античастица по отношению к нейтрино; обозначается ).

Гипотеза о существовании нейтрино позволила Э. Ферми создать теорию -распада (1934), которая в основном сохранила свое значение и в настоящее время, хотя экспериментально существование нейтрино было доказано более чем через 20 лет (1956). Столь длительные «поиски» нейтрино сопряжены с большими трудностями, обусловленными отсутствием у нейтрино электрического заряда и массы. Нейтрино - единственная частица, не участвующая ни в сильных, ни в электромагнитных взаимодействиях; единственный вид взаимодействий, в котором может принимать участие нейтрино,- слабое взаимодействие. Поэтому прямое наблюдение нейтрино весьма затруднительно. Ионизирующая способность нейтрино столь мала, что один акт ионизации в воздухе приходится на 500 км пути. Проникающая же способность нейтрино столь огромна (пробег нейтрино с энергией 1 МэВ в свинце составляет порядка 1018м!), что затрудняет удержание этих частиц в приборах.

Для экспериментального выявления нейтрино (антинейтрино) применялся поэтому косвенный метод, основанный на том, что в реакциях (в том числе и с участием нейтрино) выполняется закон сохранения импульса. Таким образом, нейтрино было обнаружено при изучении отдачи атомных ядер при -распаде. Если при -распаде ядра вместе с электроном выбрасывается и антинейтрино, то векторная сумма трех импульсов - ядра отдачи, электрона и антинейтрино - должна быть равна нулю. Это действительно подтвердилось на опыте. Непосредственное обнаружение нейтрино стало возможным лишь значительно позднее, после появления мощных реакторов, позволяющих получать интенсивные потоки нейтрино.

Введение нейтрино (антинейтрино) позволило не только объяснить кажущееся несохранение спина, но и разобраться с вопросом непрерывности энергетического спектра выбрасываемых электронов. Сплошной спектр -частиц обязан распределению энергии между электронами и антинейтрино, причем сумма энергий обеих частиц равна . В одних актах распада большую энергию получает антинейтрино, в других - электрон; в граничной точке кривой на рис. 343, где энергия электрона равна , вся энергия распада уносится электроном, а энергия антинейтрино равна нулю.

Наконец, рассмотрим вопрос о происхождении электронов при -распаде. Поскольку электрон не вылетает из ядра и не вырывается из оболочки атома, было сделано предположение, что -электрон рождается в результате процессов, происходящих внутри ядра. Так как при -распаде число нуклонов в ядре не изменяется, a Z увеличивается на единицу (см. (256.5)), то единственной возможностью одновременного осуществления этих условий является превращение одного из нейтронов -активного ядра в протон с одновременным образованием электрона и вылетом антинейтрино:

(258.1)

Этот процесс сопровождается выполнением законов сохранения электрических зарядов, импульса и массовых чисел. Кроме того, данное превращение энергетически возможно, так как масса покоя нейтрона превышает массу атома водорода, т. е. протона и электрона вместе взятых. Данной разности в массах соответствует энергия, равная 0,782 МэВ. За счет этой энергии может происходить самопроизвольное превращение нейтрона в протон; энергия распределяется между электроном и антинейтрино.

Если превращение нейтрона в протон энергетически выгодно и вообще возможно, то должен наблюдаться радиоактивный распад свободных нейтронов (т.е. нейтронов вне ядра). Обнаружение этого явления было бы подтверждением изложенной теории -распада. Действительно, в 1950 г. в потоках нейтронов большой интенсивности, возникающих в ядерных реакторах, был обнаружен радиоактивный распад свободных нейтронов, происходящий по схеме (258.1). Энергетический спектр возникающих при этом электронов соответствовал приведенному на рис. 343, а верхняя граница энергии электронов оказалась равной рассчитанной выше (0,782 МэВ).

Изменение числа радиоактивных ядер во времени. Резерфорд и Содди в 1911 г., обобщая экспериментальные результаты, показали, что атомы некоторых элементов испытывают последовательные превращения, образуя радиоактивные семейства, где каждый член возникает из предыдущего и, в свою очередь, образует последующий.

Это удобно проиллюстрировать на примере образования радона из радия. Если поместить в запаянную ампулу то анализ газа через несколько дней покажет, что в нем появляется гелий и радон. Гелий устойчив, и поэтому он накапливается, радон же сам распадается. Кривая 1 на рис. 29 характеризует закон распада радона в отсутствие радия. При этом на оси ординат отложено отношение числа нераспавшихся ядер радона к их начальному числу Видно, что убывание содержания идет по экспоненциальному закону. Кривая 2 показывает, как изменяется число радиоактивных ядер радона в присутствии радия.

Опыты, проведенные с радиоактивными веществами, показали, что никакие внешние условия (нагревание до высоких температур,

магнитные и электрические поля, большие давления) не могут повлиять на характер и скорость распада.

Радиоактивность является свойством атомного ядра и для данного типа ядер, находящихся в определенном энергетическом состоянии, вероятность радиоактивного распада за единицу времени постоянна.

Рис. 29. Зависимость числа активных ядер радона от времени

Так как процесс распада самопроизвольный (спонтанный), то изменение числа ядер из-за распада за промежуток времени определяется только количеством радиоактивных ядер в момент и пропорционально промежутку времени

где постоянная, характеризующая скорость распада. Интегрируя (37) и считая, что получаем

т. е. число ядер убывает по экспоненциальному закону.

Этот закон относится к статистическим средним величинам и справедлив лишь при достаточно большом числе частиц. Величина X называется постоянной радиоактивного распада, имеет размерность и характеризует вероятность распада одного атома в одну секунду.

Для характеристики радиоактивных элементов вводится также понятие периода полураспада Под ним понимается время, в течение которого распадается половина наличного числа атомов. Подставляя условие в уравнение (38), получим

откуда, логарифмируя, найдем, что

и период полураспада

При экспоненциальном законе радиоактивного распада в любой момент времени имеется отличная от нуля вероятность найти еще не распавшиеся ядра. Время жизни этих ядер превышает

Наоборот, другие ядра, распавшиеся к этому времени, прожили разное время, меньшее Среднее время жизни для данного радиоактивного изотопа определяется как

Обозначив получим

Следовательно, среднее время жизни радиоактивного ядра равно обратной величине от постоянной распада Я. За время первоначальное число ядер уменьшается в раз.

Для обработки экспериментальных результатов удобно представить уравнение (38) в другой форме:

Величина называется активностью данного радиоактивного препарата, она определяет число распадов в секунду. Активность является характеристикой всего распадающегося вещества, а не отдельного ядра. Практической единицей активности является кюри. 1 кюри равно ислу распавшихся ядер содержащихся в радия за 1 сек распадов/сек). Используются и более мелкие единицы - милликюри и микрокюри . В практике физического эксперимента используется иногда другая единица активности - Резерфорд распадов/сек.

Статистический характер радиоактивного распада. Радиоактивный распад - явление принципиально статистическое. Мы не можем сказать, когда именно распадется данное ядро, а можем лишь указать, с какой вероятностью оно распадается за тот или иной промежуток времени.

Радиоактивные ядра не «стареют» в процессе своего существования. К ним вообще неприменимо понятие возраста, а можно лишь говорить о среднем времени их жизни.

Из статистического характера закона радиоактивного распада следует, что он выполняется строго, когда велико, а при небольших должны наблюдаться флуктуации. Число распадающихся ядер в единицу времени должно флуктуировать вокруг среднего значения, харак теризуемого приведенным выше законом. Это подтверждается экспериментальными измерениями числа -частиц, испускаемых радиоактивным веществом в единицу времени.

Рис. 30. Зависимость логарифма активности от времени

Флуктуации подчиняются закону Пуассона. Производя измерения с радиоактивными препаратами, надо всегда это учитывать и определять статистическую точность опытных результатов.

Определение постоянной распада X. При определении постоянной распада X радиоактивного элемента опыт сводится к регистрации числа частиц, вылетающих из препарата за единицу времени, т. е. определяется его активность Затем строится график изменения активности со временем, обычно в полулогарифмическом масштабе. Вид получаемых зависимостей при исследованиях чистого изотопа, смеси изотопов или радиоактивного семейства оказывается различным.

Рассмотрим в качестве примера несколько случаев.

1. Исследуется один радиоактивный элемент, при распаде которого образуются стабильные ядра. Логарифмируя выражение (41), получим

Следовательно, в этом случае логарифм активности является линейной функцией времени. График этой зависимости имеет вид прямой, тангенс угла наклона которой (рис. 30)

2. Исследуется радиоактивное семейство, в котором происходит целая цепь радиоактивных превращений. Ядра, получающиеся после распада, в свою очередь сами оказываются радиоактивными:

Примером такой цепочки может служить распад:

Найдем закон, описывающий в этом случае изменение числа радиоактивных атомов во времени. Для простоты выделим всего два элемента: считая А исходным, а В промежуточным.

Тогда изменение числа ядер А и ядер В определится из системы уравнений

Количество ядер А убывает за счет их распада, а количество ядер В убывает из-за распада ядер В и возрастает за счет распада ядер А.

Если при имеется ядер А, а ядер В нет, то начальные условия запишутся в виде

Решение уравнений (43) имеет вид

и полная активность источника, состоящего из ядер А и В:

Рассмотрим теперь зависимость логарифма радиоактивности от времени при разных соотношениях между и

1. Первый элемент короткоживущий, второй - долгоживущий, т. е. . В этом случае кривая, показывающая изменение суммарной активности источника, имеет вид, представленный на рис. 31, а. В начале ход кривой определяется в основном быстрым уменьшением числа активных ядер ядра В тоже распадаются, но медленно, и поэтому их распад не очень сильно влияет на наклон кривой на участке . В дальнейшем ядер типа А остается в смеси изотопов мало, и наклон кривой определяется постоянной распада Если нужно найти и то по наклону кривой при большом значении времени находят (в выражении (45) первый экспоненциальный член в этом случае может быть отброшен). Для определения величины надо учесть также влияние распада долгоживущего элемента на наклон первой части кривой. Для этого экстраполируют прямую в область малых времен, в нескольких точках вычитают из суммарной активности активность, определяемую элементом В, по полученным значениям

строят прямую для элемента А и по углу находят (при этом надо переходить от логарифмов к антилогарифмам и обратно).

Рис. 31. Зависимость логарифма активности смеси двух радиоактивных веществ от времени: а - при при

2. Первый элемент долгоживущий, а второй короткоживущий: Зависимость в этом случае имеет вид, представленный на рис. 31,б. В начале активность препарата увеличивается за счет накопления ядер В. Затем наступает радиоактивное равновесие, при котором отношение числа ядер А к числу ядер В становится постоянным. Этот тип равновесия называется переходным. Спустя некоторое время, оба вещества начинают убывать со скоростью распада материнского элемента.

3. Период полураспада первого изотопа много больше второго (следует заметить, что период полураспада некоторых изотопов измеряется миллионами лет). В этом случае через время устанавливается так называемое вековое равновесие, при котором количество ядер каждого изотопа пропорционально периоду полураспада этого изотопа. Соотношение

История изучения радиоактивности началась 1 марта 1896 года, когда известный французский ученый случайно обнаружил странность в излучении солей урана. Оказалось, что фотопластинки, расположенные в одном ящике с образцом, засвечены. К этому привело странное, обладающее высокой проникающей способностью излучение, которым обладал уран. Это свойство обнаружилось у самых тяжелых элементов, завершающих периодическую таблицу. Ему дали название "радиоактивность".

Вводим характеристики радиоактивности

Данный процесс - самопроизвольное превращение атома изотопа элемента в иной изотоп с одновременным выделением элементарных частиц (электронов, ядер атомов гелия). Превращение атомов оказалось самопроизвольным, не требующим поглощения энергии извне. Основной величиной, характеризующей процесс выделения энергии в ходе называют активность.

Активностью радиоактивного образца называют вероятное количество распадов данного образца за единицу времени. В интернациональной) единицей измерения ее назван беккерель (Бк). В 1 беккерель принята активность такого образца, в котором в среднем происходит 1 распад в секунду.

А=λN, где λ- постоянная распада, N - число активных атомов в образце.

Выделяют α, β, γ-распады. Соответствующие уравнения называют правилами смещения:

Временной интервал в радиоактивности

Момент развала частицы невозможно установить для данного конкретного атома. Для него это скорее «несчастный случай», нежели закономерность. Выделение энергии, характеризующее этот процесс, определяют как активность образца.

Замечено, что она с течением времени меняется. Хотя отдельные элементы демонстрируют удивительное постоянство степени излучения, существуют вещества, активность которых уменьшается в несколько раз за достаточно короткий промежуток времени. Удивительное разнообразие! Возможно ли найти закономерность в этих процессах?

Установлено, что существует время, в течение которого ровно половина атомов данного образца претерпевает распад. Этот интервал времени получил название "период полураспада". В чем смысл введения этого понятия?

полураспада?

Представляется, что за время, равное периоду, ровно половина всех активных атомов данного образца распадается. Но означает ли это, что за время в два периода полураспада все активные атомы полностью распадутся? Совсем нет. Через определенный момент в образце остается половина радиоактивных элементов, через такой же промежуток времени из оставшихся атомов распадается еще половина, и так далее. При этом излучение сохраняется длительное время, значительно превышающее период полураспада. Значит, активные атомы сохраняются в образце независимо от излучения

Период полураспада - это величина, зависящая исключительно от свойств данного вещества. Значение величины определено для многих известных радиоактивных изотопов.

Таблица: «Полупериод распада отдельных изотопов»

Название

Обозначение

Вид распада

Период полураспада

0,001 секунд

бета, гамма

альфа, гамма

альфа, гамма

4,5 млрд лет

Определение периода полураспада выполнено экспериментально. В ходе лабораторных исследований многократно проводится измерение активности. Поскольку лабораторные образцы минимальных размеров (безопасность исследователя превыше всего), эксперимент проводится с различным интервалом времени, многократно повторяясь. В его основу положена закономерность изменения активности веществ.

С целью определения периода полураспада производится измерение активности данного образца в определенные промежутки времени. С учетом того, что данный параметр связан с количеством распавшихся атомов, используя закон радиоактивного распада, определяют период полураспада.

Пример определения для изотопа

Пусть число активных элементов исследуемого изотопа в данный момент времени равно N, интервал времени, в течение которого ведется наблюдение t 2 - t 1 , где моменты начала и окончания наблюдения достаточно близки. Допустим, что n - число атомов, распавшихся в данный временной интервал, тогда n = KN(t 2 - t 1).

В данном выражении K = 0,693/T½ - коэффициент пропорциональности, называющийся константой распада. T½ - период полураспада изотопа.

Примем временной интервал за единицу. При этом K = n/N указывает долю от присутствующих ядер изотопа, распадающихся в единицу времени.

Зная величину константы распада, можно определить и полупериод распада: T½ = 0,693/K.

Отсюда следует, что за единицу времени распадается не определенное количество активных атомов, а определенная их доля.

Закон радиоактивного распада (ЗРР)

Период полураспада положен в основу ЗРР. Закономерность выведена Фредерико Содди и Эрнестом Резерфордом на основе результатов экспериментальных исследований в 1903 году. Удивительно, что многократные измерения, выполненные при помощи приборов, далеких от совершенства, в условиях начала ХХ столетия, привели к точному и обоснованному результату. Он стал основой теории радиоактивности. Выведем математическую запись закона радиоактивного распада.

Пусть N 0 - количество активных атомов в данный момент времени. По истечении интервала времени t нераспавшимися останутся N элементов.

К моменту времени, равному периоду полураспада, останется ровно половина активных элементов: N=N 0 /2.

По прошествии еще одного периода полураспада в образце остаются: N=N 0 /4=N 0 /2 2 активных атомов.

По прошествии времени, равному еще одному периоду полураспада, образец сохранит только: N=N 0 /8=N 0 /2 3 .

К моменту времени, когда пройдет n периодов полураспада, в образце останется N=N 0 /2 n активных частиц. В этом выражении n=t/T½: отношение времени исследования к периоду полураспада.

ЗРР имеет несколько иное математическое выражение, более удобное в решении задач: N=N 0 2 - t/ T½ .

Закономерность позволяет определить, помимо периода полураспада, число атомов активного изотопа, нераспавшихся в данный момент времени. Зная число атомов образца в начале наблюдения, через некоторое время можно определить время жизни данного препарата.

Определить период полураспада формула закона радиоактивного распада помогает лишь при наличии определенных параметров: числа активных изотопов в образце, что узнать достаточно сложно.

Следствия закона

Записать формулу ЗРР можно, используя понятия активности и массы атомов препарата.

Активность пропорциональна числу радиоактивных атомов: A=A 0 .2 -t/T . В этой формуле А 0 - активность образца в начальный момент времени, А - активность по истечении t секунд, Т - период полураспада.

Масса вещества может быть использована в закономерности: m=m 0 .2 -t/T

В течение любых равных промежутков времени распадается абсолютно одинаковая доля радиоактивных атомов, имеющихся в наличии в данном препарате.

Границы применимости закона

Закон во всех смыслах является статистическим, определяя процессы, протекающие в микромире. Понятно, что период полураспада радиоактивных элементов - величина статистическая. Вероятностный характер событий в атомных ядрах предполагает, что произвольное ядро может развалиться в любой момент. Предсказать событие невозможно, можно лишь определить его вероятность в данный момент времени. Как следствие, период полураспада не имеет смысла:

  • для отдельного атома;
  • для образца минимальной массы.

Время жизни атома

Существование атома в его первоначальном состоянии может длиться секунду, а может и миллионы лет. Говорить о времени жизни данной частицы также не приходится. Введя величину, равную среднему значению времени жизни атомов, можно вести разговор о существовании атомов радиоактивного изотопа, последствиях радиоактивного распада. Период полураспада ядра атома зависит от свойств данного атома и не зависит от других величин.

Можно ли решить проблему: как найти период полураспада, зная среднее время жизни?

Определить период полураспада формула связи среднего времени жизни атома и постоянной распада помогает не меньше.

τ= T 1/2 /ln2= T 1/2 /0,693=1/ λ.

В этой записи τ - среднее время жизни, λ - постоянная распада.

Использование периода полураспада

Применение ЗРР для определения возраста отдельных образцов получило широкое распространение в исследованиях конца ХХ века. Точность определения возраста ископаемых артефактов настолько возросла, что может дать представление о времени жизни за тысячелетия до нашей эры.

Ископаемых органических образцов основан на изменении активности углерода-14 (радиоактивного изотопа углерода), присутствующего во всех организмах. Он попадает в живой организм в процессе обмена веществ и содержится в нем в определенной концентрации. После смерти обмен веществ с окружающей средой прекращается. Концентрация радиоактивного углерода падает вследствие естественного распада, активность уменьшается пропорционально.

При наличии такого значения, как период полураспада, формула закона радиоактивного распада помогает определить время с момента прекращения жизнедеятельности организма.

Цепочки радиоактивного превращения

Исследования радиоактивности проводились в лабораторных условиях. Удивительная способность радиоактивных элементов сохранять активность в течение часов, суток и даже лет не могла не вызывать удивления у физиков начала ХХ столетия. Исследования, к примеру, тория, сопровождались неожиданным результатом: в закрытой ампуле активность его была значительной. При малейшем дуновении она падала. Вывод оказался прост: превращение тория сопровождается выделением радона (газ). Все элементы в процессе радиоактивности превращаются в совершенно иное вещество, отличающееся и физическими, и химическими свойствами. Это вещество, в свою очередь, также нестабильно. В настоящее время известно три ряда аналогичных превращений.

Знания о подобных превращениях крайне важны при определении времени недоступности зон, зараженных в процессе атомных и ядерных исследований или катастроф. Период полураспада плутония - в зависимости от его изотопа - лежит в интервале от 86 лет (Pu 238) до 80 млн лет (Pu 244). Концентрация каждого изотопа дает представление о периоде обеззараживания территории.

Самый дорогой металл

Известно, что в наше время есть металлы значительно более дорогие, чем золото, серебро и платина. К ним относится и плутоний. Интересно, что в природе созданный в процессе эволюции плутоний не встречается. Большинство элементов получены в лабораторных условиях. Эксплуатация плутония-239 в ядерных реакторах дала возможность ему стать чрезвычайно популярным в наши дни. Получение достаточного для использования в реакторах количества данного изотопа делает его практически бесценным.

Плутоний-239 получается в естественных условиях как следствие цепочки превращений урана-239 в нептуний-239 (период полураспада - 56 часов). Аналогичная цепочка позволяет накопить плутоний в ядерных реакторах. Скорость появления необходимого количества превосходит естественную в миллиарды раз.

Применение в энергетике

Можно много говорить о недостатках атомной энергетики и о «странностях» человечества, которое практически любое открытие использует для уничтожения себе подобных. Открытие плутония-239, который способен принимать участие в позволило использовать его в качестве источника мирной энергии. Уран-235, являющийся аналогом плутония, встречается на Земле крайне редко, выделить его из значительно сложнее, чем получить плутоний.

Возраст Земли

Радиоизотопный анализ изотопов радиоактивных элементов дает более точное представление о времени жизни того или иного образца.

Использование цепочки превращений "уран - торий", содержащихся в земной коре, дает возможность определить возраст нашей планеты. Процентное соотношение этих элементов в среднем по всей земной коре лежит в основе этого метода. По последним данным, возраст Земли составляет 4,6 миллиарда лет.