9 кто создал учение о биосфере. Учение о биосфере. Биосфера – определение. Учение в. И. Вернадского о биосфере

Учение о биосфере Земли является одним из крупнейших и наиболее интересных обобщений ученого в области естествознания. Вернадский В. И. был человеком тонким в вопросах научной этики. Поэтому в своих работах он указывает, что термин «биосфера» принадлежит не ему, а впервые был употреблен в начале 19 века Жаном Батистом Ламарком, а определенный геологический смысл вложил в него в 1875 году австралийский ученый Эдуард Зюсс. Но связанное с этим термином законченное учение создал именно В. И. Вернадский, вложив в это термин совершенно иной, гораздо более глубокий смысл.

Учение о биосфере созданное В. И. Вернадским в 1926 году, рассматривает «живые организмы» как нечто целое и единое», «как живое вещество, то есть совокупность всех живых организмов в данный момент существующих, численно выраженное в элементарном химическом составе, в весе энергии».

Для совокупности населяющих Землю организмов ввел термин «живое вещество», а биосферой стал называть всю ту среду, в которой это живое вещество находится, то есть всю водную оболочку Земли, поскольку живые организмы существуют и на самых больших глубинах Мирового океана, нижнюю часть атмосферы, в которой летают насекомые, птицы, живут люди, а также верхнюю часть твердой оболочки Земли - литосферы, в которых живые бактерии в поземных водах встречаются до глубины порядка двух километров, а человек своими шахтами проник до еще больших глубин.

В. И. Вернадский определяет биосферу как одну из геосфер, которая коренным и необратимым образом изменена под влиянием живых существ их современной и ранее протекавшей жизнедеятельности. По Вернадскому к биосфере относятся нижние слои стратосферы, вся тропосфера, верхняя часть литосферы, сложенная осадочными породами и гидросфера. Над земной поверхностью биосфера поднимается до высоты примерно 23 км, а ниже поверхности простирается до глубины 12 км. В различных слоях стратосферы находятся более или менее мощные отложения углей, нефти и газа. В растительном происхождении углей никто не сомневается, однако в отношении нефти и подземного газа есть расхождения; некоторые геологи не считают их органическими по своему происхождению. В. И. Вернадский считал и нефть, и подземные газы результатом жизнедеятельности живых компонентов биосферы. В последнее десятилетие при изучении нефти было выяснено, что в нефти существуют некоторые живые бактерии, таким образом, жизнь проникает в более или менее глубокие слои стратосферы.

Таким образом, понятие биосферы очень объемно в смысле радиальных размеров этой оболочки, очень глубоко в отношении понимания роли жизни во всех частях биосферы в ее широком понимании, а также исторично, так как стратосфера может рассматриваться как результат развития биосферы в течение всего геологического времени.

Каждый живой организм в биосфере - природный объект - есть живое природное тело. Живое вещество биосферы есть совокупность живых организмов в ней живущих.

В биосфере существует «пленка жизни», в которой концентрация живого вещества максимальна. Это поверхность суши, почвы и верхние слои вод Мирового океана. Кверху и книзу от нее количество живого вещества в биосфере Земли резко убывает.

Много внимания в своих работах по биосфере В. И. Вернадский уделял зеленому живому веществу растений, потому что только оно автотрофное, только оно способно захватывать лучистую энергию Солнца и с ее помощью создавать первичные органические соединения. Рассмотрев объем и энергетические коэффициенты различных групп растительности, В. И. Вернадский пришел к выводу, что «зеленые просторы океана являются главными трансформаторами солнечной энергии нашей планеты».

Значительная часть энергии «живого вещества» идет на образование в пределах биосферы новых вадозных минералов, вне биосферы не известных, а часть захороняется в виде самого органического вещества, образуя в конечном счете залежи бурых и каменных углей, горючих сланцев, нефти и газа. “Мы имеем здесь дело, пишет В. И. Вернадский, - с новым процессом - с медленным проникновением внутрь планеты лучистой энергии Солнца, достигшей поверхности Земли. Этим путем «живое вещество» меняет биосферу и земную кору. Оно непрерывно оставляет в ней часть прошедших через него химических элементов, создавая огромные толщи неведомых, помимо его, вадозных минералов или пронизывая тончайшей пылью своих остатков косную материю биосферы».

В. И. Вернадский считал, что земная кора представляет собой в основном остатки былых биосфер, и даже ее гранитно-гнейсовый слой образовался в результате метаморфизма и переплавления пород, некогда возникших под влиянием живого вещества. Лишь базальты и другие основные магматические породы он считал глубинными, не связанными по своему генезису с биосферой.

Много уделено внимания формам нахождения в биосфере различных химических элементов, делению «живого вещества» биосферы по источникам питания организмов на авто - гетеро и микотрофное, излучению поля устойчивости жизни или пределов жизни, особенностям жизни в гидросфере и на суше, геохимическим циклам сгущений жизни и живых пленок гидросферы.

Именно геологический и космический ракурсы рассмотрения роли живого вещества на планете привели В. И. Вернадского к выводу об огромной мощности биосферы (в несколько километров) и разнородности ее состава.

Биосфера - это организованная, определенная оболочка земной коры, сопряженная жизнью. Пределы биосферы обусловлены, прежде всего, полем существования жизни. Из этих определений вытекают несколько совершенно конкретных понятий, раскрывающих сущность биосферы.

Биосфера - не просто одна из существующих оболочек Земли, подобно литосфере, гидросфере, атмосфере. В. И. Вернадский предельно лаконично указывает ее основное отличие-это организованная оболочка. И чтобы понять суть биосферы, нужно понять, как и кем она организована, в чем состоит организованность биосферы. Биосфера имеет определенные пределы; то есть некоторые конечные размеры, в рамках которых она может быть выделена и научно изучена. Следовательно, выявив главную движущую силу развития биосферы - живое вещество, - необходимо установить те пространственные и временные ограничения (пределы), которые накладываются на деятельность живого вещества. Пределы биосферы связываются с полем существования живого. Но любое поле может сохраняться и поддерживаться лишь при условии сохранения определенных физических или химических параметров, показателей его состояния. Значит должны быть установлены некоторые необходимые и достаточные параметры для физического сохранения «полей жизни» в биосфере и самой биосферы.

На протяжении миллиарда лет существования биосферы организованность создается и сохраняется деятельностью живого вещества -совокупности всех живых организмов. Форма же деятельности живого, его биогеохимическая работа в биосфере, заключается в осуществлении необратимых и незамкнутых круговоротов вещества и потоков энергии между основными структурными компонентами биосферной целостности: горными породами, природными водами, газами, почвами, растительностью, животными, микроорганизмами. Этот непрерывающийся процесс круговоротного движения составляет один из краеугольных камней учения о биосфере и носит название биохимической цикличности. Изучение биохимических циклов как незамкнутых круговоротов помогает более глубоко проникнуть в суть процессов организованности биосферной оболочки. Каждое последующее состояние биосферы не повторяет предшествующее. Вовлечение в миграционные циклы приводит к непрерывному обновлению биосферы, способствует ее прогрессивному эволюционному развитию, усложнению живого вещества, возрастанию многообразия живых организмов.

Вопрос о пределах биосферы В. И. Вернадским связывается с сохранением пределов жизни. Представления о них претерпевают коренные изменения буквально с каждым новым днем развития науки. Еще вчера мы были убеждены, что температура кипения в 100 С невозможна для жизни какого-либо живого существа. Сегодня же впечатляют все новые открытия мира термофильных организмов, обнаруженных в вулканических жерлах, гейзерах и подводных изменениях, для некоторых из них стоградусная температура “холодновата” для нормального деления клеток (размножения), они живут и при температуре +250 С и даже при +250 С. Есть сведения о возможности перенесения бактериями температуры абсолютного нуля (-273 С).

Велика пластичность жизни, но все же пределы ее объективно существуют, и они определяют пределы развития биосферы, ее структуру и функции. Верхняя граница биосферы охватывает всю тропосферу и ограничивается озоновым слоем (23-25км), который своеобразным экраном защищает все живое от губительного воздействия ультрафиолетовой радиации. Нижняя граница очень изрезана; биосфера включает всю гидросферу суши и Мировой океан, на материках проникает в среднем в земную кору до глубин 16 км. Здесь она сопрягается с областью «былых биосфер», - так В. И. Вернадский назвал сохранившиеся остатки биосферы прошлых геологических периодов. Это накопление известняков, углей, горючих сланцев, остаточных горных пород.

Былые биосферы - документированное доказательство геологически вечного развития биосферы. В большом геологическом цикле движения вещества ископаемые остатки биосфер прошлого выходят на дневную поверхность, разрушаются, захватываются живыми организмами в новые биогенные циклы круговорота, затем снова выходят из него и опускаются в глубокие горизонты земной коры, где подвергаются метаморфизации, переплавке, и где отдают запасенную в них солнечную энергию. Так длится миллиарды лет, сколько существует биосфера.

Возраст биосферы приближается к геологическому возрасту Земли как планы Солнечной системы.

Пространство и время - две основные формы движущейся материи - в трудах В. И. Вернадского являлись стратегической целью, некоторой «Сверхзадачей» всей его натурфилософии. Глубина проникновения в строение окружающей действительности и широкий исторический охват рассмотрения каждого ее аспекта не могли не привести естествоиспытателя к отысканию фундаментальных свойств реальности, которые наиболее полно выражаются в понятиях пространства и времени.

Время и пространство отдельно не встречаются, они нераздельны. Мы не знаем ни одного явления, которое бы не занимало части пространства и части времени. Только для логического удобства представляем мы отдельно пространство и отдельно время, только так, как наш ум вообще привык поступать при разрешении какого-нибудь вопроса. В действительности ни пространства, ни времени в отдельности мы не знаем нигде, кроме нашего воображения. Что же это за части неразделимые - чего, очевидно того, что только и существует - это материи, которую мы разбиваем на две основные координаты: пространство и время.

Как только натуралист спрашивает себя, каким образом проявляются пространство и время в отдельно взятых уровнях организации движущейся материи, ему нельзя обойтись без ответа на вопрос: изменяются ли их специфические черты в этих конкретных формах или остаются стабильными. Как известно, здесь возможны два ответа, каждый из которых связан с определенной исторической традицией. Первая из них берет свое начало от Ньютона, в теории которого пространство и время абсолютны и независимы от движения материальных образований. Пространство суть лишь бесконечное вместилище тел, а время - некие единые мировые часы, на фоне хода которых существуют и происходят события всех масштабов. С такой точки зрения биосфера и жизнь, несмотря на то, что представляет собой вполне определившейся уровень организации материи, теряет всякую качественность, их специфика в расчет не принимается и они как исчезающая малость растворяются в абсолютной общности.

Согласно второй традиции, истоки которой лежат в натурфилософии Лейбница, пространство и время - неотъемлемые атрибуты материи. Не имеет смысла утверждать о существовании пространства без самих тел природы и о времени до образования тел. Пространство есть порядок расположения материальных образований, а время - порядок их следования.

Именно в русле этой второй системы взглядов лежат исследования природы пространства и времени Вернадским. В его трудах получает свою специфическую пространственно-временную определенность биологический уровень движения материи. Он считает, что время начинает свой отчет именно с момента создания биосферы. «Мы говорим об историческом, геологическом, космическом и т. п. временах. Удобно отличать биологическое время, в пределах которого проявляются жизненные явления.

Это биологическое время отвечает полутора-двум миллиардам лет, на протяжении которых нам известно на Земле существование биологических процессов начиная с археозоя».

Ныне срок существования биосферы почти совпал с возрастом самой планеты как космического тела (порядка 4, 5 млрд. лет). Тем самым подтверждается предвидение Вернадского о геологической вечности биосферы. И соответственно вскрылся более глубокий пласт его мыслей о биологическом времени: исходя из общей методологической установки об атрибутивности пространства и времени, можно сказать, что до возникновения биосферы нет отсчета времени, ибо главной, определяющей длительностью в биосфере следует считать время биологическое. Отсюда следует логический вывод, противоположный ньютоновской традиции: не жизнь существует на фоне пространства и времени необъятной Вселенной, а Вселенная - на фоне времени жизни. Иными словами, то привычное, ставшее незамечаемым воздухом науки и обыденного знания, само собой разумеющееся представление, по которому жизнь появилась в определенный момент уже шедшего времени, это представление подвергается у Вернадского глубокому переосмыслению. Время, привычное нам, т. е. необратимо однонаправленное, связанное с прогрессивной эволюцией и текущее в нас самих, как существах, частью принадлежащих к биосфере, и есть реальное и истинное, длительность же большинства безжизненных процессов во избежание путаницы нельзя возводить в ранг времени.

В биосферных процессах, как ни в каких других природных явлениях, подвластных наблюдению и точному исследованию, наиболее полно и отчетливо проявляются основные качественные признаки времени: необратимость и однонаправленная последовательность. Биосфера никогда не возвращается в прежнее состояние. Двигателем ее необратимости служит ее биологическая составляющая, непрерывно и последовательно эволюционирующая от прошлого к будущему. Причиной ее движения служит способность живого вещества трансформировать солнечную энергию. Некоторая ее часть, падающая на поверхность земли, уже не возвращается в мировое пространство, а переходит в другие формы энергии, накапливаясь в биосфере.

Это глобальный процесс, не прерываясь ни на миг, идет миллиарды лет. Он служит материально - энергетическим субстратом течения необратимого биологического времени.

Резкое отличие биологического времени от всех других его форм основано на отличительных, ярких, но не поддающихся пока удовлетворительному объяснению чертах, связанных с чисто биологическим уровнем организации материи, а именно с необратимостью и однонаправленной прогрессивностью. Обе эти качественные характеристики биологического времени и свойственный только живому особенный характер биопространства позволили сделать Вернадскому эмпирическое обобщение о специфичности биологического пространства - времени.

В учении о биосфере ключевым понятием служит понятие организованности биосферы, в которой живое вещество выступает как функция проявления биохимической энергии организмов. Именно она позволяет организовать абиотические составляющие биосферы через посредство информационных процессов, которые и составляют, по-видимому, сущность функционирования живого вещества.

В биосфере, которая в целом представляет собой биокосное тело, живое вещество, по весу и объему несравнимое с косным, управляет материально-энергетическими процессами поверхностной оболочки планеты, формируя при этом собственное, независимое от других времен, время - пространство жизни.

Придя к идее инвариантности пространства и времени жизни, Вернадский рассмотрел не только качественные их стороны, но и количественные. Он исследовал возможные подходы к определению собственной метрики времени, связанной с жизненными процессами. В философии, обыденном знании считается, что течение времени неопределимо само по себе, неуловимо. Можно лишь найти такой процесс, который поможет маркировать течение времени.

Вернадский связывает метрику времени с делением самих организмов, с их размножением, как наиболее ярком проявлении биохимической энергии. Ритм этого, как говорил ученый, деления - деления, задается скоростью прохождения отдельных неделимых жизни и всей биосферы. Наиболее наглядно выявляется фактор времяобразования в делении микроорганизмов, которые обладают стабильной скоростью размножения. «Смена поколений, - писал Вернадский, - есть своеобразное биологическое проявление времени, резко отличающее одно живое вещество от другого, с различным для каждого масштабом сравнения. Возможно найти для них и общий масштаб». Если принять тот масштаб, о котором идет речь, то необходимо признать, что время биосферы есть поток, состоящий из квантов, которым проходит каждая живая клетка. Сама возможность деления клеток обусловлена существованием на субатомном уровне квантованного времени, наличием порции времени, меньше которой не бывает и которыми живое отмеряет, членит пространство определенным метрическим шагом. Такой состав и строение пространства-времени определяет мощность потока биосферного времени, который соответствует количеству одновременно делящихся и живущих клеток живого вещества.

С чисто философской стороны лейбнецианскую традицию атрибутивности пространства и времени исследовали многие. Наиболее близко к такой постановке проблемы пространства и времени подошел В. Муравьев. Здесь впервые поставлен вопрос об изменении формы проявления времени в зависимости от прогрессивного развития движущейся материи. И хотя рассуждение ведется на уровне самых абстрактных категорий, тем не менее в нем содержится реальный смысл. Если есть развитие, то оно не может не сказываться на изменении формы времени, которая не может находиться в раз навсегда данной, застывшей форме. Если время представляет собой в наиболее усредненном виде составляющую всех мировых сил, считает философ, то среди них должны быть активные элементы, изменяющие строение времени.

Наука наших дней характеризуется повышенным вниманием к проблемам пространства и времени. И наиболее сильному натиску подвергается биологическое пространство - время. Оно легче других времен, если они существуют как реальность, а не только мысленная конструкция, поддается измерениям. И в этом смысле понятие кванта биологического времени полнее отделяет качество биологической формы движения материи от других проявлений. Он помогает полнее понять феномен жизни и наметить перспективы дальнейших исследований.

Одним из наиболее интересных вопросов с философской точки зрения считается эволюция биосферы.

В. И. Вернадский считал объем и вес «живого вещества» биосферы неизменным на протяжении всей геологической истории Земли. Он предполагал, что в процессе биологической эволюции менялись только формы проявления жизни. Много писал о больших изменениях биосферы под влиянием деятельности человека, об антропогенных факторах геологических процессов. Он считал это явление новым, наложенным на стационарное существование биосферы.

В более поздних работах, с середины 30-х годов, В. И. Вернадский пересмотрел эту свою точку зрения и пришел к выводу, что биосфера по массе «живого вещества», его энергии и степени организованности в геологической истории Земли все время эволюционировала, изменялась, что влияние деятельности человека явилась естественным этапом этой эволюции и что в результате ее биосфера неизбежно должна коренным образом измениться и перейти в новое состояние.

Появление человека и влияние его деятельности на окружающую среду представляет собой не случайность, не «наложенный» на естественный ход событий процесс, а определенный закономерный этап эволюции биосферы. Этот этап должен привести к тому, что под влиянием научной мысли и коллективного труда объединенного человечества, направленных на удовлетворение всех его материальных и духовных потребностей, биосфера Земли должна перейти в новое состояние, которое он предложил назвать «ноосферой» (от греческого слова «ноос» - разум) - сферой человеческого разума. Сам термин «ноосфера», как и термин «биосфера», не принадлежит В. И. Вернадскому. Он возник в 1927 году в статьях французского математика Эдуарда Леруа, написанных после прослушанных в 1922 - 1923 годах курса лекций В. И. Вернадского по проблемам геохимии и биогеохимии.

В. И. Вернадский начал применять термин “ноосфера” строго в математическом смысле. «Ноосфера» - это не отвлеченное царство разума, а исторически неизбежная стадия развития биосферы. Еще в 1926 году в статье «Мысли о современном значении истории знаний» он писал: «Созданная в течении всего геологического времени, установившаяся в своих равновесиях биосфера начинает все сильнее и глубже меняться под влиянием научной мысли человечества».

Вот эту биосферу Земли, измененную научной мыслью и преобразованную для удовлетворения всех потребностей численно растущего человечества он и назвал впоследствии «ноосферой».

В. И. Вернадский попытался дать ответ на вопрос о том, в чем заключаются те реальные условия или предпосылки образования ноосферы, которые уже созданы или создаются в настоящее время в ходе исторического развития человечества. По мнению В. И. Вернадского, основные предпосылки создания ноосферы сводятся к следующему.

Человечество стало единым целым. Мировая история охватила как единое целое весь земной шар, совершенно покончила с уединенными, мало зависимыми друг от друга культурными историческими областями прошлого. Сейчас “нет ни одного клочка Земли, где бы человек не мог прожить, если б это было ему нужно”.

Преобразование средств связи и обмена. Ноосфера - это единое организованное целое, все части которого на самых различных уровнях гармонично связаны и действуют согласованно друг с другом. Необходимым условием этого является быстрая, надежная, преодолевающая самые большие расстояния связь между этими частями, постоянно идущий материальный обмен между ними, всесторонний обмен информацией.

Открытие новых источников энергии. Создание ноосферы предполагает столь коренное преобразование человеком окружающей его природы, что ему никак не обойтись без колоссальных количеств энергии. «В самом конце прошлого столетия неожиданно была открыта новая форма энергии, существование которой предвидели немногие умы, - атомная энергия». Это было написано еще в 30-е годы а сейчас мы уже видим, как человечество овладело атомной энергией и как расширяется с каждым годом ее применение в мирных целях...

Подъем благосостояния трудящихся. Ноосфера создается разумом и трудом народных масс.

Равенство всех людей. Охватывая всю планету как целое, ноосфера по самому своему существу не может быть привилегией какой-либо одной нации или расы. Она дело рук и разума всех народов без исключения.

Исключение войн из жизни общества. В наше время война, угрожая самому существованию человечества, встала как самое большое препятствие на пути к ноосфере. Отсюда следует, сто без устранения этой преграды достижение ноосферы практически невозможно и, напротив, уничтожение угрозы войны будет означать, что человечество сделало крупный шаг к созданию ноосферы.

Ноосфера, по мнению Вернадского, - это новая геологическая оболочка Земли, создаваемая на научных основаниях... «Научная мысль, -писал он, - охватила всю планету, все на ней находящиеся государства. Всюду создались многочисленные центры научной мысли и научного искания. Это - первая основная предпосылка перехода биосферы в ноосферу».

Ноосфера является результатом действия слившихся в единый поток двух величайших революционных процессов современности: в области научной мысли, с одной стороны, и социальных отношений - с другой. Поэтому создание ноосферы возможно лишь как следствие прочного союза тех сил, которые являются основой этих процессов, т. е. союза науки и трудящихся масс.

Основоположники учения о ноосфере верили, что ее становление ведет к упорядочению природной и социальной действительности, к более совершенным формам бытия. Ноосфера возникает как результат планомерного, сознательного преобразования биосферы, ее превращения в качественно новое состояние. Этот процесс рассматривался как несомненное благо, несущее человечеству разрешение трудных проблем. В. И. Вернадский и даже Т. де Шарден связывали его с социалистической организацией жизни людей, расширяя задачу преодоления стихийности природы до общества. В некоторых случаях ноосфера рассматривалась как полное устранение зла, как всеобщая гармония, что особенно типично для ее космических вариантов.

Некоторые направления мысли, близко стоявшие к учению о ноосфере или являющиеся его предпосылками, например, «русский космизм», фактически вообще не подвергаются трезвому анализу. Критический взгляд на них как бы свидетельствует об отсутствии возвышенности духа.

Экологические тенденции современности, однако, столь тревожны, что требуют мыслить и действовать, несмотря на теоретические стереотипы. Нужна коренная перемена представлений о ноогенезе. Ее исходные посылки: учение о ноосфере с самого начала несло в себе элементы утопии.

Под общую закономерность жизни и смерти утопий подпадает учение о ноосфере в той его части, где оно действительно утопично. Отсюда же следует, что если на первом этапе становления ноосферы трудно, неоправданно ожидать критического отношения к теоретическому выражению происходящих процессов, то на этапе их развертывания, когда обнаруживаются дотоле скрытые противоречия, мы обязаны обратиться к рефлексии над теорией.

Сейчас ноосфера находится в стадии интенсивного развития и по масштабам присущих ей процессов соперничает с «чистой» биосферой. Появилась угроза существованию природы в качестве самостоятельной целостности. Между тем отношение к ноосфере продолжает быть преимущественно восторженным, будто ее развитие не стоит ни в какой связи с кризисом современной цивилизации. «По мысли В. И. Вернадского, ноосфера - это гармоническое соединение природы и общества, это торжество разума и гуманизма, это слитые воедино наука, общественное развитие и государственная политика на благо человека, это - мир без оружия, войн и экологических проблем, это - мечта, цель, стоящая перед людьми доброй воли, это - вера в великую миссию науки и человечества, вооруженного наукой». Подобное некритическое отношение к ноосфере господствует и в нашем повседневном сознании, в науке и философии.

Каждый более или менее образованный человек нашего времени, к какой бы среде деятельности он ни был причастен, слышал это несколько таинственное и манящее какими-то глубинными смыслами и надеждой слово: ноосфера. Широким сознанием оно опознается особой новинкой ХХ века, пожалуй, такой, как для публики прошлого столетия была теория эволюции. Ноосфера для второй половины нашего века - нередко такая же премудрая и туманная знаменитость, вызывающая некоторый трепет, как для первой половины была теория относительности.

Суть идей Леруа и Т. де Шардена заключалась в том, что эволюция в человеке произвела принципиально новое орудие своего дальнейшего развития, подготовленное длительным процессом совершенствования нервной системы; это особая духовно-психическая способность, какой до того в природе не существовало: разум рефлективного типа, обладающий самосознанием, возможностью глубинно познавать самого себя и мир.

Каково же действительное содержание процессов в «области планеты», охваченной разумной человеческой деятельностью? Становление ноосферы и возникновение кризисных ситуаций, угрожающих самому существованию людского рода - один и тот же процесс. Ноосфера как реальность является искусственной средой, которая теснит и подавляет ареал биологического бытия. Формирование искусственной среды открыло перед людьми небывалые возможности для роста материальной обеспеченности, комфорта и безопасности, подняло новую ступень культурное развитие, но оно же ведет к загрязнению воды и воздуха, опустыниванию почвы, общей деградации естественной среды обитания. По последствиям для человека чрезмерное разрастание искусственного явления оказывается сугубо противоречивым, с неясными перспективами.

Содержание разума должно быть нечто, что воплощаясь, дает орудие. Так как содержание разума - термины и их отношения, то можно сказать: орудия - не что иное, как материализованные термины, и потому между законами мышления и техническими достижениями могут быть усматриваемы постоянные параллели. Не случайно, потребность в обновлении мировоззрения, идеологии, психологии мы сужаем до потребности в «новом мышлении». Духовность начали называть менталитетом, культура сциентизируется. Поэтому, приходится признать, подлинным денотатом ноосферы является искусственная реальность, образующий фактор которой, в широком смысле слово - технология. Основное глобальное противоречие, между естественным и искусственным, между универсумом природы и универсумом деятельности. Оно существовало с момента появления человечества, в настоящее время обострилось до критического состояния.

Мир переполнен нагнетанием различных угроз человеку как биологическому виду. Не будем их приращивать. Все они обобщаются в возможности нарушения экологического баланса планеты, после чего начнутся необратимые хаотические процессы. Наиболее вероятным пусковым фактором может стать истощение озонового слоя атмосферы. Количество фторсодержащих углеводородов в ней продолжает увеличиваться, угрожая здоровью всего живого на земле, в том числе растений. Как бы в ответ на эту и другие угрозы человек уже сейчас старается «защититься» от среды, где он должен жить: в быт входят установки искусственного климата, кондиционеры, ионизаторы и прочие очистители, вплоть до противогазов. Доведение подобных тенденций до логического конца означает замыкание человека в своей квартире или рабочем помещении как в кабине космического корабля. Улицу он перебегает как вражескую территорию.

Ноосфера как гармония - аналог политической утопии коммунизма и прочих, более ранимых мечтаний о рае. В соответствии с духом времени она опирается на науку. Так к ней и надо относится, хотя против надежд и утопий вообще выступать нет смысла. Они полезны в той мере, насколько, смягчая трагические реалии, помогают жить. Когда же утопия мешает трезвому взгляду на вещи, то она может стать опаснее того, от чего спасает. Нужны реалистические надежды, функциональные утопии, надежды, что возможно длительное совместное развитие биосферы и ноосферы, при которой скорость преобразования окружающей среды будет не выше скорости нашего приспособления к ней. За эти надежды надо бороться, так как они - условие выживания человечества.

Название ноосфера происходит от греческого «ноос» - разум и обозначает, таким образом, сферу разума. Однако представление о ноосфере в настоящее время не является однозначным.

В. И. Вернадский, развивая учение о биосфере, придавал понятию ноосферы глубоко научное содержание, которое должно учитываться в процессе перестройки среды и общества. В этом отношении ноосферу следует рассматривать как высшую стадию развития биосферы, связанную развитием в ней человеческого общества, которое, познавая законы природы и развития и развивая технику до самого высокого уровня ее возможностей, становится крупной планетарной силой, превышающей по своим масштабам все известные геологические процессы вместе взятые. При этом человечество оказывает решающее влияние на протекание всех процессов в биосфере, глубоко изменяя ее своим трудом. Научное и практическое значение деятельности В. И. Вернадского - основателя учения о биосфере состоит в том, что он впервые во всеоружии знаний глубоко обосновал единства человека и биосферы. Сама живая материя как носитель разума составляет небольшую часть биосферы по весу. Возникновение человека и человеческого общества явилось результатом живого вещества в пределах биосферы.

Оценивая роль человеческого разума и научной мысли как планетарного явления В. И. Вернадский пришел к следующим выводам:

Ход научного творчества является той силой, которой человек меняет биосферу, в которой он живет.

Это проявление изменения биосферы есть неизбежное явление, сопутствующее росту научной мысли.

Это изменение биосферы происходит независимо от человеческой воли, стихийно, как природный естественный процесс.

А так как среда жизни есть организованная оболочка планеты -биосфера, то вхождение в ходе ее геологически длительного существования нового фактора ее изменения- научной работы человечества - есть природный процесс перехода биосферы в новую фазу, в новое состояние - в ноосферу. В переживаемый нами исторический момент мы видим это более ясно, чем могли видеть раньше. Здесь вскрывается перед нами «закон природы». Новые науки - геохимия и биохимия - дают возможность выразить некоторые важные черты процесса математически.

После трудов В. И. Вернадского накопился огромный материал по биосфере, по производственной деятельности человеческого общества. В связи с развитием производственных сил возникают новые по качеству круговороты вещества в биосфере по пути превращения ее в ноосферу. Основные их признаки заключаются в следующем.

Возрастание механически извлекаемого материала земной коры - рост разработки месторождений полезных ископаемых. Происходит массовое потребление (сжигание) продуктов фотосинтеза прошлых геологических эпох.

Процессы в антропогенной биосфере приводят к рассеиванию энергии, а не к ее накоплению, что было характерно для биосферы до появления человека. В биосфере в массовом количестве создаются вещества, ранее в ней отсутствовавшие, в том числе чистые металлы.

Появляются, хотя и в ничтожно малых количествах трансурановые химические элементы (плутоний и др.) в связи с развитием ядерной технологии и ядерной энергетики. Совершается освоение ядерной энергии за счет деления тяжелых ядер. Ноосфера выходит за пределы Земли в связи с прогрессом научно-технической революции.

В связи с потребительским отношением к природным ресурсам и накоплением отходов производства антропогенная нагрузка на биосферу быстро возрастает и приближает биосферу к критическому состоянию. Естественно, что возникает проблема ограничения антропогенных воздействий, которая в наши дни становится чрезвычайно актуальной. Это осознается научной общественностью и многими политическими деятелями.

В связи с возрастанием антропогенной нагрузки на биосферу возникают многочисленные проблемы, которые предстоит решить в ближайшем будущем во избежание роковых последствий. Это чрезвычайно важная задача, решение которой потребует больших усилий со стороны человеческого разума, привлечения ученых в области естественных и гуманитарных наук.

Гениальность В. И. Вернадского как основателя учения о биосфере - естественнонаучной основы концепции ноосферы - в том и состоит, что он впервые понял и всей совокупностью научных знаний глубоко обосновал единство человека и биосферы. Это величайшее открытие В. И. Вернадского по своим социальным последствиям относится к вершинам мирового естествознания, к непреходящим завоеваниям современной и будущей человеческой цивилизации. Без него не может быть создана - и не может быть теперь понята - сущность концепции ноосферы.

Предугаданное В. И. Вернадским наступление эпохи научно- технической революции в ХХ в. стало рождением новой эры человечества -ноосферы. И с первой основной предпосылкой перехода биосферы в качественно новое эволюционное состояние, «максимальной силой создания ноосферы», по В. И. Вернадскому, служит научная мысль. Материальным ее выражением в преобразуемой человеком биосфере является труд. Единство мысли и труда, труда и мысли создает новую социальную сущность человека, предопределяет переход биосферы в ноосферу.

Вместе с единством человечества, научной мыслью, ростом активности народных масс важнейшими предпосылками возникновения ноосферы и условиями ее существования, по В. И. Вернадскому, служит объединяющая морально-этическая основа и отсутствие разрушительных войн. Мир между народами в условиях перехода биосферы в ноосферу - один из главных определяющих факторов построения ноосферы в историческом периоде жизни нескольких поколений. Всю деятельность человечества в создании ноосферы должна направлять объединяющая гуманистическая идея как проявление высшей целесообразной деятельности людей на благо и всего общества, и отдельной человеческой личности. В ноосфере, отмечал В. И. Вернадский, высшей социальной ценностью становится развитие свободной человеческой личности.

На основании вышесказанного можно сделать следующие выводы о возможности использования ноосферной концепции В. И. Вернадского в качестве основы для разработки фундаментальной теории:

Естественнонаучным фундаментом концепции ноосферы служит созданное В. И. Вернадским учение о биосфере как целостной планетарной оболочке, получившее мировое признание и интенсивно развивающееся в настоящее время.

Концепция ноосферы отражает новый, объективно происходящий в мире, стихийный процесс перехода биосферы в новое эволюционное состояние - ноосферу под влиянием социальной научной мысли и труда человечества. Этот процесс, относящийся к началу эпохи НТР, предопределен возникновением и резким ускорением научно-технического прогресса в ХХ веке на большей части Земли.

Главным социальным двигателем перехода биосферы в ноосферу в современный период, согласно предвидениям В. И. Вернадского, служит резко возросшая творческая активность народных масс, стремление их к получению максимального научного знания, участия в общественной жизни и управления государством.

Единственной жизнеспособной социально-экономической и политической основой построения ноосферы является, по В. И. Вернадскому, научный социализм.

Концепция ноосферы раскрывает оптимальные пути взаимодействия общества и природы.

Реальное построение основ ноосферы в исторический период зрелого социализма, исходя из сути ноосферной концепции, возможно посредством перехода экономики на путь интенсивного развития, усиления прикладного значения науки, формирования нового типа научного управления.

Понятие о ноосфере в качестве высшей социальной ценности ставит развитие свободной личности в гармоничной окружающей среде. Тем самым концепция ноосферы отвечает идеалам гуманизма.

Концепция ноосферы в качестве основополагающего условия ее создания и проявления выдвигает отсутствие разрушительных войн между народами.

Основатель общего учения о биосфере В. И. Вернадский неоднократно подчеркивал, общежитейские понятия «природы» могут отвечать либо части, либо всей биосфере Земли. Другой «природы», кроме биосферы - планетарной оболочки, развивающейся под воздействием живого вещества, реально не существует.

Природная составляющая ноосферного комплекса - это биосфера в целом и ее отдельные экологические регионы (экосистемы и их сочетания). Биосфера здесь выступает в трех главных сущностях: 1) колыбель человека разумного, неустранимая основа его физического и духовного обогащения,

2) материальный носитель всех без исключения хозяйственных и социальных преобразований общества, 3) единственный из ныне известных источников всех природных ресурсов. Следовательно, биосфера служит реальным пространством-временем, вмещающим весь процесс общественно-исторического развития. В познании законов эволюции биосферы и ее организованности лежит ключ к действительно разумному преобразованию ее трудом и социальной мыслью человека, к построению ноосферы.

Современное человечество располагает таким огромным объемом знаний о мире, использует в своей деятельности такие мощные средства и методы познания, о которых и мечтать не могли прошлые поколения. Но главное все же в том, что во второй половине ХХ века впервые в истории возникла проблема опасных для человека изменений окружающей среды.

Жизнь, живое вещество, и до появления человечества на Земле активно преобразовывала ее оболочку. Известковые горы - остатки бесчисленного множества раковин. Залежи угля, насчитывающие миллиарды тонн ископаемых остатков растений, тоже результат жизнедеятельности организмов. Но никогда еще в прошлом деятельность живых существ не угрожала … самой жизни. Сегодня биосфера явилась источником процессов, угрожающих ее собственному существованию. Природопреобразующая деятельность человечества стала для планеты сопоставимой по масштабам воздействия на ее оболочку с такими природными факторами, как геологические процессы, эволюция животного и растительного мира и тому подобными. Люди извлекают из недр Земли и перерабатывают уже не сотни тысяч, а миллиарды тонн полезных ископаемых, но значительная часть добытых богатств в конце концов превращается в отходы человеческой деятельности, все сильнее загрязняющие природную среду - атмосферу, гидросферу, поверхность суши. Гигантские рельефы и шахты, отвалы и терриконы, дороги и заселяемые территории преобразили облик планеты. Каждый год с лица Земли исчезают десятки видов растений, насекомых, животных, тысячи гектаров зеленых лесов, поставляющих кислород, необходимый всему живому. Так возникла и продолжает обостряться проблема экологии - сохранения окружающей среды в необходимом для существования человека виде.

Человечество вышло в околоземный и отдаленный космос. Околоземное пространство уже нельзя себе представить без десятков летающих спутников, космических лабораторий, зондов. Радиосигналы, посылаемые землянами с помощью мощных передатчиков, обнаруживаются на огромных расстояниях от Земли. Космические аппараты достигают окрестностей самых удаленных от Солнца планет. Все это внесло пока не очень заметные, но уже неустранимые изменения в космическое пространство. Деятельность человека стала космопланетарным фактором.

Еще сравнительно недавно люди не задумывались о собственном влиянии на окружающий мир: слишком малыми казались эти воздействия. Даже в первой половине ХХ века человечество продолжало противопоставлять себя природе. Да при этом, признавалось, что человек-часть природы, ее порождение, но такая, которая должна господствовать над всей остальной природой. Не ждать милостей от природы, а брать нужное силой, побеждать окружающий мир-какими привычными были эти слова! Но власть над Землей не только заманчива: она возлагает на того, кто взял ее в свои руки, огромную ответственность. Вот об этой ответственности и забыло человечество, полагавшее, что ресурсы природы бесконечны. Оказалось, что не бесконечны.

Понимание того, как, в сущности, мала Земля, насколько близки к исчерпанию невозобновляемые запасы многих минералов, пришло совсем недавно. Ощутимой стала угроза нехватки запасов нефти. Исчезли с лика Земли необжитые пространства, удобные для расширения сельского хозяйства. Стало ясно, что даже простой чистой пресной воды на планете не так уж и много.

Люди наконец стали понимать, что техническая деятельность человечества способна привести к таким последствиям, к таким изменениям Земли, в условиях которых жизнь на планете станет невозможной.

Экономика и развитие науки и техники способны решить современные глобальные проблемы человечества, в том числе и проблему экологического кризиса.

Учение о биосфере.

этап развития биосферы Земли связан с эволюцией живого вещества и вызванного этим изменением физико-химического состава планеты. Этот процесс подробно описан В.И. Вернадским и составляет суть его учения о биосфере. Впервые единую картину мира и роль в нем живого вещества представил русский ученый, натуралист, философ, академик Владимир Иванович Вернадский. Он обосновал, что возникновение биосферы на Земле - это объективный результат развития общего космического процесса. При этом биосферу нужно рассматривать как целостную геологическую оболочку Земли, состоящую из живого и неживого. Вернадский подчеркивал, что для строения биосферы характерны физико-химическая и геометрическая разнородности. Разнородность строения является господствующим фактором, резко отличающим биосферу от всех других оболочек земного шара. Живое вещество охватывает всю биосферу, ее создает и изменяет. Живое вещество едва ли составляет одну - две сотых процента по весу. Но геологически оно является самой большой силой в биосфере, определяет все идущие в ней процессы. В.И. Вернадский показал, что тонкая оболочка Земли - биосфера, состоящая из разнородных структур - живого и неживого вещества, поддерживает в состоянии динамического равновесия все протекающие в ней процессы благодаря непрерывному перетоку (круговороту) атомов из косной материи через живое вещество снова в неживую природу. Он раскрыл геологическую роль живых организмов в создании современного газового состава атмосферы, в формировании горных пород, вод мирового океана. Учение В.И. Вернадского - это философское и естественнонаучное обобщение законов развития нашей планеты с позиций единого космического процесса и исключительной роли, которую выполнило и выполняет на ней живое вещество. В.И. Вернадский создал его в 20-30-е годы ХХ века. Отчасти это было "предвидение, предсказание прошлого". Многие экспериментальные и фактические данные, подтверждающие правильность его идей, появляются только сейчас. На основе учения Вернадского в настоящее время биосферу определяют как активную оболочку Земли, в которой совокупная деятельность живых организмов проявляется как геохимический фактор планетарного масштаба. Такое определение биосферы отражает важный тезис: наша планета Земля такая, какая она есть сегодня, только потому, что на ней существует жизнь.

Биосфе́ра (от др.-греч. βιος - жизнь и σφαῖρα - сфера, шар) - оболочка Земли, заселённая живыми организмами, находящаяся под их воздействием и занятая продуктами их жизнедеятельности; «пленка жизни»; глобальная экосистема Земли. Биосферой называется та часть земного шара, в пределах которой существует жизнь.


Границы биосферы. Верхняя граница в атмосфере: 15-20 км. Она определяется озоновым слоем, задерживающим коротковолновое ультрафиолетовое излучение, губительное для живых организмов.Нижняя граница в литосфере: 3,5-7,5 км. Она определяется температурой перехода воды в пар и температурой денатурации белков, однако в основном распространение живых организмов ограничивается вглубь несколькими метрами.Граница между атмосферой и литосферой в гидросфере: 10-11 км. Определяется дном Мирового Океана, включая донные отложения.

Теория Большого взрыва как гипотеза зарождения Вселенной.В 1922 г. советский математик и геофизик Александр Александрович Фридман нашел решение уравнений общей теории относительности Альберта Эйнштейна. Оказалось, что решение является нестационарным, то есть Вселенная должна либо расширяться, либо сжиматься. В 1929 г. американский астроном Эдвин Хаббл обнаружил разбегание галактик, что свидетельствовало о расширении Вселенной. Обращая мысленно вспять картину расширения Вселенной, ученые пришли к выводу что примерно 20 млрд лет назад Вселенная была сжатой в точку и имела сколько угодно большую плотность. В результате Большого взрыва она начала расширяться, иначе говоря существовать.

Большой биологический взрыв как гипотеза перехода от неживой к живой форме организации материи.Еще Луи Пастер в XIX в. первым обратил внимание на то, что в неживой природе молекулы либо зеркально симметричны (H2O, CO2), либо одинаково часто встречаются их правые и левые стереоизомеры. Молекулы, из которых построены живые организмы, зеркально асимметричны, то есть киральны, чаще всего они подобны винтам, а во многих случаях ими и являются (например, двойная спираль молекулы ДНК). Но самое главное, эти молекулы встречаются в природе лишь в каком-то одном варианте - либо только левом, либо только правом: это так называемые кирально чистые молекулы (так, спираль молекулы ДНК всегда только правая). Пастер, а затем Вернадский полагали, что именно здесь проходит граница между химией живой и неживой природы. Можно сказать, что в отличие от неорганических объектов живые организмы построены из винтов, причем винты одного типа только левые, другого - только правые. Специфика живой природы - киральная чистота молекул.

38. Фотосинтез и дыхание: кислород атмосферы как продукт фотосинтеза. Основные группы фотосинтезирующих организмов (планктонные цианобактерии, водоросли в морях, высшие растения на суше). Хемосинтез. Гомеостаз – сохранение постоянства внутренней среды организма.

Фотосинтез (от греч. φωτο- - свет и σύνθεσις - синтез, совмещение, помещение вместе) - процесс образования органических веществ из углекислого газа и воды на свету при участии фотосинтетических пигментов (хлорофилл у растений, бактериохлорофилл и бактериородопсин у бактерий). В современной физиологии растений под фотосинтезом чаще понимается фотоавтотрофная функция - совокупность процессов поглощения, превращения и использования энергии квантов света в различных эндэргонических реакциях, в том числе превращения углекислого газа в органические вещества. Значение фотосинтеза. Фотосинтез является основным источником биологической энергии, фотосинтезирующие автотрофы используют её для синтеза органических веществ из неорганических, гетеротрофы существуют за счёт энергии, запасённой автотрофами в виде химических связей, высвобождая её в процессах дыхания и брожения. Энергия, получаемая человечеством при сжигании ископаемого топлива (уголь, нефть, природный газ, торф), также является запасённой в процессе фотосинтеза.Фотосинтез является главным входом неорганического углерода в биологический цикл. Весь свободный кислород атмосферы - биогенного происхождения и является побочным продуктом фотосинтеза. Формирование окислительной атмосферы (кислородная катастрофа) полностью изменило состояние земной поверхности, сделало возможным появление дыхания, а в дальнейшем, после образования озонового слоя, позволило жизни выйти на сушу.

Дыхание у растений. Большинство растений в светлое время суток вырабатывают кислород, но в их клетках идет и обратный процесс: кислород поглощается в процессе дыхания. Ночью в комнате, плотно уставленной растениями, можно наблюдать снижение концентрации кислорода и увеличение концентрации углекислого газа.На самом деле, в живых клетках растений процесс дыхания происходит круглосуточно. Просто на свету скорость образования кислорода в результате фотосинтеза обычно превышает скорость его поглощения. Так же как и у животных, клеточное дыхание растений протекает в специальных клеточных митохондриях.Общие принципы организации процесса дыхания на молекулярном уровне у растений и животных схожи. Однако в связи с тем, что растения ведут прикрепленный образ жизни, их метаболизм постоянно должен подстраиваться к изменяющимся внешним условиям, поэтому и их клеточное дыхание имеет некоторые особенности (дополнительные пути окисления, альтернативные ферменты).Газообмен с внешней средой осуществляется через устьица чечевичек, трещины в коре (у деревьев).

ФОТОСИНТЕЗИРУЮЩИЕ ОРГАНИЗМЫ.организмы, производящие сложные органические соединения из простых неорганических за счет энергии света (поглощаемой хлорофиллом и другими фотосинтетическими пигментами). К ним относятся зеленые растения, водоросли и некоторые бактерии.

Хемосинтез - способ автотрофного питания, при котором источником энергии для синтеза органических веществ из СО2 служат реакции окисления неорганических соединений. Подобный вариант получения энергии используется только бактериями или археями. Явление хемосинтеза было открыто в 1887 году русским учёным С. Н. Виноградским. Необходимо отметить, что выделяющаяся в реакциях окисления неорганических соединений энергия не может быть непосредственно использована в процессах ассимиляции. Сначала эта энергия переводится в энергию макроэнергетических связей АТФ и только затем тратится на синтез органических соединений.

Хемолитоавтотрофные организмы.

Железобактерии (Geobacter, Gallionella) окисляют двухвалентное железо до трёхвалентного.

Серобактерии (Desulfuromonas, Desulfobacter, Beggiatoa) окисляют сероводород до молекулярной серы или до солей серной кислоты.

Нитрифицирующие бактерии (Nitrobacteraceae, Nitrosomonas, Nitrosococcus) окисляют аммиак, образующийся в процессе гниения органических веществ, до азотистой и азотной кислот, которые, взаимодействуя с почвенными минералами, образуют нитриты и нитраты.

Тионовые бактерии (Thiobacillus, Acidithiobacillus) способны окислять тиосульфаты, сульфиты, сульфиды и молекулярную серу до серной кислоты (часто с существенным понижением pH раствора), процесс окисления отличается от такового у серобактерий (в частности тем, что тионовые бактерии не откладывают внутриклеточной серы). Некоторые представители тионовых бактерий являются экстремальными ацидофилами (способны выживать и размножаться при понижении pH раствора вплоть до 2), способны выдерживать высокие концентрации тяжёлых металлов и окислять металлическое и двухвалентное железо (Acidithiobacillus ferrooxidans) и выщелачивать тяжёлые металлы из руд.

Водородные бактерии (Hydrogenophilus) способны окислять молекулярный водород, являются умеренными термофилами (растут при температуре 50 °C).

Гомеоста́з (др.-греч. ὁμοιοστάσις от ὁμοιος - одинаковый, подобный и στάσις - стояние, неподвижность) - саморегуляция, способность открытой системы сохранять постоянство своего внутреннего состояния посредством скоординированных реакций, направленных на поддержание динамического равновесия. Стремление системы воспроизводить себя, восстанавливать утраченное равновесие, преодолевать сопротивление внешней среды. Гомеостаз выступает в роли фундаментальной характеристики живых организмов и понимается как поддержание внутренней среды в допустимых пределах.Внутренняя среда организма включает в себя организменные жидкости - плазму крови, лимфу, межклеточное вещество и цереброспинальную жидкость. Сохранение стабильности этих жидкостей жизненно важно для организмов, тогда как её отсутствие приводит к повреждению генетического материала.В отношении любого параметра организмы делятся на конформационные и регуляторные. Регуляторные организмы сохраняют параметр на постоянном уровне, независимо от того, что происходит в среде. Конформационные организмы позволяют окружающей среде определять параметр. Например, теплокровные животные сохраняют постоянную температуру тела, тогда как холоднокровные демонстрируют широкий диапазон температур.Речь не идёт о том, что конформационные организмы не обладают поведенческими приспособлениями, позволяющими им в некоторой степени регулировать взятый параметр. Рептилии, к примеру, часто сидят на нагретых камнях утром, чтобы повысить температуру тела.Преимущество гомеостатической регуляции состоит в том, что она позволяет организму функционировать более эффективно. Например, холоднокровные животные, как правило, становятся вялыми при низких температурах, тогда как теплокровные почти так же активны, как и всегда. С другой стороны, регуляция требует энергии. Причина, почему некоторые змеи могут есть только раз в неделю, состоит в том, что они тратят намного меньше энергии для поддержания гомеостаза, чем млекопитающие.

I. Учение Вернадского о биосфере

В развитие биологии в ХХ веке большой вклад внесли русские ученые. Русская биологическая школа имеет славные традиции. Первая научная модель происхождения жизни создана А.И. Опариным. В.И. Вернадский был учеником выдающегося почвоведа В.В. Докучаева, который создал учение о почве как своеобразной оболочке Земли, являющейся единым целым, включающим в себя живые и неживые компоненты. По существу, учение о биосфере было продолжением и распространением идей Докучаева на более широкую сферу реальности.

Значение учения о биосфере Вернадского для экологии определяется тем, что биосфера представляет собой высший уровень взаимодействия живого и неживого и глобальную экосистему. Результаты Вернадского поэтому справедливы для всех экосистем и являются обобщением знаний о развитии нашей планеты.

Термин «биосфера» введен в науку австрийским геологом Э. Зюссом в 1875 г. Он выделил четыре геологические оболочки Земли: атмосферу воздушную оболочку, гидросферу – водную оболочку, литосферу – твердую оболочку и биосферу – живую оболочку. В.И. Вернадский, изучавший взаимодействие живых и неживых систем, переосмыслил понятие биосферы. Он понимал биосферу как сферу единства живого и неживого.

Под биосферой Вернадский понимал тонкую оболочку Земли, в которой все процессы протекают под прямым воздействием живых организмов. Биосфера располагается на стыке литосферы, гидросферы и атмосферы. В атмосфере верхние границы жизни определяются озоновым экраном - тонким слоем озона на высоте примерно 20 км. Океан населен жизнью до дна самых глубоких впадин в 10-11 км. В твердую оболочку Земли жизнь проникает до 3 км (бактерии в нефтяных месторождениях).

Свои выводы о структуре и функциях биосферы он изложил в виде эмпирических обобщений, которые позже были названы учением о биосфере. Основные эмпирические обобщения Вернадского выглядят так:

1. Первым выводом из учения о биосфере является принцип целостности биосферы. «Можно говорить о всей жизни, о всем живом веществе как о едином целом в механизме биосферы». Строение Земли, по Вернадскому, есть согласованный механизм. «Твари Земли являются созданием сложного космического процесса, необходимой и закономерной частью стройного космического механизма». Само живое вещество не является случайным созданием.

2. Принцип гармонии биосферы и ее организованности. В биосфере, по Вернадскому, «все учитывается и все приспособляется с той же точностью, с той же механичностью и с тем же подчинением мере и гармонии, какую мы видим в стройных движениях небесных светил и начинаем видеть в системах атомов вещества и атомов энергии».

3. Закон биогенной миграции атомов: в биосфере миграция химических элементов происходит при обязательном непосредственном участии живых организмов. Биосфера в основных своих чертах представляет один и тот же химический аппарат с самых древних геологических периодов. Лик Земли фактически сформирован жизнью.

4. Космическая роль биосферы в трансформации энергии. Вернадский подчеркивал важное значение энергии и называл живые организмы механизмами превращения энергии.

5. Космическая энергия вызывает давление жизни, которое достигается размножением. Размножение организмов уменьшается по мере увеличения их количества. Размеры популяции возрастают до тех пор, пока среда может выдерживать их дальнейшее увеличение, после чего достигается равновесие. Численность колеблется вблизи равновесного уровня.

6. Растекание жизни есть проявление ее геохимической энергии. Живое вещество, подобно газу, растекается по земной поверхности в соответствии с правилом инерции. Мелкие организмы размножаются гораздо быстрее, чем крупные. Скорость передачи жизни зависит от плотности живого вещества.

7. Жизнь целиком определяется полем устойчивости зеленой растительности, а пределы жизни - физико-химическими свойствами соединений, строящих организм, их неразрушимостью в определенных условиях среды. Максимальное поле жизни определяется крайними пределами выживания организмов. Верхний предел жизни обусловливается излучением, присутствие которого убивает жизнь и от которого предохраняет озоновый щит. Нижний предел связан с достижением высокой температуры. Интервал в 433 0 С (от минус 252 0 С до плюс 180 0 С) является предельным тепловым полем.

8. Всюдность жизни в биосфере. Жизнь постепенно, медленно приспосабливаясь, захватила биосферу, и захват этот не закончился. Поле устойчивости жизни есть результат приспособленности в ходе времени.

9. Постоянство количества живого вещества в биосфере. Количество свободного кислорода в атмосфере того же порядка, что и количество живого вещества (1.5 х 10 21 г и 10 20 -10 21 г). Это обобщение справедливо в рамках значительных геологических отрезков времени, и оно следует из того, что живое вещество является посредником между Солнцем и Землей и, стало быть, либо его количество должно быть постоянным, либо должны меняться его энергетические характеристики.

В структуре биосферы Вернадский выделил пять элементов: 1) живое вещество – совокупность живых организмов планеты; 2) косное вещество, сформированное без участия жизни; 3) биогенное вещество, созданное в процессе жизнедеятельности организмов (нефть, уголь, газы атмосферы, известняки и т.д.); 4) биокосное вещество – результат взаимодействия живых организмов с неживой средой (почва, илы, озерная вода); 5) вещество космического происхождения.

Как следует из учения о биосфере, она выполняет следующие функции: 1) энергетическую – в процессе фотосинтеза растения поглощают энергию Солнца; 2) газовую – в процессе фотосинтеза поглощается углекислый газ и выделяется кислород, в процессе дыхания наоборот поглощается кислород и выделяется углекислый газ, также из атмосферы поглощается молекулярный азот и выделяется затем в процессе денитрификации; 3) окислительно-восстановительную - в биосфере происходит взаимопревращение атомов с изменением валентности (например, соединений металлов); 4) концентрационную – живые организмы накапливают в своих телах элементы таблицы Менделеева, в результате чего после их отмирания образуются, например, полезные ископаемые; 5) деструкционную – разложение остатков мертвых организмов и их минерализация.

II. Круговорот веществ в биосфере

Считается, что в природе два основных круговорота – большой (геологический) и малый (биогеохимический).

1. Большой геологический круговорот обусловлен взаимодействием солнечной энергии с глубинной энергией Земли и осуществляет перераспределение вещества между биосферой и более глубокими горизонтами Земли. Магматические породы поднимаются из недр земли в результате вулканической деятельности и движения плит, превращаются у поверхности в осадочные породы, затем в подвижных зонах снова опускаются в зону высоких температур, где снова переплавляются в магму. И движение повторяется вновь. К большому круговороту относится также круговорот воды: влага, испарившаяся с поверхности океана, выпадает дождем над сушей, откуда вода вновь стекает в океан.



1. Малый круговорот веществ (биогеохимический) совершается в пределах биосферы, движимый живыми существами. В отличие от энергии, которая однажды использованная организмом, превращается в тепло и теряется для экосистемы, вещества циркулируют в биосфере, что и называется биогеохимическими круговоротами. Из 90 с лишним элементов, встречающихся в природе, около 40 нужны живым организмам. Наиболее важные для них и требующиеся в больших количествах - углерод, водород, кислород, азот. Кислород поступает в атмосферу в результате фотосинтеза и расходуется организмами при дыхании. Азот извлекается из атмосферы благодаря деятельности азотфиксирующих бактерий и возвращается в нее другими бактериями.

Круговороты элементов и веществ осуществляются за счет саморегулирующих процессов, в которых участвуют все составные части экосистем. Эти процессы являются безотходными, так как в природе нет ничего бесполезного или вредного.

Существует закон глобального замыкания биогеохимического круговорота в биосфере, действующий на всех этапах ее развития, как и правило увеличения замкнутости биогеохимического круговорота в ходе сукцессии. В процессе эволюции биосферы увеличивается роль биологического компонента в замыкании биогеохимического круговорота. Еще большую роль на биогеохимический круговорот оказывает человек. Но его роль осуществляется в противоположном направлении. Человек нарушает сложившиеся круговороты веществ, и в этом проявляется его геологическая сила, разрушительная по отношению к биосфере на сегодняшний день.

Когда более 3 млрд лет тому назад на Земле появилась жизнь, атмосфера состояла из вулканических газов. В ней было много углекислого газа и крайне мало кислорода (если он вообще был), поэтому первые организмы были анаэробными. Так как продукция в среднем превосходила дыхание, за геологическое время в атмосфере накапливался кислород и уменьшалось содержание углекислого газа. Сейчас содержание углекислого газа в атмосфере увеличивается в результате сжигания больших количеств горючих ископаемых и уменьшения поглотительной способности «зеленого пояса». Последнее является результатом уменьшения количества самих зеленых растений, а также связано с тем, что пыль и загрязняющие частицы в атмосфере отражают поступающие в атмосферу лучи.

В результате антропогенной деятельности степень замкнутости биогеохимических круговоротов уменьшается. Хотя она довольно высока (для различных элементов и веществ она не одинакова), но тем не менее не абсолютна, что и показывает пример возникновения кислородной атмосферы. Иначе невозможна была бы эволюция, ведь наивысшая степень замкнутости биогеохимических круговоротов наблюдается в тропических экосистемах - наиболее древних и консервативных.

Таким образом, следует говорить не об изменении человеком того, что не должно меняться, а скорее о влиянии его на скорость и направление изменений и на расширение их границ, нарушающее правило меры преобразования природы. Последнее формулируется следующим образом: в ходе эксплуатации природных систем нельзя превышать некоторые пределы, позволяющие этим системам сохранять свойства самоподдержания. Нарушение меры как в сторону увеличения, так и уменьшения приводит к отрицательным результатам. Например, избыток вносимых удобрений столь же вреден, сколь и недостаток. Это чувство меры утеряно современным человеком, считающим, что в биосфере ему все позволено.

Надежды на преодоление экологических трудностей связывают, в частности, с разработкой и введением в эксплуатацию замкнутых технологических циклов. Создаваемые человеком циклы превращения материалов считается желательным устраивать так, чтобы они были подобны естественным циклам круговорота веществ. Тогда одновременно решались бы проблемы обеспечения человечества невосполнимыми ресурсами и проблема охраны природной среды от загрязнения, поскольку ныне только 1-2% веса природных ресурсов утилизируется в конечном продукте.

Теоретически замкнутые циклы превращения вещества возможны. Однако полная и окончательная перестройка индустрии по принципу круговорота вещества в природе не реальна. Хотя бы временное нарушение замкнутости технологического цикла практически неизбежно, например, при создании синтетического материала с новыми, неизвестными природе свойствами. Такое вещество вначале всесторонне апробируется на практике, и только потом могут быть разработаны способы его разложения с целью внедрения составных частей в природные круговороты.

Учение о биосфере Земли - одно из крупнейших и наиболее интересных обобщений современного естествознания. Оно является научной основой для исследования природных объектов и комплексного подхода при организации современного производства.
Жизнь на планете протекает и развивается лишь в тонком слое атмосферы, гидросферы и литосферы. Вот эту тонкую земную оболочку, населенную организмами, принято называть биосферой.
Биосфера - область «жизни», пространство на поверхности земного шара, в котором обитают живые существа.
Величие В.И. Вернадского в том, что он впервые понял и научно обосновал единство человека и биосферы.
Владимир Иванович Вернадский (1863-1945) - крупный отечественный ученый, минералог и кристаллограф, один из основоположников геохимии и биогеохимии.
Суть этого учения : биосфера - это качественно своеобразная оболочка Земли, развитие которой в значительной мере определяется деятельностью живых организмов.

Основные положения учения В.И. Вернадского о биосфере .
Прежде всего, В.И. Вернадский определил пространство, охватываемое биосферой Земли. Биосфера (греч. «биос» - жизнь; «сфера» - шар) - оболочка Земли, в которой развивается жизнь разнообразных организмов, населяющих поверхность суши, почву, нижние слои атмосферы, гидросферу.
Планета Земля характеризуется наличием трех поверхностных геосфер - гидросферы, литосферы, атмосферы.
Гидросфера , или водная оболочка Земли, представлена океанами, морями, озерами, реками и искусственными водоемами. Водная оболочка покрывает около 71% поверхности земного шара, наибольшая глубина в западной части Тихого океана достигает 11,5 км (Марианская впадина).
Литосфера , или земная кора, представляет собой внешнюю твердую оболочку земного шара мощностью в несколько десятков километров. В контексте биосферы под литосферой обычно понимают только поверхностную ее часть - почву.
Атмосфера , или воздушная оболочка, состоит из нескольких слоев: тропосферы до 15 км высоты над поверхностью Земли; стратосферы, с озоновым экраном, простирающейся до 100 км высоты; ионосферы, представляющей слой разреженного газа, высотой до 500 км.
Биосфера включает в себя:
1) Живые организмы (растения, животные, микроорганизмы).
2) Тропосфера (нижний слой атмосферы).
3) Гидросфера (океаны, моря, реки и т.д.).
4) Литосфера (верхняя часть земной коры).

Возраст биосферы приблизительно 4 млрд. лет.

Схема строения биосферы
Вернадский различал следующие категории веществ:
1) живое вещество - совокупность живых организмов, населяющих биосферу, (от простейших вирусов до человека), характеризуется химическим составом, массой, энергией, информацией; трансформирует солнечную энергию и вовлекает неорганическую материю в непрерывный круговорот). Живое вещество - «функция биосферы», а биосфера - результат развития живого веществ.
2) биогенное вещество - продукты жизнедеятельности живых организмов (каменный уголь, нефть, торф, мел);
3) биокосное вещество - продукты распада и переработки горных и осадочных пород живыми организмами (почвы, ил, природные воды). Имеет минеральную основу, которая коренным образом преобразована жизнедеятельностью организмов (почвенный покров, воздух, вода).
4) косное вещество - все, что не имело связи с живым (застывшая лава, вулканический пепел).
5) Радиоактивные вещества, получающиеся в результате распада радиоактивных элементов (радий, уран, торий и т.д.).
6) Рассеянные атомы (химические элементы), находящиеся в земной коре в рассеянном состоянии.
7) Вещество космического происхождения - метеориты, протоны, нейтроны, электроны.
В пределах биосферы существуют 4 среды жизни: две мертвые (вода, воздух), одна биокосная (почва) и одна живая (организм).
Процессы, протекающие в экосистеме (число живых организмов, скорость их развития и т.п.), зависят от количества энергии, поступающей в экосистему, и от циркуляции веществ в экосистеме. Биосфера является энергетически незамкнутой системой, в которой идет поглощение энергии из внешней среды.
Живое вещество нашей планеты существует в виде огромного множества организмов разнообразных форм и размеров. В настоящее время на Земле существует более 2 млн. организмов, из них 0,5 - растения, 1,5 - растения и микроорганизмы (из них 1 млн. насекомых).
Основной особенностью живого существа является, кроме клеточной деятельности и передачи информации, способ использования энергии. Живые существа улавливают энергию космоса в виде солнечного света, удерживают ее в виде энергии сложных органических соединений (биомасса), передают ее друг другу и трансформируют в другие виды энергии (механическую, электрическую, тепловую). Неживые вещества преимущественно рассеивают энергию.
Живое вещество, биосфера, преобразует энергию Солнца в свободную энергию, способную совершать работу. Работа, производимая жизнью, состоит в переносе и перераспределении химических элементов в биосфере.
Все почвы и минералы поверхности (чернозем, глина, известняк, руда, месторождение углей и нефти) образовались под воздействием жизни.
Преобразование энергии в организмах основано на разнице температуры и других принципах. Живые существа следует рассматривать как химические машины, где химическая энергия преобразуется в другие виды энергии.
Особенности функционирования живых существ :
способность к самовоспроизведению;
способность образования полимерных оболочек, ограждающих живое вещество от косной среды;
способность аккумулировать и передавать химическую
энергию, а также осуществлять химические реакции в нормальных условиях температуры и давления без образования побочных продуктов. Жизнь на Земле идеально экологична.
Основой динамического равновесия и устойчивости биосферы являются кругооборот веществ и превращение энергии.

Круговорот веществ в биосфере

Основной принцип функционирования экосистем - получение ресурсов и избавление от отходов происходит в рамках круговорота всех элементов.
Рассмотрим такой круговорот для основных компонентов, входящих в состав биосферы.

Круговорот углерода

Для примера рассмотрим круговорот углерода. В атмосфере запасы углерода в виде СО2 невелики, в земной коре они присутствуют в виде ископаемого топлива. Когда около 2 млрд лет назад на Земле появилась жизнь, атмосфера в основном состояла из СО2. Первые организмы были анаэробными, т.е. жили в отсутствие кислорода. Накопление кислорода обусловлено существованием зеленых растений. Сейчас его запасы на Земле оцениваются в 1,6-105т. Эту массу зеленые растения могут создать за 10 тыс. лет. Поступивший в атмосферу по разным причинам углерод усваивается зелеными растениями, выделяющими в процессе своей жизнедеятельности кислород. А в результате потребления животными органических соединений происходит окисление органических веществ до углекислого газа, который поступает в атмосферу. Иными словами, углерод - главный участник биотического круговорота. Человек активно вмешивается в этот круговорот, что может в ближайшие 100 лет привести к изменениям климата, подъему океана, уменьшению количества кислорода в составе атмосферы и пр.

Круговорот серы

Сера преобразуется в различные соединения и циркулирует в биосфере. Из природных источников она попадает в атмосферу в следующем виде:
сероводород (H2S) - бесцветный, дурно пахнущий ядовитый газ - при извержении вулканов, при разложении органических веществ в болотах и затапливаемых приливами низинах;
диоксид серы (SO;) - бесцветный, удушливый газ при извержении вулканов;
частицы сульфатных солей (например, сульфат аммония) - из мельчайших брызг океанической воды.
Около трети всех соединений серы и 99 % диоксида серы, попадающих в атмосферу, имеют антропогенное происхождение. Сжигание серосодержащих углей и нефти для производства электроэнергии дает примерно две трети всех антропогенных выбросов двуокиси серы в атмосферу. Остальная треть приходится на такие технологические процессы, как переработка нефти, выплавка металлов из серосодержащих медных, свинцовых и цинковых руд.
В атмосфере двуокись серы окисляется кислородом до газообразного триоксида серы, который при реакции с водяным паром образует мельчайшие капельки серной кислоты (H2SO4). Взаимодействуя с другими атмосферными компонентами, триоксид серы может образовывать мельчайшие частицы сульфатных солей. Серная кислота и сульфатные соли вносят свой вклад в образование кислотных осадков, нарушающих жизнедеятельность лесных и водных экосистем.

Круговорот воды

Гидрологический цикл, в процессе которого происходит накопление, очистка и перераспределение планетарного запаса воды, состоит в следующем. Солнечная энергия и земное притяжение непрерывно перемещают воду между океанами, атмосферой, сушей и живыми организмами. Важнейшими процессами этого круговорота являются испарение, конденсация, осадки и сток воды назад в море для возобновления цикла.
Под воздействием поступающей солнечной энергии вода испаряется с поверхности океанов, рек, озер, почв и растений и поступает в атмосферу. Ветры и воздушные массы переносят водяной пар в различные районы Земли. Понижение температуры в отдельных частях атмосферы приводит к конденсации водяного пара, образованию облаков и туманов и выпадению атмосферных осадков.
Часть пресной воды возвращается на поверхность земли в виде осадков, замерзает в ледниках. Однако в основном она заполняет понижения и ложбины и стекает в ближайшие озера, ручьи и реки, которые несут ее назад в океан, тем самым, замыкая кольцо круговорота. Такой сток пресных вод с поверхности суши вызывает также эрозию почв, которая приводит к перемещению различных химических веществ в рамках других биогеохимических циклов.
Значительная часть возвращаемой на сушу воды просачивается глубоко в фунт. Там происходит накопление фунтовых вод в водоносных горизонтах - подземных резервуарах. Подземные источники и водотоки в итоге возвращают воду на поверхность суши и в реки, озера, ручьи, откуда она вновь испаряется или стекает в океан. Однако циркуляция подземных вод происходит несравнимо медленнее, чем циркуляция поверхностных и атмосферных вод.

Эволюция биосферы

Итак, в процессе развития биосферы выделяют 3 уровня:
1) Биосфера
(где человек воздействовал на природу незначительно).
2) Биотехносфера
Техносфера
представляет собой совокупность искусственных объектов, созданных целенаправленной деятельностью человека, и природных объектов, измененных этой деятельностью. Современная биосфера - это результат длительной эволюции органического мира и неживой природы. Человеческое общество - это один из этапов развития жизни на Земле. Деятельность человека следует рассматривать как составную часть биосферы. Техника - это качественно новый этап ее развития. Возникает вопрос - каким путем пойдет развитие человека и биосферы в будущем, какими средствами избежать необратимых последствий в природе. Предотвратить изменения невозможно. Очевидно, что следует научиться управлять процессами между человеком и природой так, чтобы они были взаимовыгодны.
3) Ноосфера - сфера разума.
Это понятие ввел французский математик и философ Ле-Руа в 1927 году, а обосновал Вернадский в 1944 г. Это высшая стадия развития биосферы, когда разумная деятельность человека становится главным, определяющим фактором развития. В ноосфере человек становится крупной геологической силой, он перестраивает своим трудом и мыслью область своей жизни. Человек неразрывно связан с биосферой, уйти из нее не может. Его существование - есть функция биосферы, которую он неизбежно изменяет.


Учение о биосфере - тонкой оболочке Земли, состав, структура и энергетика которой в существенных чертах обусловлены прошлой или современной деятельностью живых организмов, - вершина научных достижений В. И. Вернадского. Биосфера, по мнению ученого, состоит из семи взаимосвязанных веществ: живого, биогенного, косного, биокосного, радиоактивного, космического, рассеянных атомов. Везде в ее пределах встречаются либо само живое вещество, либо следы его биохимической деятельности. Воздух, вода, нефть, уголь, известняки, глины, сланцы, мрамор и гранит созданы живыми веществами планеты. Верхние слои земной коры, лишенные в настоящее время жизни, в другие геологические эпохи были переработаны живыми организмами. Самой простой структурой современной активной части биосферы является биогеоценоз.
Учение Вернадского стало основой современного представления о взаимосвязях и сопряженной эволюции всех структур биосферы. Именно этой идеологией руководствуются ученые, разрабатывающие международные и национальные программы «Международное гидрологическое десятилетие», «Всемирная климатическая программа», «Международная биологическая программа». Естественно, учение о биосфере служит научной основой рационального хозяйствования и решения экологических проблем. Вернадский считал, что появление человека ознаменовало новый этап развития биосферы, и теперь от него зависит ее судьба. Следовательно, человечеству необходимо выработать единую стратегию взаимодействия с природой, сформировать экологическое сознание, новое мышление, создать качественно новые технологии.
В 20-х годах XX в. В. И. Вернадским было разработано учение о биосфере как глобальной единой системе Земли, где основной ход геохимических и энергетических превращений определяется жизнью. Ранее большинство процессов, меняющих в течение геологического времени лик нашей планеты, рассматривалось как чисто физические, химические или физико-химические явления (размыв, растворение, осаждение, гидролиз и т. п.). Вернадский впервые создал учение о геологической роли живых организмов, показав, что деятельность живых существ служит главным фактором преобразования земной коры. Идеи Вернадского в должной мере были оценены лишь во второй половине XX в., когда возникла концепция экосистем.
Вернадский писал, что участие каждого отдельного организма в геологической истории Земли нрчтожнр, мало, однако живых


17

существ на Земле бесконечно много, и они, обладая высоким потенциалом размножения, активно взаимодействуют со средой обитания и в конечном счете представляют в совокупности особый, глобальный фактор развития, преобразующий верхние оболочки Земли.
Живые организмы бесконечно разнообразны, распространены повсеместно, воспроизводятся во многих поколениях, обладают избирательностью биохимической деятельности и исключительно высокой химической активностью по сравнению с другими компонентами природы.
Совокупность организмов на планете Вернадский назвал живым веществом, которое характеризуется суммарной массой, химическим составом и энергией. О роли живых организмов на Земле Вернадский писал: «Можно без преувеличения утверждать, что химическое состояние наружной коры нашей планеты, биосферы, всецело находится под влиянием жизни, определяется живыми организмами; несомненно, что энергия, придающая биосфере ее обычный облик, имеет космическое происхождение. Она исходит из Солнца в форме лучистой энергии. Но именно живые организмы, совокупность жизни, превращают эту космическую лучистую энергию в земную, химическую и создают бесконечное разнообразие нашего мира. Это живые организмы, которые своим дыханием, своим питанием, своим метаболизмом, своей смертью и своим разложением, постоянным использованием своего вещества, а главное, длящейся сотни миллионов лет непрерывной сменой поколений, своим рождением, размножением порождают одно из грандиознейших планетных явлений, не существующих нигде, кроме биосферы».
По мнению ученого, неизбежен единственно правильный подход к биосфере как к целостной глобальной экологической системе, обладающей определенной структурой и устойчивостью, присущими ей особенностями формирования и развития. Такое понимание биосферы особенно важно сейчас, когда техногенное воздействие человека на природу достигло небывалых масштабов и способно вызвать планетарные изменения среды обитания человека.
В пределах биосферы практически каждый химический элемент проходит через цепочку живых организмов, включается в систему биогеохимических превращений. Так, весь кислород планеты - продукт фотосинтеза - обновляется через каждые 2000 лет, а углекислота - через 300 лет.
Биохимические процессы в организмах также представляют собой сложные, организованные в циклы цепи реакций. На воспроизведение их в неживой природе потребовались бы огромные энергетические затраты, в живых же организмах они протекают при посредстве белковых катализаторов - ферментов, понижающих энергию активации молекул на несколько порядков. Так как материалы и энергию для обменных реакций живые существа черпают в окружающей среде, они преобразуют среду уже тем, что живут. Вернадский подчеркивал, что живое вещество проводит гигантскую геолого-химическую работу в биосфере, полностью преобразуя верхние оболочки Земли за время своего существования.
Более 99% энергии, поступающей на поверхность Земли, составляет излучение Солнца, эта энергия растрачивается в громадном большинстве физических и химических процессов в гидросфере, атмосфере и литосфере: перемещение воздушных и водных масс, испарение, перераспределение веществ, поглощение и выделение газов и т. п.
На Земле существует один-единственный процесс, при котором энергия солнечного излучения не только тратится и перераспределяется, но и связывается, запасается иногда на очень длительное время, - это создание органического вещества в процессе синтеза. Так, сжигая в топках каменный уголь, мы освобождаем и используем солнечную энергию, запасенную растительностью сотни миллионов лет назад.
Таким образом, основная планетарная функция живого вещества на Земле заключается в связывании и запасении солнечной энергии, которая затем идет на поддержание множества других геохимических процессов в биосфере.
Биохимическую функцию биосферы Вернадский рассматривал как всеобщее проявление жизни на Земле. Ни один отдельно взятый вид организмов не мог выполнить эту роль. Для обеспечения всего разнообразия форм биогенной миграции химических элементов необходимо было развитие определенного комплекса организмов. Отсюда возникает проблема эволюции биосферы как единого целого в процессе историко-геологического развития нашей планеты.
Таким образом, современная биосфера - итог длительного исторического развития всего органического мира в его взаимодействии с неживой природой. Благодаря этому в биосфере возникла сложная сеть взаимосвязанных процессов и явлений; благодаря взаимодействию абиотических и биотических факторов биосфера находится в постоянном движении и развитии. Она прошла значительную эволюцию со времени появления человека, т. е. на протяжении последних 2 млн лет. Однако если первоначально по своему воздействию на природу человек мог рассматриваться лишь как один из второстепенных факторов, то по мере развития цивилизации и роста ее технической оснащенности его роль стала сравнима с действием мощных геологических процессов. Это обстоятельство заставляет самым серьезным образом относиться к возможным отдаленным последствиям как производственной, так и природоохранной деятельности человека.
В результате техногенной деятельности человечества биосфера Земли коренным образом преобразуется и становится, по определению Вернадского, ноосферой - «сферой разума». Ноосфера - новое геологическое явление на нашей планете, в ней человек впервые становится крупнейшей геологической силой. Ноосфера - мир разумных, научно обоснованных поступков в глобальном масштабе.
Конечно, вряд ли можно ожидать, что эпоха ноосферы возникнет на Земле стихийно. Сам по себе может развиваться лишь процесс деградации. И он уже идет, и на территории России в том числе. Загрязнение атмосферы, воды и почвы во многих наших городах и регионах во много раз превышает безопасные для здоровья людей нормы. Очистные сооружения на промышленных предприятиях и сельскохозяйственных объектах, а также в канализационных системах зачастую находятся в предаварийном состоянии. Учащающиеся нарушения их нормального функционирования приводят к катастрофам.
О глобальной экологической катастрофе вследствие бесконтрольного и ничем не ограниченного роста производства и потребления в промышленно развитых странах настоятельно предупреждал русский ученый Н. Моисеев. В обобщенном виде его предупреждение можно изложить следующим образом: если в ближайшем будущем человечество не изменит кардинально своего поведения в планетарном масштабе в отношении природы и во взаимоотношениях на личностном, межнациональном и межгосударственном уровнях, то уже к середине наступившего XXI в. на Земле могут сложиться такие экологические условия, при которых род человеческий не сможет существовать.
Особую тревогу вызывает тот факт, что биосфера до сих пор не отреагировала на произошедшее за последние сто лет существенное увеличение - на 20-21 % - доли углекислого газа в атмосфере планеты. Поскольку этот газ служит пищей для растительных организмов, в результате естественных процессов общий объем биомассы Земли должен был значительно возрасти. Но этого почему-то не произошло, а отсутствие такой реакции - грозный симптом.
Возможно, это свидетельствует о том, что биосфера уже утратила (или начинает утрачивать) присущую ей способность компенсировать происходящие в ней возмущения, под воздействием которых она может перейти в новое состояние, непригодное для существования человека.
Однако, к величайшему сожалению, эта весьма вероятная угроза всему человечеству до сих пор не стала предметом рассмотрения ни в ООН, ни в каких-либо иных международных организациях. И ни одно правительство в мире, включая наше, на официальном уровне не признает и не опровергает существование такой угрозы. Политики как бы не замечают ее.
Корпорации, базирующиеся в странах «золотого миллиарда», кровно заинтересованы в поддержании такого мирового экономического порядка, при котором 14% населения Земли потребляют 86% мировых природных ресурсов.
Замалчивание политическими деятелями неизбежных катастрофических последствий такого «устойчивого развития» для судьбы всего человечества помогает сохранять это соотношение и лишает обделенное большинство жителей Земли даже призрачной надежды на то, что когда-нибудь это соотношение изменится.
Возможно, в каких-нибудь странах абсолютной бедности, где сегодня проживают около 60% населения Земли, среднедушевой годовой доход увеличился на несколько десятков долларов США, а в странах относительной бедности, жители которых составляют более четверти всего человечества, - на несколько сотен долларов. Но преодолеть отсталость они не смогут. Чтобы удовлетворить платежеспособный спрос «золотомиллиардников», транснациональные корпорации будут и впредь откачивать из развивающихся стран все лучшее, что у них есть.
Остановить разрушительное воздействие нынешней постиндустриальной системы общественного жизнеустройства на природу можно лишь при выработке и поэтапной реализации всеми странами новой социально-экономической доктрины. Ее определяющим принципом должно быть признание природных ресурсов, водных и воздушных бассейнов общечеловеческим достоянием. Через этот принцип должно быть реализовано неотъемлемое право каждого человека на доступ к природным благам.
Важно обратить внимание на Хартию Земли и возможность ее принятия в качестве официального документа ООН. «Хартия (Декларация) Земли» содержит фундаментальные принципы для создания справедливого, устойчивого и мирного глобального общества в XXI в. Этот документ - своеобразный аналог Декларации прав человека в области окружающей среды. И, конечно, новая
гонка вооружений, в частности продолжение США широкомасштабных экспериментов в сфере целенаправленного и мощного воздействия на околоземную среду радиоволнами высокой частоты, т. е. фактически создания геофизического оружия, несущего колоссальную потенциальную опасность для человечества, совершенно несовместима с Хартией Земли.
Россия, как известно, по своему национально-природному богатству более чем в 2 раза превосходит и США, и Западную Европу. Но если Европа использует это богатство на 50%, то Россия - всего на 2%.
Россия способна внести свой весомый вклад в ноосферную безопасность планеты, следуя новой экоэтике XXI в. Для этого ей предстоит укреплять подлинно коллективную безопасность не только на трех уровнях (в постсоветском пространстве СНГ, в расширенном и измененном формате НАТО и параметрах «Шанхайской шестерки»), но и на общепланетарном уровне.
Круговорот основных элементов в биосфере - это многократное участие веществ в процессах, происходящих в атмосфере и гидросфере, в том числе в тех слоях, которые входят в биосферу планеты. Особое значение имеют круговороты кислорода, углерода, азота, серы и фосфора. Биогеохимический цикл кислорода - планетарный процесс, связывающий атмосферу и гидросферу с земной корой. Узловыми звеньями круговорота являются: образование свободного кислорода при фотосинтезе в зеленых растениях, потребление кислорода для дыхания всеми живыми организмами, окисления органических остатков и неорганических веществ (например, сжигание топлива) и другие химические преобразования, которые ведут к образованию таких окисленных соединений, как углекислый газ, вода, и последующему вовлечению их в новый цикл фотосинтетических превращений.

В круговороте кислорода отчетливо проявляется активная геохимическая деятельность живого вещества, его ведущая роль в этом циклическом процессе. Исходя из массы органического вещества, синтезированного в течение года (с учетом 15%, потраченных на процесс дыхания), можно заключить, что ежегодное продуцирование кислорода зеленой растительностью планеты составляет около 300 х 109 т. Лишь немногим более 25% этого количества выделяется растительностью суши, остальное - фотосинтезирующими организмами Мирового океана (свободный кислород присутствует не только в атмосфере, в растворенном состоянии он содержится и в природных водах). Суммарный объем вод Мирового океана равен 137 х 109 л, а в 1л воды растворено от 2 до 8 см3 кислорода. Следовательно, в водах Мирового океана находится от 2,7 до 10,9 х 1012 т
растворенного кислорода. Часть органического вещества захороня- ется, вследствие чего из годичного круговорота выводится связанный кислород.

На суше в процессе фотосинтеза происходит фиксация углекислого газа растениями с образованием органических веществ и выделением кислорода. Остатки растений и животных разлагаются микроорганизмами, в результате чего углерод окисляется до углекислого газа и снова попадает в атмосферу. Подобный круговорот углерода совершается и в водной среде. Фиксируемый растениями углерод в значительном количестве потребляется животными, которые, в свою очередь, при дыхании выделяют его в виде углекислого газа.
Круговорот углерода в гидросфере - процесс более сложный, чем в атмосфере, поскольку возраст этого элемента в форме углекислого газа зависит от поступления кислорода в верхние слои воды как из атмосферы, так и из нижележащей толщи, так как между сушей и Мировым океаном происходит постоянный обмен углерода. Преобладает вынос этого элемента в форме карбонатных и органических соединений с суши в океан. Поступление углерода из Мирового океана на сушу совершается в несравненно меньших количествах, и то лишь в форме углекислого газа, диффундирующего в атмосферу, а затем переносимого воздушными течениями.
В круговороте азота чрезвычайно большую роль играют микроорганизмы: азотфиксаторы, нитрификаторы, денитрофикаторы. Все остальные организмы влияют на цикл азота только после ассимиляции его в состав своих клеток. Азот фиксируют также пурпурные и зеленые фотосинтезирующие бактерии, различные почвенные бактерии.
В биосфере в целом фиксация азота из воздуха составляет в среднем за год 140-700 мг/м3. В основном это биологическая фиксация, и лишь небольшое количество азота (в среднем не более 35 мг/м3 в год) регистрируется в результате электрических разрядов и фотохимических процессов.
Высокая интенсивность фиксации отмечена в некоторых загрязненных озерах с множеством синезеленых водорослей. В океане, где продуктивность ниже, фиксация азота в расчете на 1 м3 меньше, чем на суше. Однако общее количество фиксированного азота весьма значительно и важно для глобального круговорота.
В круговороте азота из огромного запаса этого элемента в атмосфере и литосфере принимает участие только фиксированный азот, усваиваемый живыми организмами суши и океана. В круговороте азота принимают участие: азот биомассы, азот биологической фиксации бактериями и живыми организмами, ювенильный (вулканогенный) азот, атмосферный (фиксированный при грозах) и техногенный.
На огромных массивах, где не ведется деятельность человека, растения берут необходимый им азот из вносимого в почву азота извне (нитраты с дождями, аммиак из воздуха), из возвращаемого в почву азота (остатки животных, растений, экскременты животных), а также из разнообразных азотфиксирующих организмов.
Наибольшее количество азота и зольных элементов содержится в биосфере лесной растительности, почти во всех типах растительности масса зольных элементов в 2-3 раза превышает массу азота. Исключение составляют тундровые растения, в которых содержание азота и зольных элементов примерно одинаково. Наибольшее количество оборачивающихся в течение года элементов (т. е. емкость биологического круговорота) - во влажных тропических лесах, затем - в черноземных степях и широколиственных лесах умеренного климата (в дубравах).
В биосфере хорошо развит процесс циклических превращений серы и ее соединений.
Резервуарный фонд серы обширен в почве и отложениях, меньший - в атмосфере. Основную роль в обменном фонде серы играют особые микроорганизмы, каждый вид которых выполняет определенную реакцию окисления и восстановления; в результате из глубоководных отложений к поверхности перемещается сероводород. В глобальном масштабе в регуляции круговорота серы участвуют геохимические и метеорологические процессы (эрозия, осадкообразование, выщелачивание, дождь, адсорбция, десорбция и т. д.), биологические процессы (продукция биомассы и ее разложение), взаимосвязь воздуха, воды и почвы. Сульфат аналогично нитрату и фосфату - основная, доступная форма серы, которая восстанавливается автотрофами и включается в белки (сера входит в состав ряда аминокислот).
На круговорот азота и серы все большее влияние оказывает промышленное загрязнение воздуха, сжигание ископаемого топлива значительно увеличило содержание в воздухе летучих окислов азота (NO и М02) и серы (S02), особенно в городах. Их концентрация становится опасной для биотических компонентов экосистем.
Геохимический цикл фосфора в большей мере отличается от циклов углерода и азота. Содержание этого элемента в земной коре составляет 0,093%. Это в несколько десятков раз больше, чем азота, но в отличие от последнего фосфор не является одним из главных элементов оболочек Земли. Тем не менее его геохимический цикл включает разнообразные пути миграции в земной коре, интенсивный биологический круговорот и миграцию в гидросфере.
Фосфор - один из главных органогенных элементов. Его органические соединения играют важную роль в процессах жизнедеятельности всех растений и животных, входят в состав нуклеиновых кислот, сложных белков, фосфолипидов мембран, служат основой биоэнергетических процессов. Фосфор концентрируется живым веществом, где его содержание в 10 раз больше, чем в земной коре. На поверхности суши протекает интенсивный круговорот фосфора в системе «почва-растения-животные-почва». В связи с тем что минеральные соединения фосфора труднорастворимы и содержащийся в них элемент почти недоступен растениям, последние преимущественно используют его легкорастворимые формы, образующиеся при разложении органических остатков. Круговорот фосфора происходит и в системе «суша-Мировой океан»: происходит вынос фосфатов с речным стоком, взаимодействие их с кальцием, образование фосфоритов, залежи которых со временем выходят на поверхность и снова включаются в миграционные процессы.
Человек должен планировать свою хозяйственную деятельность с учетомщикличности природных процессов. Особенно тщательно это следует делать в земледелии, пастбищном животноводстве, водоснабжении, навигации. Распашка, внесение минеральных удобрений, загрязнение нефтью и тяжелыми металлами обедняют фауну почвы. Нарушаются и даже полностью выпадают звенья нормальных пищевых цепей и биогеохимических циклов. Реакция почвы на вмешательство человека необычайно велика.
Запасов неорганических соединений, необходимых для поддержания жизнедеятельности населяющих их организмов, хватило бы ненадолго, если бы эти запасы не возобновлялись как в течение жизни организмов, так и после их смерти. Ведь общество обра

зует с неорганической средой определенную систему, в которой поток атомов, вызываемый жизнедеятельностью организмов, образует круговорот.
Основным механизмом удержания солнечной энергии и образования фитомассы, включающей огромные количества углерода, воды и распространенных биофилов, становятся биогеоценозы лесных и травянистых ландшафтов.
К невозобновимым ресурсам относятся богатства недр. Использование этих ресурсов возможно только один раз (хотя некоторые металлы могут служить вторичным сырьем), и оно неизбежно приводит к истощению их запасов, такие виды ресурсов имеют конечные запасы, и пополнение их на Земле практически невозможно из-за отсутствия условий, в которых они возникли много миллионов лет назад, или происходит оно очень медленно.
К возобновимым ресурсам принадлежат почва, растительность, животный мир, а также некоторые минеральные ресурсы, например, соли, осаждающиеся в озерах и морских лагунах, они могут воспроизводиться в природных процессах и поддерживаться в некотором постоянном количестве, определяемом уровнем их ежегодного воспроизводства и потребления.
Однако иногда при расточительном использовании некоторые виды возобновимых ресурсов могут перейти в разряд невозобновимых или на их возобновление потребуется слишком много времени. Например, состав почв, повышающих плодородие при их рациональном использовании, может резко ухудшиться при неправильных методах обработки, а эрозия, возникающая при этом, часто физически уничтожает почвенный слой. То же можно сказать и о ресурсах растительного и животного мира. При хищническом использовании нарушается способность биологических систем к самовоспроизводству, и тогда эти ресурсы становятся практически невозобновимыми.
Благодаря непрестанному функционированию системы «атмосфера-почва-растения-животные-микроорганизмы» сложился биогеохимический круговорот многих химических элементов и их соединений на суше, в атмосфере и внутриконтинентальных водах. Его суммарные характеристики сопоставимы с суммарным речным стоком суши, суммарным поступлением вещества из верхней мантии в биосферу планеты. Именно поэтому живое вещество на Земле уже многие миллионы лет - фактор геологического значения.
Природа таит неограниченные возможности для удовлетворения потребностей человека. Однако только силой научного познания в процессе производственной деятельности человек заставляет
природные ресурсы служить удовлетворению своих потребностей.
Человек использовал ресурсы (прежде всего пищу, воду, воздух) с самого начала своего существования, однако на первых порах он не прилагал усилий для их воспроизводства. Ресурсы определяли области расселения раннего человека. Под ресурсами для простого воспроизводства доиндустриального общества понимаются естественные производительные силы традиционных многовековых форм ведения хозяйства, в котором использовались главным образом вещества, не прошедшие глубокой обработки: камень, дерево, натуральные волокна и т. д. Индустриальное общество базируется на природных ресурсах, нужных не столько для поддержания жизни человека, сколько для производства товаров и услуг, обеспечивающих более развитые потребности отдельных людей и общества в целом. Подавляющая часть ресурсов расходуется в процессе расширенного воспроизводства.