Дышать жидкостью: российские ученые сделали фантастику реальностью. Кинодетали. Жидкостное дыхание "Бездны"

При подъеме в горы из-за падения атмосферного давления снижается парциальное давление кислорода в альвеолярном пространстве. Когда это давление становится ниже 50 мм рт. ст. (5 км высоты), неадаптированному человеку необходимо дышать газовой смесью, в которой повышено содержание кислорода. На высоте 9 км парциальное давление в альвеолярном воздухе падает до 30 мм рт. ст., и практически выдержать такое состояние невозможно. Поэтому используется вдыхание 100% кислорода. В этом случае при данном барометрическом давлении парциальное давление кислорода в альвеолярном воздухе составляет 140 мм рт. ст., что создает большие возможности для газообмена. На высоте 12 км при вдыхании обычного воздуха альвеолярное давление равно 16 мм рт. ст. (смерть), при вдыхании чистого кислорода - всего лишь 60 мм рт. ст., т. е. дышать еще можно, но уже опасно. В этом случае можно подавать чистый кислород под давлением и обеспечить дыхание при подъеме на высоту 18 км. Дальнейший подъем возможен только в скафандрах .

Дыхание под водой на больших глубинах

При опускании под воду растет атмосферное давление. Например, на глубине 10 м давление равно 2 атмосферам, на глубине 20 м - 3 атмосферам, и т. д. В этом случае парциальное давление газов в альвеолярном воздухе соответственно возрастает в 2 и 3 раза.

Это грозит высоким растворением кислорода. Но избыток его не менее вреден для организма, чем недостаток. Поэтому один из путей уменьшения этой опасности - использование газовой смеси, в которой процентное содержание кислорода уменьшено. Например, на глубине 40 м дают смесь, содержащую 5% кислорода, на глубине 100 м - 2%.

Второй проблемой является влияние азота. Когда парциальное давление азота возрастает, то это приводит к повышенному растворению азота в крови и вызывает наркотическое состояние. Поэтому, начиная с глубины 60 м, азотно-кислородная смесь заменяется гелиокислородной смесью. Гелий менее токсичен. Он начинает оказывать наркотический эффект лишь на глубине 200-300 м. Сейчас проводятся исследования по использованию водородно-кислородных смесей для работы на глубинах до 2 км, т. к. водород очень легкий газ.

Третья проблема водолазных работ - это декомпрессия. Если быстро подниматься с глубины, то растворенные в крови газы вскипают и вызывают газовую эмболию - закупорку сосудов. Поэтому требуется постепенная декомпрессия. Например, подъем с глубины 300 м требует 2-х недельной декомпрессии .

Я пересматривала его раз 8 точно. И каждый раз делала это исключительно из развлекательной цели и интересного сюжета с потрясающей актерской игрой, которая по свидетельству съемочной группы сильно вымотала исполнителей главных ролей.

А в последний раз я поняла, что в этом фильме есть что-то большее.

На протяжении всего фильма нам рассказывают о дыхании в жидкости. То, с чего мы начинали в утробе матери, может продолжиться. Главное - ситуация.

Все 7 просмотров для меня фильм был лишь фантастикой, игрой воображения сценариста или режиссера. В одной сцене показывают мышку, которая дышит специальной жидкостью. В другой - Бада (герой Эда Харриса) в скафандре, заполненном этой самой жидкостью. Его отправляют на глубину, где никто не был, заполняя его легкие "особой водой", потому что кислороду в теле человека на таких глубинах делать нечего.

Разработав около шестидесяти лет назад акваланг, француз Жак Ив Кусто в его название ввел термин «вода» и «легкие». Однако сама технология полного заполнения легких водой (в виде водно-солевого раствора) стала известна из публикации Kylstra J. «Мышь как рыба» - первой по жидкостному дыханию, в которой сказано о такой идее спасения подводников. Он же первый провел на сухопутных млекопитающих (мышах) спуски на глубину 1000 м и показал, что переход на жидкостное дыхание полностью предотвращает гибель от декомпрессионного газообразования. В СССР это было подтверждено при искусственной вентиляции легких (ИВЛ) жидкостью собак в условиях имитации водолазных спусков на 1000 м.

Вся система жидкостного дыхания основана на формуле перфторуглерода. Перфлуброн - это чистая, маслянистая жидкость, обладающая малой плотностью. Она содержит больше кислорода, чем воздух. Поскольку эта жидкость инертна, то она не наносит вреда легким. Так как у нее весьма низкая температура кипения, она быстро и легко выводится из легких;

На мировом рынке мало производителей этих жидкостей, так как их разработка - побочный продукт «атомных проектов». Известны жидкости медицинского качества всего нескольких мировых фирм: DuPont (США), ICI и F2 (Великобритания), Elf-Atochem (Франция). Перфторуглеродные жидкости, технологически отработанные в Санкт-Петербургском институте прикладной химии, сейчас лидируют в медицине и косметологии;

В России серьезно и без смешков в курилке задумались о теме свободного всплытия через особую систему жидкостного дыхания после ;

С момента образования РФ разработка метода жидкостного дыхания для спасения подводников, как и подготовка волонтерских испытаний 2007 года, выполнялась и выполняется без грантов, за счет средств «AVF» в работе с СПб ГМУ им. И.П. Павлова и другими организациями;

В настоящее время специальный глубоководный водолазный аппарат существует в виде проекта в рамках авторской концепции быстрого спасения подводников. Он базируется на уникальных свойствах быстрых и стойких (к давлению) водолазов жидкостного дыхания;

Arnold Lande, бывший хирург, а ныне американский пенсионер-изобретатель, зарегистрировал патент на водолазный костюм, оснащенный баллоном со специальной жидкостью, обогащенной кислородом. Так называемый “жидкий воздух” подается из баллона в шлем дайвера, заполняет собой все пространство вокруг головы, вытесняет воздух из легких, полостей носоглотки и ушей, насыщая легкие человека достаточным количеством кислорода. В свою очередь, углекислый газ, который выделяется в процессе дыхания, выходит наружу при помощи своеобразного подобия жабр, прикрепленных к бедренной вене ныряльщика. То есть сам процесс дыхания становится попросту не нужен - кислород поступает в кровь через легкие, а углекислый газ выводится прямо из крови. Правда, как будет подаваться из баллона эта самая несжимаемая жидкость пока еще не совсем понятно…;

Есть информация о том, что опыты по дыханию в жидкости вовсю проводятся. И в России в том числе;

В фильме "Бездна", конечно, никто из актеров не дышал "особой водой". И в одной из сцен даже допущен маленький, но очень запоминающийся косяк, когда Бад опускается на глубину, из его рта выходит предательский пузырек,..которого в условиях жидкостного дыхания быть не должно;

Актеру Эду Харрису, сыгравшему одну из главных ролей, роль Бада, как-то по пути со съемок пришлось съехать на обочину из-за приступа непроизвольного плача..Настолько изматывающим был процесс создания фильма. Камерон требовал исключительной правдоподобности.

Смотрите кино. Дышите свободно и съезжайте с обочин только чтобы пофотографировать бабочек.

Спасибо за открытый доступ к некоторым данным члену-корреспонденту РАЕН, к.м.н. А. В. Филиппенко.

Недавно Научно-технический совет государственного Фонда перспективных исследований одобрил «проект по созданию технологии спасения подводников свободным всплытием с использованием метода жидкостного дыхания», реализацией которого должен заняться московский Институт медицины труда (на момент написания статьи руководство института было недоступно для комментариев). «Чердак» решил разобраться, что скрывается за таинственным словосочетанием «жидкостное дыхание».

Наиболее впечатляюще жидкостное дыхание показано в фильме Джеймса Кэмерона «Бездна».

Правда, в таком виде опыты на людях еще никогда не проводились. Но в целом ученые не сильно уступают Кэмерону по части исследования этого вопроса.

Мыши как рыбы

Первым, кто показал, что млекопитающие в принципе могут получать кислород не из смеси газов, а из жидкости, был Йоханнес Килстра (Johannes Kylstra) из медицинского центра университета Дьюка (США). Вместе с коллегами он в 1962 году опубликовал работу «Мыши как рыбы » (Of mice as fish) в журнале Transactions of American Society for Artificial Internal Organs .

Килстра и его коллеги погружали мышей в физраствор. Чтобы растворить в нем достаточное для дыхания количество кислорода, исследователями «вгоняли» газ в жидкость под давлением до 160 атмосфер — как на глубине 1,5 километра. Мыши в этих экспериментах выживали, но не очень долго: кислорода в жидкости было достаточно, а вот сам процесс дыхания, втягивания и выталкивания жидкости из легких требовал слишком больших усилий.

«Вещество Джо»

Стало понятно, что нужно подобрать такую жидкость, в которой кислород будет растворяться намного лучше, чем в воде. Требуемыми свойствами обладали два типа жидкостей: силиконовые масла и жидкие перфторуглероды. После экспериментов Леланда Кларка (Leland Clark), биохимика из медицинской школы университета Алабамы, в середине 1960-х годов выяснилось, что оба типа жидкостей можно использовать для доставки кислорода в легкие. В опытах мышей и кошек полностью погружали и в перфторуглероды, и в силиконовые масла. Однако последние оказались токсичны — подопытные звери погибали вскоре после эксперимента. А вот перфторуглероды оказались вполне пригодны для использования.

Перфторуглероды были впервые синтезированы в ходе Манхэттенского проекта по созданию атомной бомбы: ученые искали вещества, которые бы не разрушались при взаимодействии с соединениями урана, и они проходили под кодовым названием «вещества Джо» (Joe’s stuff). Для жидкостного дыхания они подходят очень хорошо: «вещества Джо» не взаимодействуют с живыми тканями и прекрасно растворяют газы, в том числе кислород и углекислый газ при атмосферном давлении и нормальной температуре человеческого тела.

Килстра и его коллеги исследовали технологию жидкостного дыхания в поисках технологии, которая бы позволяла людям погружаться и всплывать на поверхность, не опасаясь развития кессонной болезни. Быстрый подъем с большой глубины с запасом сжатого газа очень опасен: газы лучше растворяются в жидкостях под давлением, поэтому по мере того, как водолаз всплывает, растворенные в крови газы, в частности азот, образуют пузырьки, которые повреждают кровеносные сосуды. Результат может быть печальным, вплоть до смертельного.

В 1977 году Килстра представил в Военно-морское министерство США заключение, в котором писал, что, по его расчетам, здоровый человек может получать необходимое количество кислорода при использовании перфторуглеродов, и, соответственно, их потенциально возможно использовать вместо сжатого газа. Ученый указывал, что такая возможность открывает новые перспективы для спасения подводников с больших .

Эксперименты на людях

На практике техника жидкостного дыхания, к тому времени получившая название жидкостной вентиляции легких, была применена на людях всего один раз, в 1989 году. Тогда Томас Шаффер (Thomas Shaffer), педиатр из медицинской школы Темпльского университета (США), и его коллеги использовали этот метод для спасения недоношенных младенцев. Легкие зародыша в утробе матери заполнены жидкостью, а когда человек рождается и начинает дышать воздухом, тканям легких на протяжении всей оставшейся жизни не дает слипаться смесь веществ, называемая легочным сурфактантом. У недоношенных младенцев он не успевает накопиться в нужном количестве, и дыхание требует очень больших усилий, что чревато летальным исходом. В тот раз, правда, жидкостная вентиляция младенцев не спасла: все трое пациентов вскоре умерли, однако этот печальный факт был отнесен на счет других причин, а не на счет несовершенства метода.

Больше экспериментов по тотальной жидкостной вентиляции легких, как эта технология называется по-научному, на людях не проводилось. Однако в 1990-х годах исследователи модифицировали метод и проводили на пациентах с тяжелым воспалительным поражением легких эксперименты по частичной жидкостной вентиляции, при которой легкие заполняются жидкостью не полностью. Первые результаты выглядели обнадеживающими, но в конечном счете до клинического применения дело не дошло — оказалось, что обычная вентиляция легких воздухом работает не хуже.

Патент на фантастику

В настоящее время исследователи вернулись к идее использования полной жидкостной вентиляции легких. Однако фантастическая картина водолазного костюма, в котором человек будет дышать жидкостью вместо специальной смеси газов, далека от реальности, хотя и будоражит воображение публики и умы изобретателей.

Так, в 2008 году отошедший от дел американский хирург Арнольд Ланде (Arnold Lande) запатентовал водолазный костюм с использованием технологии жидкостной вентиляции. Вместо сжатого газа он предложил использовать перфторуглероды, а избыток углекислоты, которая будет образовываться в крови, выводить при помощи искусственных жабр, «воткнутых» прямо в бедренную вену водолаза. Изобретение получило некоторую известность после того, как о нем написало издание The Inpependent .

Как считает специалист по жидкостной вентиляции из Шербрукского университета в Канаде Филипп Мишо (Philippe Micheau), проект Ланде выглядит сомнительным. «В наших экспериментах (Мишо и его коллеги проводят эксперименты на ягнятах и крольчатах со здоровыми и поврежденными легкими — прим. «Чердака») по тотальному жидкостному дыханию животные находятся под анестезией и не двигаются. Поэтому мы можем организовать нормальный газообмен: доставку кислорода и удаление углекислого газа. Для людей при физической нагрузке, такой как плавание и ныряние, доставка кислорода и удаление углекислоты будут проблемой, так как выработка углекислоты в таких условиях выше нормы», — прокомментировал Мишо. Ученый также отметил, что технология закрепления «искусственных жабр» в бедренной вене ему неизвестна.

Главная проблема «жидкостного дыхания»

Более того, Мишо считает саму идею «жидкостного дыхания» сомнительной, поскольку для «дыхания» жидкостью человеческая мускулатура не приспособлена, а эффективная система насосов, которая бы помогала закачивать и выкачивать жидкость из легких человека, когда он двигается и выполняет какую-то работу, до сих пор не разработана.

«Я должен заключить, что на современном этапе развития технологий невозможно разработать водолазный костюм, используя метод жидкостной вентиляции», — считает исследователь.

Однако применение этой технологии продолжает исследоваться для других, более реалистичных целей. Например, для помощи утонувшим, промывания легких при различных заболеваниях или быстрого понижения температуры тела (применяется в случаях реанимации при остановке сердца у взрослых и новорожденных с гипоксически-ишемическим поражением мозга).

Фото: РИА "Новости"
Сергей Пятаков

Человек будущего сможет погружаться на огромные глубины, но ему придется научиться дышать жидкостью.

Жидкостное дыхание, или дыхание с помощью хорошо растворяющей кислород жидкости давно стало идеей фикс для ученых всего мира. Прибор «человека-амфибии» способен сохранить жизни аквалангистам и подводникам, эта технология может быть использована в медицине, а в перспективе будет полезна при совершении длительных космических полетов при освоении других планет. Реальные разработки по созданию аппарата жидкостного дыхания велись в 1970-1980 е годы в СССР и США, тогда эксперименты проводились на животных, но больших успехов добиться не удалось. Насколько перспективной и реалистичной остается эта технология, разбирался корреспондент «Совершенно секретно».

Нужно отметить, что жидкостное дыхание на первый взгляд кажется фантастическим вымыслом, но на самом деле имеет вполне научную основу, и под эту идею подведена серьезная теоретическая база. Вместо кислорода ученые предлагают использовать особые химические соединения, которые способны очень хорошо растворять кислород и углекислый газ.

ЖИДКОСТНОЕ ДЫХАНИЕ ИЗБАВИТ ВОДОЛАЗОВ ОТ КЕССОННОЙ БОЛЕЗНИ

Вице-адмирал, Герой Социалистического Труда, доктор технических наук, профессор, действительный член РАЕН, председатель Комитета по проведению подводных работ особого назначения при Правительстве РФ в 1992-1994 годах Тенгиз Борисов рассказал «Совершенно секретно», что опыты с жидкостным дыханием ведутся на протяжении нескольких десятков лет.

«В настоящее время человек ограничен в возможностях - водолаз, в дыхательных баллонах которого находится обычный воздух, может без риска для здоровья погрузиться на глубину 60 метров. В исключительных случаях самые опытные пловцы достигали 90 метров, дальше человеческий организм подвергается токсическому воздействию азота. После того как появились специальные гелийсодержащие газовые смеси, в которых поддерживается небольшое постоянное давление кислорода и отсутствует азот, стало возможным в жестких скафандрах погружаться до 300 метров, и это предел.

Главный враг водолазов - кессонная болезнь: при всплытии с большой глубины из-за быстрого понижения давления вдыхаемой дыхательной смеси газы, которые растворяются в крови, начинают бурно выделяться, как будто бутылку шампанского встряхнули, и вино внутри вспенилось. Газы разрушают стенки клеток и кровеносных сосудов, забивают капилляры, блокируют кровоток, последствия ужасные - при тяжелой форме декомпрессионная болезнь может привести к параличу или смерти.

Чтобы дальше двигаться на глубину, нужны новые технологии. И сегодня как самый перспективный рассматривается принцип жидкостного дыхания. Этот метод должен преодолеть основные проблемы водолазов: при погружении и всплытии решится вопрос с компрессией, не будет происходить обжатия грудной клетки, поскольку жидкости практически не сжимаются.

Однако, даже если специальные жидкие смеси будут созданы, придется разработать методы применения жидкостного дыхания. Ведь для того, чтобы человеку заполнить свои легкие тягучим веществом, придется преодолеть жесточайшее психологическое сопротивление организма. Были проведены эксперименты на людях: при попытке заполнить легкие у человека непроизвольно происходит срабатывание рефлексов, начинает сжиматься гортань и перекрываются легкие.

У человека существует врожденная реакция на воду - достаточно капле попасть на чувствительные клетки бронхов, как кольцевая мышца сдавливает горло, возникают спазмы, а затем наступает удушье. Хотя специальная жидкость никакого вреда причинить не может, но организм отказывается это понимать, и мозг дает команду сопротивляться. В завершение не менее неприятная процедура, когда эту жидкость нужно удалять из легких. Но если решение будет найдено, это будет серьезный прорыв - тогда водолазы получат возможность работать на очень больших глубинах.

Предполагается, что эта технология будет использоваться в военных целях, для разведки нефтегазовых месторождений и обслуживания глубоководных скважин, а также для подъема ценностей с затонувших на больших глубинах кораблей. Сегодня в мире ведется несколько разработок, которые позволяют надеяться, что эта технология получит путевку в будущее».


ИССЛЕДОВАНИЯ ПОМОГЛИ В РАБОТЕ АМЕРИКАНСКИХ НЕОНАТОЛОГОВ

Американцы обратились к идее жидкостного дыхания в 1960 х. И пожалуй, самое большое их достижение - зарегистрированный патент на водолазный костюм, оснащенный баллоном со специальной жидкостью, обогащенной кислородом. Согласно идее автора, так называемый жидкий воздух, который подается из баллона в шлем дайвера, заполняет собою все пространство вокруг головы, вытесняет воздух из легких, полостей носоглотки и ушей, насыщая легкие человека достаточным количеством кислорода. Жидкость для дыхания предполагалось создать на основе перфторуглеродов, в которых можно растворить требуемое количество газа.

В свою очередь, углекислый газ, который выделяется в процессе дыхания, должен был выводиться при помощи своеобразного аналога жабр, прикрепленного к бедренной вене ныряльщика. В итоге кислород поступает в кровь через легкие, а углекислый газ выводится прямо из крови. Правда, для использования такой системы человек должен будет научиться обходиться без использования основных функций дыхательной системы - вдохов и выдохов.

Первые опыты, связанные с дыханием при помощи жидкости, американцами были проведены в 1960 е годы. Проводились они на грызунах. Ученые осуществили полную замену крови крыс эмульсией с большой концентрацией жидкого кислорода. Какое-то время животные мог-ли дышать жидкостью, но их организм не смог выводить углекислый газ, что через непродолжительное время привело к разрушению легких. В последующие годы формула была доработана.

Одной из самых удачных разработок стала жидкость, которая используется в LiquiVent - препарате, созданном для лечения тяжелого расстройства дыхания у недоношенных новорожденных. По своей консистенции это чистая маслянистая жидкость, обладающая малой плотностью, которая содержит больше кислорода, чем воздух. Поскольку эта жидкость инертна, она не наносит вреда легким, так как у нее весьма низкая температура кипения и она быстро и легко выводится из легких.

Это вещество привлекает специалистов еще и потому, что оно бесцветно, не имеет запаха и нетоксично - почти как воздух. Эта жидкость удерживает гораздо большее, чем воздух, количество кислорода на единицу объема. Во время следующих экспериментов мыши и кошки, погруженные в насыщенную кислородом перфторуглеводородную жидкость, жили уже в течение нескольких дней. Однако во время опытов также выяснилось, что нежные легкие млекопитающих плохо приспособлены к тому, чтобы постоянно вкачивать и выкачивать жидкость - поэтому заменять ею воздух можно только на очень непродолжительное время.

Идею системы жидкостного дыхания сегодня используют в своей практике врачи-неонатологи, которые уже более 20 лет применяют подобные технологии для ухода за недоношенными младенцами. В этой отрасли медицины жидкостное дыхание получило широкое применение. Этот способ используют для спасения новорожденных. Легочная ткань таких младенцев к рождению сформирована не до конца, поэтому с помощью специальных устройств дыхательную систему насыщают как раз кислородсодержащим раствором на основе перфторуглеродов. Неслучайно в состав групп по созданию жидкостного дыхания американские экспериментаторы непременно включают врачей этого профиля.

КРУПНЫЕ МЛЕКОПИТАЮЩИЕ ДЫШАТЬ ЖИДКОСТЬЮ ТАК И НЕ НАУЧИЛИСЬ

В дальнейшем за счет усовершенствования дыхательной жидкости удалось добиться многочасового жидкостного дыхания у мелких лабораторных животных - мышей и крыс и у щенков собак. Однако ученые столкнулись с новой проблемой - добиться устойчивого жидкостного дыхания у крупных лабораторных животных (взрослых собак, диаметр трахеи и устройство легких которых близки к человеку) так и не получилось. Взрослые собаки выдерживали не более 10-20 минут и погибали от легочной недостаточности. Перевод на искусственную вентиляцию жидкостью легких с помощью клинической аппаратуры улучшал показатели, но дополнительное оборудование для дыхательного снаряжения разработчиками не рассматривается.

Для того чтобы человек мог дышать жидкостью, она должна выполнять две главные функции: поставлять кислород легким и выводить углекислый газ. Этим свойством обладает кислород, который человек вдыхает, и еще несколько газов, а также, как доказали ученые, некоторые жидкости тоже способны выполнять подобные функции. При этом неудачные эксперименты с жидкостным дыханием также имеют объяснение: человеческие легкие намного тяжелее воспринимают и выводят жидкость, чем воздух, поэтому процесс замены углекислого газа кислородом происходит с большим замедлением.

Действительно, человеческие легкие технически способны «дышать» определенной богатой кислородом жидкостной смесью, но только на протяжении нескольких минут. Если предположить, что жидкое дыхание получит распространение, то больным людям, использующим жидкий воздух в медицинских целях, придется постоянно использовать дополнительные устройства, по сути, таскать на себе аппарат искусственной вентиляции легких для стимулирования дыхания. Водолазам, которые и так под водой испытывают жесточайший дискомфорт, придется нести на себе дополнительное оборудование, при этом дышать жидкостью во время длительных и глубоких погружений будет нелегко.

В США ЗАПАТЕНТОВАН ВОДОЛАЗНЫЙ КОСТЮМ, В КОТОРОМ ИСПОЛЬЗОВАН ПРИНЦИП ЖИДКОСТНОГО ДЫХАНИЯ


В РОССИИ, ВОЗМОЖНО, ПОСТАВИЛИ ОПЫТ НАД ЧЕЛОВЕКОМ

В Советском Союзе также существовали программы жидкостного дыхания. В одном из советских НИИ добились значительных результатов в реализации жидкостного дыхания. Были разработаны специальные аппараты, ставились опыты на животных и были достигнуты определенные результаты. Мыши и собаки, действительно, дышали жидкостью, причем достаточно длительное время. Есть информация, что в 1991 году должны были состояться первые опыты на волонтерах. Нужно отметить, что в Советском Союзе эти программы не имели коммерческой направленности и были связаны исключительно с военными разработками.

Поэтому в связи с прекращением финансирования, все работы были свернуты, а позднее - полностью прекращены. Однако недавно некоторые проекты были реанимированы. Как удалось узнать «Совершенно секретно», в одном из оборонных НИИ России провели эксперимент с добровольцем, у которого в результате хирургической операции в связи с опасной патологией была удалена гортань (поэтому кольцевая мышца отсутствовала, это позволило успешно провести эксперимент).

Человеку залили специальный раствор сначала в легкие, а затем погрузили под воду в специально изготовленной маске. После эксперимента жидкость из его легких была безболезненно откачана. Воодушевленные этим успехом российские специалисты утверждают, что в будущем дышать под водой смогут обычные люди с нормальным горлом, поскольку преодоление рефлекторной реакции организма на жидкость вполне реально.

Член-корреспондент РАЕН, кандидат медицинских наук Андрей Филиппенко, который продолжительное время работает над проектом жидкостного дыхания, рассказал «Совершенно секретно», что в настоящее время об этих разработках практически ничего нельзя говорить из-за их закрытости.

«Сегодня эти разработки ведутся как в интересах военных, так и в гражданской сфере. Существует множество технологических трудностей, которые стопорят продвижение этих проектов. В настоящее время эта технология работает исключительно в лаборатории и совершенно непригодна для эксплуатации в реальных условиях. Например, на больших глубинах. Эта технология плохо работает не только в России, но и за рубежом. Чтобы продвинуться вперед, необходимо усовершенствовать множество технологий, в том числе те, которые связаны с преодолением большого давления».

ЖИДКОСТНОЕ ДЫХАНИЕ МОЖЕТ БЫТЬ ВОСТРЕБОВАНО В КОСМОСЕ И У ПОДВОДНИКОВ

В Советском Союзе одно время рассматривалась идея межпланетного перелета. Так как космический полет сопряжен с большими перегрузками космонавтов, анализировались варианты, как их уменьшить. Среди прочего предлагался вариант погружения космических путешественников в жидкость. Действительно, если человека погрузить водообразный раствор, то при перегрузках давление будет распространяться равномерно на все тело. Таков принцип использовался при создании антиперегрузочного костюма, который применяется в ВВС Германии. Производитель - немецко-швейцарская компания AutoflugLibelle - заменила воздушные подушки герметичными сосудами с жидкостью. Таким образом, костюм представляет собой жесткий скафандр, наполненный водой. Это позволяет пилоту сохранять сознание и работоспособность даже при огромных (свыше 10 g) перегрузках.

Однако использование положительных свойств жидкости для дыхания в авиации и космонавтике может навсегда остаться мечтой - вещество для костюма защиты от перегрузок должно обладать плотностью воды, а единственная рабочая на сегодняшний день перфторуглеводородная жидкость в два раза тяжелее. Если идею удастся реализовать, погруженный в жидкую среду и дышащий твердым кислородом космонавт практически не будет ощущать эффекта экстремально высоких перегрузок, поскольку силы будут распределяться равномерно во всех направлениях.

Несомненно, что технология жидкостного дыхания в первую очередь нужна морякам-подводникам. Как это ни парадоксально звучит, но в настоящее время нет надежных способов спасения людей, терпящих бедствие на больших глубинах. Не только у нас, но и во всем мире методы и техника спасения терпящих бедствие на большой глубине много лет практически не развиваются. То, что средства аварийного спасения экипажей безнадежно устарели и нуждаются в скорейшей модернизации, показала трагедия подлодки «Курск».

Субмарина была оснащена оборудованием, помогающим покинуть ее в случае аварии, но всплывающая спасательная камера была повреждена взрывом, и воспользоваться ею не удалось. Кроме того, для каждого члена команды было предусмотрено штатное индивидуальное спасательное средство, которое позволяло спасаться с глубины до 120 метров. Несколько минут, необходимых для подъема, человек в этом снаряжении может дышать кислородно-гелиевой смесью. Но и этими средствами люди воспользоваться не смогли. Помимо прочего, это связано и с тем, что баллоны с гелием на подлодке не хранятся, поскольку при высокой концентрации в воздухе этот газ может вызвать удушье и состояние кислородной недостаточности.

Таков большой недостаток индивидуального снаряжения. Спасатели должны были передать баллоны членам команды снаружи, через люки шлюзовой камеры. Нужно отметить, что все это оборудование было разработано в далеком 1959 году и с тех пор никак не менялось. Да и сегодня никаких альтернатив не видно. Возможно, поэтому о применении дыхания жидкостью в морском аварийно-спасательном деле говорят как о самом перспективном методе будущего.

«Далеко не все так просто, как было представлено сегодня. Бедная собачка». Такими словами специалисты комментируют эксперимент, продемонстрированный Дмитрием Рогозиным президенту Сербии как пример новейших научных разработок России: собака смогла дышать не воздухом, а жидкостью. Что представляет собой эта технология и может ли она помочь российским военным?

В ходе встречи в Москве с президентом Сербии Александром Вучичем вице-премьер Дмитрий Рогозин во вторник ряд новейших разработок российского Фонда перспективных исследований (ФПИ). Рогозин отметил, что сербского гостя могли бы свозить на какое-нибудь огромное промышленное предприятие, но куда интереснее «показать тот самый завтрашний день, куда мы стремимся». Таким «гвоздем программы» стал уникальный проект жидкостного дыхания, который был впервые продемонстрирован публично.

Как пояснил руководитель проекта военно-морской врач Федор Арсеньев, задача данного изобретения состоит в спасении экипажа гибнущей подводной лодки. Как известно, с глубины ниже 100 метров невозможно быстро подняться на поверхность из-за кессонной болезни. Чтобы избежать ее, на подлодке можно будет надеть аппарат с «не содержащей азота жидкостью», как передал ТАСС . Легкие человека при этом не будут сжиматься, что позволит быстро подняться на поверхность и спастись.

На глазах у сербского президента в особый резервуар с жидкостью была помещена собака – такса. За несколько минут она освоилась и начала самостоятельно «дышать» жидкостью. После сотрудники лаборатории вынули пса из резервуара, вытерли полотенцем, и президент Сербии смог лично убедиться, что собака в порядке. Вучич погладил пса и признался, что очень впечатлен.

Мечта про «человека-амфибию»

«Жидкостное дыхание как медицинская технология подразумевает вентиляцию легких не воздухом, а насыщенной кислородом жидкостью. В рамках проекта решается научная задача по изучению особенностей влияния различных переносящих кислород веществ на газообмен и другие функции клеток, тканей и органов млекопитающих», – рассказали газете ВЗГЛЯД в отделе по связям с общественностью Фонда перспективных исследований (ФПИ).

Одним из направлений является формирование медико-биологических основ технологии самостоятельной эвакуации подводников с больших глубин на поверхность, отметили в ФПИ, но технология способна вообще заметно продвинуть исследование человеком ранее не изученных морских и океанских глубин. Утверждается, что данная разработка понадобится и в медицине – например, поможет выходить недоношенных детей или людей, получивших ожоги дыхательных путей, найдет применение в лечении бронхообструктивных, инфекционных и других тяжелых заболеваний.

Нужно отметить, что жидкостное дыхание на первый взгляд кажется фантастическим вымыслом, но на самом деле имеет научную основу, и под эту идею подведена серьезная теоретическая база. Вместо кислорода ученые предлагают использовать особые химические соединения, которые способны хорошо растворять кислород и углекислый газ.

«Жидкостное дыхание» давно стало идеей фикс для ученых всего мира. Прибор «человека-амфибии» способен спасать аквалангистов и подводников, а в перспективе пригодится в длительных космических полетах. Разработки велись в 1970–1980-е годы в СССР и США, эксперименты проводились на животных, но больших успехов добиться не удалось.

Член-корреспондент РАЕН, кандидат медицинских наук Андрей Филиппенко, который продолжительное время работает над проектом жидкостного дыхания, признавался ранее газете «Совершенно секретно» , что о разработках практически ничего нельзя говорить из-за их закрытости. Но то, что средства аварийного спасения экипажей безнадежно устарели и нуждаются в скорейшей модернизации, показала трагедия подлодки «Курск».

Напомним, ранее сообщалось о других смелых проектах ФПИ, в частности это «конструктор» для создания и самолета будущего.

Наверху должна ждать реанимация

«Технология не один десяток лет отрабатывалась, но для этого нужны очень хорошо подготовленные люди. Когда человеку вливают в легкие эту жидкость – будет автоматически срабатывать инстинкт самосохранения, спазмы перекрывают горло, организм сопротивляется изо всех сил. Обычно это делается под наблюдением врачей. На людях такие опыты проводились в единичных случаях, а в основном они отрабатывались на животных», – пояснил газете ВЗГЛЯД глава Комитета при правительстве РФ по проведению подводных работ особого назначения в 1992–1994 гг., доктор технических наук, профессор, вице-адмирал Тенгиз Борисов.

«Как правило, вставляется в гортань специальная трубка, с помощью которой легкие медленно заполняются этой жидкостью, – сказал Борисов, добавив:

– При этом организм всячески сопротивляется, нужны препараты, которые блокируют спазмы, нужны анестетики. Далеко не все так просто, как было представлено сегодня. Бедная собачка».

«Если человек всплывет из подводной лодки, то он действительно избежит кессонной болезни, но самостоятельно спасаться подводники в любом случае не смогут. Нужно: а) исключительно грамотные люди на подводной лодке, б) наверху должна ждать, грубо говоря, команда реанимации, которая будет выкачивать из человека эту жидкость и заставлять его дышать обычным способом», – добавил эксперт.

«Думаю, в медицине эту технологию куда легче внедрить и применять в условиях стационара, когда рядом есть специалисты и большое количество необходимой аппаратуры. А вот спасение экипажа затонувшей субмарины такими методами в обозримом будущем крайне маловероятно», – заключил Борисов.