Эволюция на земле закончилась стадии животных. Самые первые организмы. Развитие живых организмов

План

Введение

1. Эволюция жизни на Земле

1.1 Эволюция одноклеточных организмов

1.2 Эволюция многоклеточных организмов

1.3 Эволюция растительного мира

1.4 Эволюция животного мира

1.5 Эволюция биосферы

Заключение

Список использованной литературы

Введение

Часто кажется, что организмы находятся всецело во власти среды: среда ставит им пределы, и в этих пределах они должны либо преуспеть, либо погибнуть. Но организмы и сами воздействуют на среду. Они изменяют ее непосредственно за недолгое свое существование и за долгие периоды эволюционного времени. Как известно, гетеротрофы поглощали питательные вещества из первичного «бульона» и что автотрофы способствовали появлению окислительной атмосферы, подготовив, таким образом, условия для возникновения и эволюции процесса дыхания.

Появление в атмосфере кислорода обусловило возникновение озонового слоя («озонового щита Земли»). Озон образуется из кислорода под воздействием ультрафиолетового излучения Солнца и действует как фильтр, который задерживает ультрафиолетовое излучение, губительное для белков и нуклеиновых кислот, и не дает ему дойти до поверхности Земли.

Первые организмы жили в воде, и вода экранировала их, поглощая энергию ультрафиолетового излучения. До появления защитного озонового слоя ультрафиолетовое излучение было, вероятно, одним из главных факторов, препятствовавших выходу первых живых организмов из воды на сушу.

Первые поселенцы суши нашли здесь в изобилии и солнечный свет, и минеральные вещества, так что вначале они были практически избавлены от конкуренции. Деревья и травы, покрывшие вскоре растительную часть земной поверхности, пополняли запас кислорода в атмосфере; кроме того, они изменяли характер водного стока па Земле и ускоряли процесс образования почв из горных пород. Так организмы и среда на протяжении всей истории жизни на нашей планете взаимно формировали друг друга.

Гигантский шаг на пути эволюции жизни был связан с возникновением основных биохимических процессов обмена — фотосинтеза и дыхания, а также с образованием эукариотической клеточной организации, содержащей ядерный аппарат.

1. Эволюция жизни на Земле

1.1 Эволюция одноклеточных организмов

Различие между прокариотами и эукариотами заключается в том, что прокариоты могут жить как в бескислородной среде, так и в среде с разным содержанием кислорода, в то время как для эукариотов, за немногим исключением, обязателен кислород.

Сравнение прокариот и эукариот по потребности в кислороде приводит к заключению, что прокариоты возникли в период, когда содержание кислорода в среде изменялось. Ко времени же появления эукариот концентрация кислорода была высокой и относительно постоянной.

Первые фотосинтезирующие организмы появились около 3 млрд. лет назад. Это были анаэробные бактерии, предшественники современных фотосинтезирующих бактерий. Именно они образовали самые древние среди известных строматолитов. Обеднение среды азотистыми органическими соединениями вызывало появление живых существ, способных использовать атмосферный азот. Такими организмами являются фотосинтезирующие азотфиксирующие сине-зеленые водоросли, осуществляющие анаэробный фотосинтез. Они устойчивы к продуцируемому ими кислороду и могут использовать его для собственного метаболизма. Поскольку сине-зеленые водоросли возникли в период, когда концентрация кислорода в атмосфере изменялась, вполне очевидно, что они — промежуточные формы между анаэробами и аэробами.

Считается, что хемосинтез, в котором источником атомов водорода для восстановления углекислого газа является сероводород (такой хемосинтез осуществляют современные зеленые и пурпурные серные бактерии), предшествовал более сложному двустадийному; фотосинтезу, при котором источником атомов водорода являются молекулы воды. Второй тип фотосинтеза характерен для зеленых растений.

Фотосинтезирующая деятельность первичных одноклеточных имела два последствия, оказавшие решающее влияние на всю дальнейшую эволюцию живого.

Во-первых, фотосинтез освободил организмы от конкуренции за природные запасы абиогенных органических соединений, количество которых в среде значительно сократилось. Развившиеся посредством фотосинтеза автотрофное питание и запасание питательных готовых веществ в растительных тканях создали затем условия для появления громадного разнообразия автотрофных и гетеротрофных организмов.

Во-вторых, фотосинтез обеспечивал насыщение атмосферы достаточным количеством кислорода для возникновения и развития организмов, энергетический обмен которых основан на процессах дыхания.

Когда же появились эукариотические клетки? Значительное количество данных об ископаемых эукариотах позволяет сказать, что их возраст составляет около 1,5 млрд. лет. В эволюции одноклеточной организации выделяются ступени, связанные с усложнением строения организма, совершенствованием генетического аппарата и способов размножения.

Прогрессивным явлением в филогенезе простейших было возникновение у них полового размножения. Постепенно в ходе прогрессивной эволюции произошел переход к разделению генеративных клеток на женские и мужские.

1.2 Эволюция многоклеточных организмов

Следующая после возникновения одноклеточных ступень эволюции заключалась в образовании и прогрессивном развитии многоклеточных организмов. Эта ступень отличается большой усложненностью переходных стадий (форм), из которых выделяются колониальная одноклеточная, первично-дифференцированная, централизованно-дифференцированная.

Колониальная одноклеточная стадия.

Колониальная одноклеточная стадия считается переходной от одноклеточного организма к многоклеточному и является наиболее простой из всех стадий в эволюции многоклеточной организации.

Первично-дифференцированная стадия.

Первично-дифференцированная стадия в эволюции многоклеточных организмов характеризуется началом специализации по «принципу разделения труда» у членов колонии. На первично-дифференцированной стадии происходит специализация функций на тканевом, органном и системно-органном уровнях. Так, у кишечнополостных сформировалась простая нервная система, которая, распространяя импульсы, координирует деятельность двигательных, железистых, стрекательных, репродуктивных клеток. Нервного центра как такового еще нет, но центр координации имеется.

Централизованно-дифференцированная стадия.

С кишечнополостных начинается развитие централизованно-дифференцированной стадии в эволюции многоклеточной организации. На этой стадии усложнение морфофизиологической структуры идет через усиление тканевой специализации, начиная с возникновения зародышевых листков, детерминирующих морфогенез пищевой, выделительной, генеративной и других систем органов. Возникает хорошо выраженная централизованная нервная система. Одновременно совершенствуются способы полового размножения — от наружного оплодотворения к внутреннему, от свободной инкубации яиц вне материнского организма к живорождению.

Заключительным этапом в эволюции централизованно-дифференцированной стадии стало возникновение человека.

1.3 Эволюция растительного мира

В протерозойскую эру (около 1 млрд. лет назад) эволюционный ствол древнейших эукариот разделился на несколько ветвей, от которых возникли многоклеточные растения (зеленые, бурые и красные водоросли), а также грибы. Большинство из первичных растений свободно плавало в морской воде, часть прикреплялась ко дну.

Существенным условием дальнейшей эволюции растений был образование субстрата на поверхности суши в результате воздействия бактерий на минеральные вещества и под влиянием климатических факторов. В конце силурийского периода почвообразовательные процессы подготовили возможность выхода растений на сушу (41 млн. лет назад).

Первыми растениями, освоившими сушу, были псилофиты. Затем возникли другие группы наземных сосудистых растений: плауны, хвощи, папоротники, размножающиеся спорами и предпочитающие водную среду. Примитивные сообщества этих растений широко распространились в девоне. В этот же период появились и первые голосеменные, возникшие от древних папоротников и унаследовавшие от них внешний древовидный облик.

Переход к размножению семенами имел большое значение, так как освободил процесс полового размножения от связи со средой.

Значительного разнообразия достигла наземная флора в каменноугольный период. Среди древовидных широко распространились плаунообразные, достигавшие в высоту 30 м и более, из первичных голосеменных господствовали разнообразные птеридоспермы и кордаиты, напоминавшие стволами хвойные и имевшие длинные лентовидные листья. Начавшийся в пермский период расцвет голосеменных, в частности хвойных, привел к их господству в мезозойскую эру. К середине пермского периода климат стал засушливее, что во многом отразилось на изменениях в составе флоры. Сошли с арены гигантские папоротники, древовидные плауны, каламиты и исчез столь яркий для той эпохи колорит тропических растений.

Опыление насекомыми и внутреннее оплодотворение создали значительные преимущества цветковых над голосеменными, что обеспечило их расцвет в кайнозое.

Итак, можно отметить следующие основные особенности эволюции растительного мира:

1) постепенный переход к преобладанию диплоидного поколения над гаплоидным;

2) половое "размножение, не зависимое от капельно-воздушной среды; переход от наружного оплодотворения к внутреннему, возникновение двойного оплодотворения.

3) в связи с прикрепленным образом жизни на суше растение расчленяется на корень, стебель и лист, развиваются сосудистая проводящая система и защитные ткани;

4) совершенствование органов размножения и перекрестного опыления у цветковых в сопряженной эволюции с насекомыми - развитие зародышевого мешка для защиты растительного эмбриона от неблагоприятных влияний внешней среды; возникновение разнообразных способов распространения семян и плодов физическими и биологическими способами.

1.4 Эволюция животного мира

История животных изучена наиболее полно в связи с тем, что они обладают скелетом и поэтому лучше сохраняются в окаменелых остатках. Самые ранние следы животных обнаруживаются в конце докембрия (700 млн. лет назад). Предполагается, что первые животные произошли либо от общего ствола всех эукариот, либо от одной из групп древнейших водорослей. Наиболее близки к предкам простейших животных одноклеточные зеленые водоросли. Не случайно, например, эвглену и вольвокс, способных и к фотосинтезу, и к гетеротрофному питанию, ботаники относят к типу зеленых водорослей, а зоологи — к типу простейших животных.

Разнообразие и количество палеонтологических документов истории животных резко возрастают в породах, датируемых менее 570 млн. лет. В течение примерно 50 млн. лет довольно быстро появляются почти все типы животных с прочным скелетом. Возникновение Типа Хордовых относится ко времени менее 500 млн. лет.

Начало палеозоя отмечено образованием многих типов животных, из которых примерно треть существует и в настоящее время. В позднее кембрийское время появляются первые рыбы. В девоне возникают челюстные рыбы в результате таких крупных эволюционных преобразований, как превращение передней пары жаберных дуг в челюсти и формирование парных плавников. Первых челюстноротых представляли две группы: лучеперые и лопастеперые рыбы. Почти все живущие рыбы — потомки лучеперых. Лопастеперые имели в плавниках костные опорные элементы, из которых развились конечности первых обитателей суши. Следовательно, все четвероногие позвоночные имеют свою далеким предком эту исчезнувшую группу рыб.

Наиболее древние представители амфибий - ихтиостеги - обнаружены в верхнедевонских отложениях (Гренландия). Они обладали пятипалыми конечностями, с помощью которых переползали по суше. Конкуренция с кистеперыми заставляла первых земноводных занимать местообитания, промежуточные между водой и сушей.

От примитивных амфибий ведут свое начало рептилии, широко расселившиеся на суше к концу пермского периода благодаря приобретению легочного дыхания и оболочек яиц, защищающих от высыхания. Первые рептилии уступили место гигантским рептилиям, динозаврам, появившимся 150 млн. лет назад. Вполне вероятно, что последние были теплокровными животными. В связи с теплокровностью динозавры вели активный образ жизни, чем можно объяснить их длительное господство и сосуществование с млекопитающими.

Уже в период господства динозавров существовала группа млекопитающих — небольших по размеру животных с шерстным покровом, возникших от одной из линий хищных рептилий — терапсид. Млекопитающие вышли на передний край эволюции благодаря таким прогрессивным особенностям, как более развитый мозг и связанная с этим большая активность, теплокровность, вскармливание потомства молоком.

Значительного разнообразия млекопитающие достигли в кайнозое, тогда же появились приматы. Третичный период был временем расцвета млекопитающих. Прогрессивная эволюция приматов оказалась уникальным явлением в истории развития жизни на Земле, в итоге она привела к возникновению человека.

Особенности эволюции животного мира:

1) прогрессивное развитие многоклеточных организмов и связанная с ним специализация тканей и всех систем органов. Свободный образ жизни и способность к перемещению в значительной мере определили совершенствование форм поведения, а также относительную независимость индивидуального развития от колебаний факторов внешней среды на основе развития внутренних регуляторных систем;

2) возникновение твердого скелета: наружного — у членистоногих, внутреннего — у позвоночных. Такое разделение определило разные пути эволюции этих типов животных. Наружный скелет членистоногих препятствовал увеличению размеров тела, именно поэтому все насекомые представлены мелкими формами. Внутренний скелет позвоночных не ограничивал увеличение размеров тела, которые постигли максимальной величины у мезозойских рептилий — динозавров и ихтиозавров;

3) возникновение органо-полостных и совершенствование их на централизованно-дифференцированной стадии до млекопитающих. На этой стадии произошло разделение насекомых и позвоночных. Развитие центральной нервной системы у насекомых характеризуется| совершенствованием форм поведения по типу наследственного укрепления инстинктов. У позвоночных развился головной мозг и система условных рефлексов. Наблюдается ярко выраженная тенденция к повышению средней выживаемости отдельных особей.

Данный путь эволюции позвоночных привел к развитию форм группового адаптивного поведения, заключительным событием которогo стало возникновение биосоциального существа — человека.

1.5 Эволюция биосферы

Эволюция биосферы обусловлена тремя группами факторов:

1) развитием Земли как космического тела и протекающими и ее недрах химическими преобразованиями;

2) биологической эволюцией живых организмов;

3) развитием человеческого общества.

С момента возникновения жизнь оформилась в виде примитивной биосферы, и с этого времени ее эволюция тесно сопряжена с возникновением разнообразных видов микроорганизмов, грибов, растений, животных. Число вымерших видов, некогда обитавших на земном шаре, определяется от одного до нескольких миллиардов. Многообразие видов, существовавших в прошлом и населяющих планету сейчас, есть результат исторического развития биосферы в целом.

Создателем современного учения о биосфере стал В.И. Вернадский.

Согласно выдвинутому В.И. Вернадским закону, названному им «вторым биогеохимическим принципом», эволюция видов и возникновение устойчивых форм жизни шли в направлении усиления биогенной миграции атомов в биосфере. Взаимосвязь эволюции органического мира с основными биогеохимическими процессами в биосфере В.И. Вернадский усматривал, прежде всего, в биогенных миграциях химических элементов, т.е. в «прохождении» их через организмы.

Основная структурная единица биосферы — биогеоценоз. Свойства биосферы в значительной мере определяются свойствами структурных единиц. Входя в состав биосферы, биогеоценозы, естественно, связаны между собой. Совокупность геологических и космических факторов существенно изменяла условия жизни на Земле. Поэтому уже с момента зарождения живое приспосабливалось к этим изменениям, что сопровождалось увеличением многообразия органических форм. Постепенно захват новых, ранее непригодных зон жизни, привел к почти полному заселению всех возможных для существования живого мест обитания. Таким образом, эволюционные преобразования биосферы, обусловленные совместным действием биотических и абиотических факторов, — необходимые условия для существования жизни на Земле.

Заключение

Каждый из видов, населяющих нашу планету, есть результат многомиллионнолетней эволюции, носитель неповторимых генетических особенностей. Мы обязаны сохранить и передать потомкам то биологическое разнообразие, которое существует на Земле и является следствием неповторимости эволюционных путей, приведших к формированию каждого вида. То принципиально новое, что внес XX в. в понимание проблемы органического многообразия, сводится к следующему: сохранение биологического разнообразия — непременное условие существования человека на Земле.

В связи с проблемой устойчивости экосистем возникла необходимость разработки концепции устойчивого развития. По своему замыслу принятие этой концепции должно стимулировать разработку общей стратегии развития человеческого общества на базе экологически целесообразного природопользования, сохранения благоприятного для людей состояния окружающей среды, обеспечивающем приемлемое качество жизни для нынешнего и последующих поколений людей.

Существующая в настоящее время идеология «общества потребления» губительна для биосферы, для составляющих ее экосистем, для сохранения видового и экосистемного биоразнообразия, для вида Homo sapiens, выживание которого зависит в первую очередь от устойчивости биосферы, а, в конечном счете — от ее биологического разнообразия.

Список использованной литературы

1. Биологический энциклопедический словарь. — М., 1989.

2. Вернадский В.И. Биосфера и ноосфера. — М.: Наука, 1989.

3. Концепции современного естествознания: Учебник / Под ред. В.Н. Лавриненко. - М.: ЮНИТИ, 2004.

4. Кузнецов В.Н, Идлис Г.М., Гущина В.Н. Естествознание. — М.: Агар, 1996.

5. Мамонтов Г.С., Захаров В.Б. Общая биология: Учебник. — М.: Высшая школа, 2003.

6. Найдыш В.М. Концепции современного естествознания. — М.: Гардарики, 2005.

7. Энциклопедия «Современное естествознание»: В 10 т. — Т. 2 - 2001.

Как зарождалась жизнь на Земле? Подробности человечеству неизвестны, но краеугольные принципы установлены. Существуют две основные теории и множество второстепенных. Итак, согласно главной версии, органические компоненты попали на Землю из космоса, по другой - все произошло на Земле. Перед вами несколько самых популярных учений.

Панспермия

Как появилась наша Земля? Биография планеты уникальна, и разгадать ее люди пытаются разными способами. Есть гипотеза о том, что жизнь, существующая во Вселенной, распространяется при помощи метеороидов (небесных тел, промежуточных по размеру между межпланетной пылью и астероидом), астероидов и планет. Предполагается, что имеются формы жизни, способные выдержать воздействие (радиацию, вакуум, низкие температуры и др.). Их называют экстремофилами (в их числе бактерии и микроорганизмы).

Они попадают в обломки и пыль, которые выбрасываются в космос после сохраняя, таким образом, жизнь после гибели малых тел Солнечной системы. Бактерии могут путешествовать в состоянии покоя в течение длительного периода времени до очередного случайного столкновения с другими планетами.

Они также могут смешиваться с протопланетными дисками (плотное газовое облако вокруг молодой планеты). Если на новом месте «стойкие, но сонные солдатики» попадают в благоприятные условия, то становятся активными. Начинается процесс эволюции. История разгадывается при помощи зондов. Данные с приборов, побывавших внутри комет, свидетельствуют: в подавляющем большинстве случаев подтверждается вероятность того, что все мы «немного инопланетяне», так как колыбель жизни - космос.

Биопоэз

А вот еще одно мнение относительно того, как зарождалась жизнь. На Земле есть живое и неживое. Некоторые науки приветствуют абиогенез (biopoesis), объясняющий, как в ходе естественного преобразования биологическая жизнь появилась из неорганической материи. Большинство аминокислот (их еще называют строительными блоками всех живых организмов) могут образовываться при помощи природных химических реакций, не имеющих отношения к жизни.

Это подтверждает эксперимент Мюллера-Юри. В 1953 году ученый пропустил электричество через смесь газов и получил несколько аминокислот в лабораторных условиях, имитирующих условия ранней Земли. Во всех живых существах аминокислоты трансформируются в белки под воздействием хранителей генетической памяти нуклеиновых кислот.

Последние синтезируются самостоятельно биохимическим путем, и белки ускоряют (катализируют) процесс. Какая же из органических молекул первая? И как они вступили во взаимодействие? Абиогенез находится в процессе поиска ответа.

Космогонические веяния

Это учение о в космосе. В определенном контексте космической науки и астрономии, термин относится к теории создания (и изучения) Солнечной системы. Попытки тяготения к натуралистической космогонии не выдерживают критики. Во-первых, существующие научные теории не могут объяснить главного: как появилась сама Вселенная?

Во-вторых, нет никакой физической модели, объясняющей самые ранние моменты существования Вселенной. В упомянутой теории отсутствует понятие квантовой гравитации. Хотя струнные теоретики гласит, что элементарные частицы возникают в результате колебаний и взаимодействия квантовых струн), исследующие происхождение и последствия Большого взрыва (петлевая квантовая космология), с этим не согласны. Они считают, что имеют формулы, позволяющие описать модель в рамках полевых уравнений.

При помощи космогонических гипотез люди объясняли однородность движения и состава небесных тел. Задолго до того, как появилась жизнь на Земле, материя заполняла все пространство и затем эволюционировала.

Эндосимбионт

Эндосимбиотическая версия была впервые сформулирована русским ботаником Константином Мережковским в 1905 г. Он считал, что некоторые органеллы возникли как свободноживущие бактерии и были приняты в другую клетку в качестве эндосимбионтов. Митохондрии развились из протеобактерий (в частности, Rickettsiales или близких родственников) и хлоропластов от цианобактерий.

Это позволяет предположить, что множественные формы бактерий вступили в симбиоз с образованием эукариотической клетки (эукариоты - клетки живых организмов, содержащие ядро). Горизонтальному переносу генетического материала между бактериями также способствуют симбиотические отношения.

Возникновению разнообразия форм жизни, возможно, предшествовал последний общий Предок (LUA) современных организмов.

Спонтанное зарождение

До начала 19 века люди, как правило, отрицали "внезапность" в качестве объяснения того, как зарождалась жизнь на Земле. Неожиданное самозарождение определенных форм жизни из неживой материи казалось им неправдоподобным. Зато они верили в существование гетерогенеза (смена способа размножения), когда одна из форм жизни происходит от другого вида (к примеру, пчелы из цветов). Классические представления о самозарождении сводятся к следующему: некоторые сложные живые организмы появились благодаря разложению органических веществ.

Согласно Аристотелю, это была легко наблюдаемая истина: тля возникает из росы, которая падает на растения; мухи - из испортившихся продуктов, мыши - из грязного сена, крокодилы - из гниющих бревен на дне водоемов и так далее. Теория спонтанного поколения (опровергаемая христианством) тайно просуществовала не один век.

Принято считать, что теория была окончательно опровергнута в XIX веке опытами Луи Пастера. Ученый не занимался изучением зарождения жизни, он изучал появление микробов, чтобы получить возможность борьбы с инфекционными болезнями. Однако доказательства Пастера носили уже не спорный, а строго научный характер.

Теория глины и Последовательное сотворение

Возникновение жизни на основе глины? Такое возможно? Шотландский химик по имени А. Дж. Кернс-Смит из университета Глазго в 1985 году является автором такой теории. Опираясь на аналогичные предположения других ученых, он утверждал, что органические частицы, оказавшись между слоями глины и взаимодействуя с ними, перенимали способ хранения информации и роста. Таким образом, ученый считал «глиняный ген» первичным. Изначально минерал и зарождающаяся жизнь существовали вместе, а на определенном этапе "разбежались".

Идея разрушения (хаоса) в зарождающемся мире проложила путь к теории катастрофизма как к одному из предшественников теории эволюции. Ее сторонники считают, что Земля в прошлом была затронута внезапными, недолговечными, бурными событиями, а настоящее является ключом к прошлому. Каждая очередная катастрофа разрушала существующую жизнь. Последующее творение возрождало ее уже отличной от предыдущей.

Материалистическое учение

А вот еще одна версия относительно того, как зарождалась жизнь на Земле. Ее выдвинули материалисты. Они считают, что жизнь появилась в результате растянутых во времени и пространстве постепенных химических преобразований, которые, по всей вероятности, происходили почти 3,8 млрд лет тому назад. Такое развитие называют молекулярным, оно затрагивает область дезоксирибонуклеиновых и рибонуклеиновых кислот и протеинов (белков).

Как научное течение учение возникло в 1960 годы, когда проводились активные исследования, затрагивающие молекулярную и эволюционную биологию, генетику популяций. Ученые тогда пытались понять и подтвердить недавние открытия, касающиеся нуклеиновых кислот и белков.

Одной из ключевых тем, которые стимулировали развитие этой области знаний, была эволюция ферментативной функции, использование дивергенции нуклеиновой кислоты в качестве "молекулярных часов". Ее раскрытие способствовало более глубокому изучению дивергенции (разветвления) видов.

Органическое происхождение

О том, как появилась жизнь на Земле, сторонники этого учения рассуждают так. Образование видов началось давно - более 3,5 млрд лет назад (цифра обозначает период, в который жизнь существует). Вероятно, сначала шел медленный и постепенный процесс преобразования, а затем начался быстрый (в рамках Вселенной) этап совершенствования, перехода из одного статического состояния в другое под влиянием существующих условий.

Эволюция, известная как биологическая или органическая, - это процесс изменения с течением времени одного или нескольких наследуемых признаков, обнаруженных в популяциях организмов. Наследственные черты - особые отличительные признаки, в том числе анатомические, биохимические и поведенческие, которые передаются от одного поколения к другому.

Эволюция привела к разнообразию и разностороннему развитию всех живых организмов (диверсификации). Наш красочный мир Чарльз Дарвин охарактеризовал как «бесконечные формы, самые красивые и самые замечательные». Складывается впечатление, что зарождение жизни - история без начала и конца.

Особое творение

Согласно этой теории, все формы жизни, которые существуют сегодня на планете Земля, созданы Богом. Адам и Ева - первые мужчина и женщина, созданные Вседержителем. Жизнь на Земле началась с них, - считают христиане, мусульмане и евреи. Три религии сошлись в том, что Бог создал вселенную в течение семи дней, сделав шестой день кульминацией труда: сотворил из праха земного Адама и из его ребра Еву.

На седьмой день Бог отдыхал. Затем он вдохнул в и отправил ухаживать за садом под названием Эдем. В центре росли Древо жизни и Древо познания добра. Бог разрешил есть плоды всех деревьев в саду, кроме Дерева познания («ибо в тот день, который вы вкусите их, умрете»).

Но люди ослушались. В Коране говорится, что попробовать яблоко предложил Адам. Бог простил грешников и послал обоих на землю в качестве своих представителей. И все же... Откуда на Земле появилась жизнь? Как видите, однозначного ответа не существует. Хотя современные ученые все больше склоняются к абиогенной (неорганической) теории возникновения всего живого.

Эволюция жизни на Земле началась с момента появления первого живого существа - около 3,7 миллиарда лет назад - и продолжается по сей день. Сходство между всеми организмами указывает на наличие общего предка, от которого произошли все другие живые существа. Если представить себе, что Земля существует один год, то самые ранние формы жизни появились в начале мая, а кембрийский период начался в ноябре. Первые люди возникли около 19:00 31 декабря, а современный человек сформировался приблизительно за пять минут до полуночи.

История жизни на Земле


Земля образовалась около 4,567 млрд лет назад из протопланетного диска, дискообразной массы газа, пыли, оставшихся от образования Солнца, которая и дала начало Солнечной системе. Вулканическая дегазация создала первичную атмосферу, но в ней было очень мало кислорода и она была бы токсичной для людей и современной жизни в целом. Большая часть Земли была расплавленной из-за активного вулканизма и частых столкновений с другими космическими объектами. Предполагается, что одно из таких крупных столкновений привело к наклону земной оси и формированию Луны. Со временем такие космические бомбардировки прекратились, что позволило планете остыть и образовать твердую кору. Доставленная на планету кометами и астероидами вода сконденсировалась в облака и океаны. Земля стала доступна для жизни и ранние её формы обогатили атмосферу кислородом. Первый миллиард лет жизнь на Земле существовала в малых и микроскопических формах. Около 580 миллионов лет назад возникла сложная многоклеточная жизнь. Во время кембрийского периода появилось большинство основных типов. Около шести миллионов лет назад от гоминидов отделилась линия гоминини, что привело к появлению шимпанзе, наших ближайших родственников, и в дальнейшем к современному человеку.

Если статья была полезна


Читайте также:


Updated: 21.01.2018 — 21:50

The Author

Чарльз Дарвин

История человечества стирается из нашей памяти и лишь усилия учёных способны приблизить нас к ней. Происхождение человека занимает умы исследователей уже не одну сотню лет. Теологи утверждают, что человек появился в результате акта божественного творения; исследователи паранормального говорят о нашем внеземном происхождении; антропологи предъявляют доказательства происхождения человека в процессе эволюции. Сторонники той или иной теории предоставляют свои доказательства правоты. В публикуемых мною материалах, рассказывается о выводах сделанных антропологами, археологами, генетиками, биологами и представителями других научных направлений. Хочу заметить, что это те люди, которые провели тысячи часов за микроскопами; перекопали тонны земли; перевезли в лаборатории, исследовали и сопоставили сотни тысяч ископаемых костей наших предков. Хотите спросить, не тот ли я Чарльз Дарвин, который заложил основы современной эволюционной теории? Нет, мы просто однофамильцы...

План

Введение

1. Эволюция жизни на Земле

1.1 Эволюция одноклеточных организмов

1.2 Эволюция многоклеточных организмов

1.3 Эволюция растительного мира

1.4 Эволюция животного мира

1.5 Эволюция биосферы

Заключение

Список использованной литературы

Введение

Часто кажется, что организмы находятся всецело во власти среды: среда ставит им пределы, и в этих пределах они должны либо преуспеть, либо погибнуть. Но организмы и сами воздействуют на среду. Они изменяют ее непосредственно за недолгое свое существование и за долгие периоды эволюционного времени. Как известно, гетеротрофы поглощали питательные вещества из первичного «бульона» и что автотрофы способствовали появлению окислительной атмосферы, подготовив, таким образом, условия для возникновения и эволюции процесса дыхания.

Появление в атмосфере кислорода обусловило возникновение озонового слоя («озонового щита Земли»). Озон образуется из кислорода под воздействием ультрафиолетового излучения Солнца и действует как фильтр, который задерживает ультрафиолетовое излучение, губительное для белков и нуклеиновых кислот, и не дает ему дойти до поверхности Земли.

Первые организмы жили в воде, и вода экранировала их, поглощая энергию ультрафиолетового излучения. До появления защитного озонового слоя ультрафиолетовое излучение было, вероятно, одним из главных факторов, препятствовавших выходу первых живых организмов из воды на сушу.

Первые поселенцы суши нашли здесь в изобилии и солнечный свет, и минеральные вещества, так что вначале они были практически избавлены от конкуренции. Деревья и травы, покрывшие вскоре растительную часть земной поверхности, пополняли запас кислорода в атмосфере; кроме того, они изменяли характер водного стока па Земле и ускоряли процесс образования почв из горных пород. Так организмы и среда на протяжении всей истории жизни на нашей планете взаимно формировали друг друга.

Гигантский шаг на пути эволюции жизни был связан с возникновением основных биохимических процессов обмена - фотосинтеза и дыхания, а также с образованием эукариотической клеточной организации, содержащей ядерный аппарат.


1. Эволюция жизни на Земле

1.1 Эволюция одноклеточных организмов

Различие между прокариотами и эукариотами заключается в том, что прокариоты могут жить как в бескислородной среде, так и в среде с разным содержанием кислорода, в то время как для эукариотов, за немногим исключением, обязателен кислород.

Сравнение прокариот и эукариот по потребности в кислороде приводит к заключению, что прокариоты возникли в период, когда содержание кислорода в среде изменялось. Ко времени же появления эукариот концентрация кислорода была высокой и относительно постоянной.

Первые фотосинтезирующие организмы появились около 3 млрд. лет назад. Это были анаэробные бактерии, предшественники современных фотосинтезирующих бактерий. Именно они образовали самые древние среди известных строматолитов. Обеднение среды азотистыми органическими соединениями вызывало появление живых существ, способных использовать атмосферный азот. Такими организмами являются фотосинтезирующие азотфиксирующие сине-зеленые водоросли, осуществляющие анаэробный фотосинтез. Они устойчивы к продуцируемому ими кислороду и могут использовать его для собственного метаболизма. Поскольку сине-зеленые водоросли возникли в период, когда концентрация кислорода в атмосфере изменялась, вполне очевидно, что они - промежуточные формы между анаэробами и аэробами.

Считается, что хемосинтез, в котором источником атомов водорода для восстановления углекислого газа является сероводород (такой хемосинтез осуществляют современные зеленые и пурпурные серные бактерии), предшествовал более сложному двустадийному; фотосинтезу, при котором источником атомов водорода являются молекулы воды. Второй тип фотосинтеза характерен для зеленых растений.

Фотосинтезирующая деятельность первичных одноклеточных имела два последствия, оказавшие решающее влияние на всю дальнейшую эволюцию живого.

Во-первых, фотосинтез освободил организмы от конкуренции за природные запасы абиогенных органических соединений, количество которых в среде значительно сократилось. Развившиеся посредством фотосинтеза автотрофное питание и запасание питательных готовых веществ в растительных тканях создали затем условия для появления громадного разнообразия автотрофных и гетеротрофных организмов.

Во-вторых, фотосинтез обеспечивал насыщение атмосферы достаточным количеством кислорода для возникновения и развития организмов, энергетический обмен которых основан на процессах дыхания.

Когда же появились эукариотические клетки? Значительное количество данных об ископаемых эукариотах позволяет сказать, что их возраст составляет около 1,5 млрд. лет. В эволюции одноклеточной организации выделяются ступени, связанные с усложнением строения организма, совершенствованием генетического аппарата и способов размножения.

Прогрессивным явлением в филогенезе простейших было возникновение у них полового размножения. Постепенно в ходе прогрессивной эволюции произошел переход к разделению генеративных клеток на женские и мужские.

1.2 Эволюция многоклеточных организмов

Следующая после возникновения одноклеточных ступень эволюции заключалась в образовании и прогрессивном развитии многоклеточных организмов. Эта ступень отличается большой усложненностью переходных стадий (форм), из которых выделяются колониальная одноклеточная, первично-дифференцированная, централизованно-дифференцированная.


Колониальная одноклеточная стадия.

Колониальная одноклеточная стадия считается переходной от одноклеточного организма к многоклеточному и является наиболее простой из всех стадий в эволюции многоклеточной организации.

Первично-дифференцированная стадия.

Первично-дифференцированная стадия в эволюции многоклеточных организмов характеризуется началом специализации по «принципу разделения труда» у членов колонии. На первично-дифференцированной стадии происходит специализация функций на тканевом, органном и системно-органном уровнях. Так, у кишечнополостных сформировалась простая нервная система, которая, распространяя импульсы, координирует деятельность двигательных, железистых, стрекательных, репродуктивных клеток. Нервного центра как такового еще нет, но центр координации имеется.

Централизованно-дифференцированная стадия.

С кишечнополостных начинается развитие централизованно-дифференцированной стадии в эволюции многоклеточной организации. На этой стадии усложнение морфофизиологической структуры идет через усиление тканевой специализации, начиная с возникновения зародышевых листков, детерминирующих морфогенез пищевой, выделительной, генеративной и других систем органов. Возникает хорошо выраженная централизованная нервная система. Одновременно совершенствуются способы полового размножения - от наружного оплодотворения к внутреннему, от свободной инкубации яиц вне материнского организма к живорождению.

Заключительным этапом в эволюции централизованно-дифференцированной стадии стало возникновение человека.

1.3 Эволюция растительного мира

В протерозойскую эру (около 1 млрд. лет назад) эволюционный ствол древнейших эукариот разделился на несколько ветвей, от которых возникли многоклеточные растения (зеленые, бурые и красные водоросли), а также грибы. Большинство из первичных растений свободно плавало в морской воде, часть прикреплялась ко дну.

Существенным условием дальнейшей эволюции растений был образование субстрата на поверхности суши в результате воздействия бактерий на минеральные вещества и под влиянием климатических факторов. В конце силурийского периода почвообразовательные процессы подготовили возможность выхода растений на сушу (41 млн. лет назад).

Первыми растениями, освоившими сушу, были псилофиты. Затем возникли другие группы наземных сосудистых растений: плауны, хвощи, папоротники, размножающиеся спорами и предпочитающие водную среду. Примитивные сообщества этих растений широко распространились в девоне. В этот же период появились и первые голосеменные, возникшие от древних папоротников и унаследовавшие от них внешний древовидный облик.

Переход к размножению семенами имел большое значение, так как освободил процесс полового размножения от связи со средой.

Значительного разнообразия достигла наземная флора в каменноугольный период. Среди древовидных широко распространились плаунообразные, достигавшие в высоту 30 м и более, из первичных голосеменных господствовали разнообразные птеридоспермы и кордаиты, напоминавшие стволами хвойные и имевшие длинные лентовидные листья. Начавшийся в пермский период расцвет голосеменных, в частности хвойных, привел к их господству в мезозойскую эру. К середине пермского периода климат стал засушливее, что во многом отразилось на изменениях в составе флоры. Сошли с арены гигантские папоротники, древовидные плауны, каламиты и исчез столь яркий для той эпохи колорит тропических растений.

Опыление насекомыми и внутреннее оплодотворение создали значительные преимущества цветковых над голосеменными, что обеспечило их расцвет в кайнозое.

Итак, можно отметить следующие основные особенности эволюции растительного мира:

1) постепенный переход к преобладанию диплоидного поколения над гаплоидным;

2) половое "размножение, не зависимое от капельно-воздушной среды; переход от наружного оплодотворения к внутреннему, возникновение двойного оплодотворения.

3) в связи с прикрепленным образом жизни на суше растение расчленяется на корень, стебель и лист, развиваются сосудистая проводящая система и защитные ткани;

4) совершенствование органов размножения и перекрестного опыления у цветковых в сопряженной эволюции с насекомыми – развитие зародышевого мешка для защиты растительного эмбриона от неблагоприятных влияний внешней среды; возникновение разнообразных способов распространения семян и плодов физическими и биологическими способами.