Флуоресцентная in situ гибридизация. Флюоресцентная гибридизация in situ. Фиш тест при раке молочной железы – механизм развития онкологии

Флюоресцентная гибридизация in situ

Флюоресце́нтная гибридиза́ция in situ , или метод FISH (англ. Fluorescence in situ hybridization - FISH ) - цитогенетический метод, который применяют для детекции и определения положения специфической последовательности ДНК на метафазных хромосомах или в интерфазных ядрах in situ . Кроме того, FISH используют для выявления специфических мРНК в образце ткани . В последнем случае метод FISH позволяет установить пространственно-временные особенности экспрессии генов в клетках и тканях.

Зонды

При флюоресцентной гибридизации in situ используют ДНК-зонды (ДНК-пробы), которые связываются с комплементарными мишенями в образце. В состав ДНК-зондов входят нуклеозиды , меченные флюорофорами (прямое мечение) или такими конъюгатами, как биотин или дигоксигенин (непрямое мечение). При прямом мечении связавшийся с мишенью ДНК-зонд можно наблюдать при помощи флюоресцентного микроскопа сразу по завершении гибридизации. В случае непрямого мечения необходима дополнительная процедура окрашивания, в ходе которой биотин выявляют при помощи флуоресцентно-меченного авидина или стептавидина, а дигоксигенин - при помощи флюоресцентно-меченых антител. Хотя непрямой вариант мечения ДНК-проб требует дополнительных реактивов и временных затрат, этот способ позволяет добиться обычно более высокого уровня сигнала за счёт присутствия на молекуле антитела или авидина 3-4 молекул флюорохрома. Кроме того, в случае непрямого мечения возможно каскадное усиление сигнала.

Для создания ДНК проб используют клонированные последовательности ДНК, геномную ДНК, продукты ПЦР -реакции, меченые олигонуклеотиды , а также ДНК, полученную при помощи микродиссекции .

Мечение зонда может осуществляться разными способами, например, путем ник-трансляции или при помощи ПЦР с мечеными нуклеотидами.

Процедура гибридизации

Схема эксперимента по флюоресцентной гибридизации in situ для локализации положения гена в ядре

На первом этапе происходит конструирование зондов. Размер зонда должен быть достаточно большим для того, чтобы гибридизация происходила по специфическому сайту, но и не слишком большой (не более 1 тыс п.о), чтобы не препятствовать процессу гибридизации. При выявлении специфических локусов или при окраске целых хромосом надо заблокировать гибридизацию ДНК-проб с неуникальными повторяющимися ДНК-последовательностями путём добавления в гибридизационную смесь немеченой ДНК повторов (например, Cot-1 DNA). Если ДНК-зонд представляет собой двуцепочечную ДНК, то перед гибридизацией её необходимо денатурировать.

На следующем этапе приготавливают препараты интерфазных ядер или метафазных хромосом. Клетки фиксируют на субстрате, как правило, на предметном стекле, затем проводят денатурацию ДНК. Для сохранения морфологии хромосом или ядер денатурацию проводят в присутствии формамида , что позволяет снизить температуру денатурации до 70°.

Визуализацию связавшихся ДНК-зондов проводят при помощи флуоресцентного микроскопа. Интенсивность флюоресцентного сигнала зависит от многих факторов - эффективности мечения зондом, типа зонда и типа флюоресцентного красителя.

Литература

  • Рубцов Н.Б. Методы работы с хромосомами млекопитающих: Учеб. пособие / Новосиб. гос. ун-т. Новосибирск, 2006. 152 с.
  • Рубцов Н.Б. Гибридизация нуклеиновых кислот in situ в анализе хромосомных аномалий. Глава в книге «Введение в молекулярную диагностику» Т. 2. «Молекулярно-генетические методы в диагностике наследственных и онкологических заболеваний» / Под ред. М.А. Пальцева, Д.В. Залетаева. Учебная литература для студентов медицинских вузов. М.: Медицина, 2011. Т. 2. С. 100–136.

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Флюоресцентная гибридизация in situ" в других словарях:

    У этого термина существуют и другие значения, см. гибридизация. Гибридизация ДНК, гибридизация нуклеиновых кислот соединение in vitro комплементарных одноцепочечных нуклеиновых кислот в одну молекулу. При полной комплементарности… … Википедия


Метод флюоресцентной гибридизации in situ (FISF - fluorescence in situ hybridization) включает применение уникальных нуклеотилных последовательностей ДНК в качестве зонда для поиска нужных последовательностей ДНК в материале, полученном от пациента. Локус-специфический или ген-специфический ДНК-зонд помечен определенным маркером (например, флюорохромом), что обеспечивает его обнаружение при флюоресцентной микроскопии. Исследуемая ДНК представляет собой препарат хромосом для микроскопического исследования, содержащий нити в метафазного ядра в интерфазе (в неделящемся состоянии). ДНК-зонд и исследуемую ДНК денатурируют , что приводит к образованию одноцепочных ДНК. ДНК-зонд добавляют к препарату хромосом и инкубируют в течение времени, достаточного для гибридизации ДНК-зонда и комплементарных последовательностей ДНК больного, если у больного имеется участок ДНК, комплементарный ДНК зонду. Гибридизация происходит только на комплементарных участках ДНК и не касается фрагментов с иными последовательностями ДНК из других частей генома. Присутствие или отсутствие меченного флюорохромом зонда в составе ДНК после гибридизации определяется при исследовании хромосом с помощью флюоресцентной микроскопии. Результат, как правило, не вызывает сомнения ( рис. 28.1).

Преимущества FISH включают быстрый анализ большого числа клеток, высокую чувствительность и специфичность, возможность исследовать некультивируемые и неделящиеся клетки. С помощью этого метода можно исследовать клетки, содержащиеся в парафиновых срезах. Недостатки метода заключаются в невозможности получить информацию о физическом состоянии исследуемой ДНК или участка хромосомы. Проведение FISH требует знания локуса, вовлеченного в хромосомную аберрацию, а также подбора соответствующего ДНК-зонда, который сможет выявить данную аберрацию. FISH не используется в качестве скринингового метода. Метод применяется для того, чтобы получить ответ на конкретный вопрос (определить отсутствие или наличие предполагаемой специфической мутации). Как правило, он дополняет классические методы окрашивания хромосом, а также является основным способом идентификации хромосом в метафазе или интерфазе и специфических нуклеотидных последовательностей ДНК, лежащих в основе определенного заболевания (фенотип).

FISH применяют в пренатальной диагностике и для характеристики опухолей; в педиатрической практике его используют, как правило, для идентификации субмикроскопических делеций , ассоциированных со специфическими пороками развития . Синдромы, в основе которых лежат микроделеции , раньше считались заболеваниями неизвестной этиологии, так как хромосомные делеции и перестройки, вызывающие развитие этих заболеваний, обычно не визуализируются при традиционных методах хромосомного анализа. Такие мелкие делеции в специфических участках хромосом можно с большой точностью выявить методом FISH. К заболеваниям, обусловленным субмикроскопическими делециями, относятся

Лекция 4.

Гибридизация хромосом

Введение

Для выяснения локализации отдельных генов на хромосомах (то есть картирования генов) используют целый арсенал специальных методов. Один из основных – молекулярная гибридизация (образование гибрида) гена или его фрагмента с фиксированными на твердой подложке препаратами хромосом, выделенными из клеток в чистом виде (это называют гибридизацией in situ). Суть метода гибридизации in situ заключается во взаимодействии (гибридизации) между денатурированными (расплетенными) нитями ДНК в хромосомах и комплементарными нуклеотидными последовательностями, добавленных к препарату хромосом однонитевых ДНК или РНК (их называют зондами).

Гибридизация in situ с флуоресцентной меткой (FISH)

Данный метод позволил перейти от изучения морфологии хромосом к анализу последовательностей ДНК, входящих в их состав.В методе FISH используются флуоресцирующие молекулы для прижизненной окраски генов или хромосом. Метод используется для картирования генов и идентификации хромосомных аберраций.

Методика начинается с приготовления коротких последовательностей ДНК, называемых зондами, которые являются комплементарными по отношению к последовательностям ДНК, представляющим объект изучения. Зонды гибридизуются (связываются) с комплементарными участками ДНК и благодаря тому, что они помечены флуоресцентной меткой, позволяют видеть локализацию интересующих генов в составе ДНК или хромосом. В отличие от других методов изучения хромосом, требующих активного деления клетки, FISH можно выполнять на неделящихся клетках, благодаря чему достигается гибкость метода.

FISH может применяться для различных целей с использованием зондов трех различных типов:

  • локус-специфичные зонды , связывающиеся с определенными участками хромосом. Данные зонды используются для идентификации имеющейся короткой последовательности выделенной ДНК, которая используется для приготовления меченого зонда и его последующей гибридизации с набором хромосом;
  • альфоидные или центромерные зонды-повторы представляют собой повторяющиеся последовательности центромерных областей хромосом. С их помощью каждая хромосома может быть окрашена в различный цвет, что позволяет быстро определить число хромосом и отклонения от нормального их числа;
  • зонды на всю хромосому являются набором небольших зондов, комплементарных к отдельным участкам хромосомы, но в целом покрывающими всю ее длину. Используя библиотеку таких зондов можно "раскрасить" всю хромосому и получить дифференциальный спектральный кариотип индивида. Данный тип анализа применяется для анализа хромосомных аберраций, например транслокаций, когда кусочек одной хромосомы переносится на плечо другой.

Материалом для исследования является кровь, костный мозг, биопсия опухоли, плацента, эмбриональные ткани или амниотическая жидкость. Могут использоваться как метафазные, так и интерфазные препараты клеток. Меченные флуоресцентными метками специфические ДНК-зонды гибридизуюся с хромосомной ДНК, причем можно одновременно использовать множественные зонды к разным локусам.

FISH является полезным и чувствительным методом цитогенетического анализа при выявлении количественных и качественных хромосомных аберраций, таких как делеции (в том числе и микроделеции), транслокации, удвоение и анэуплоидия. FISH на интерфазных хромосомах служит быстрым методом пренатальной диагностики трисомий по 21, 18 или 13 хромосомам или аберраций половых хромосом. В онкологии с помощью FISH можно выявлять рад транслокаций, связанных с гематологическими злокачественными новообразованиями. Метод также может использоваться для мониторинга остаточных явлений онкозаболевания после химиотерапии и пересадки костного мозга и выявления усиленных онкогенов, связанных с неблагоприятным прогнозом в отношении некоторых опухолей. FISH также используется для контроля приживаемости аллотрансплантата костного мозга, полученного от индивида противоположного пола. FISH также применяют для детекции и определения расположения специфических мРНК в образце ткани. В последнем случае метод FISH позволяет установить пространственно-временные особенности экспрессии генов в клетках и тканях.

FISH является чувствительным методом для идентификации хромосомных аберраций и одномоментного быстрого анализа большого (>500) числа клеток. Метод обладает высокой точностью при идентификации природы хромосом и неизвестных фрагментов хромосомной ДНК.

Таким образом, общий вид протокола для постановки FISH можно представить в следующем виде:

1) Подготовка гистологического или цитологического препарата

Подготовка гистологического препарата осуществляется по стандартной схеме: вырезка, маркировка, проводка, заливка, микротомия, помещение среза на предметное стекло и депарафинизация. При подготовке цитологического препарата используются специальные осаждающие растворы и центрифугирование, что позволяет получить концентрированную суспензию клеток.

2) Предварительная обработка (если необходимо)

Препарат обрабатывается протеазами, чтобы исключить присутствие белков, которые затрудняют гибридизацию.

3) Нанесение ДНК-зонда на препарат и последующая денатурация

Для того чтобы денатурировать зонд и ДНК образца, их обрабатывают формамидом и нагревают до температуры около 85–90ºС.

4) Гибридизация

После денатурации препарат охлаждают до определенной температуры (37ºС в случае клинических исследований) и инкубируют во влажной камере в течение нескольких часов (продолжительность инкубации указана в каждом конкретном протоколе). В настоящее время для денатурации и гибридизации используют автоматические гибридайзеры.

5) Промывка.

После того, как гибридизация завершена, необходимо отмыть несвязавшиеся зонды, которые, в противном случае, создадут фон, затрудняющий оценку результатов FISH-анализа. Для промывки обычно используют раствор, содержащий цитрат и хлорид натрия (SSC).

6) Контрокрашивание

При помощи флуоресцентных красителей (DAPI - 4,6-диамидин-2-фенилиндол; йодид пропидия) проводится окраска всей ядерной ДНК.

7) Анализ результатов при помощи флуоресцентного микроскопа

Особенно важным для изучения генома человека на первых этапах его исследования стал метод, называемый гибридизацией соматических клеток. При смешивании соматических (неполовых) клеток человека с клетками других видов животных (чаще всего для этой цели использовали клетки мышей или китайских хомячков) в присутствии определенных агентов может происходить слияние их ядер (гибридизация). При размножении таких гибридных клеток происходят потери некоторых хромосом. По счастливой для экспериментаторов случайности в гибридных клетках человек–мышь происходит потеря большей части хромосом человека. Далее отбираются гибриды, в которых остается только какая–нибудь одна человеческая хромосома. Исследования таких гибридов позволили связать некоторые биохимические признаки, свойственные клеткам человека, с определенными хромосомами человека. Постепенно благодаря использованию селективных сред научились добиваться сохранения или потери отдельных хромосом человека, несущих определенные гены.

Для того чтобы облегчить слияние клеток разных видов, в культуральную среду добавляют вирус Сендай, инактивированный ультрафиолетовым облучением, или полиэтиленгликоль. Для отбора слившихся клеток от исходных клеток человека и мыши клетки выращивают на специальной селективной среде, которая позволяет размножаться только гибридным клеткам.

На сегодняшний день хромогенная гибридизация in situ является более доступным методом, чем флуоресцентная. Если речь идет о флуоресцентной гибридизации in situ, то ДНК-зонд коньюгирован с флуоресцентной меткой. Результаты такого исследования оценивают во флуоресцентном микроскопе. В случае хромогенной гибридизации in situ, ДНК-зонд коньюгируют с пероксидазой или чем-либо другим и проводят окрашивание хромогеном. В этом случае результаты оценивают под обычным световым микроскопом.

ü Преимущества FISH-метода

В качестве основных преимуществ FISH можно выделить следующие:

1) возможность исследования генетического материала в интерфазных ядрах;

2) получение объективных результатов по принципу «да/нет» - это количественный метод;

3) относительно простая интерпретация результатов;

4) высокая разрешающая способность.

ü Недостатки FISH-метода

1) флуоресцентные красители быстро «выцветают»;

2) для анализа результатов необходим высококачественный флуоресцентный микроскоп.

Современный метод цитогенетического анализа, позволяющий определять качественные и количественные изменения хромосом (в том числе транслокации и микроделеции) и используемый для дифференциальной диагностики злокачественных заболеваний крови и солидных опухолей.

Синонимы русские

Флуоресцентная гибридизация in situ

FISH-анализ

Синонимы английские

Fluorescence in-situ hybridization

Метод исследования

Флуоресцентная гибридизация in situ.

Какой биоматериал можно использовать для исследования?

Образец ткани, образец ткани в парафиновом блоке.

Как правильно подготовиться к исследованию?

Подготовки не требуется.

Общая информация об исследовании

Флуоресцентная гибридизация in situ (FISH, от англ. fluorescence in - situ hybridization) – это один из самых современных методов диагностики хромосомных аномалий. Он основан на использовании ДНК-проб, меченных флуоресцентной меткой. ДНК-пробы представляют собой специально синтезированные фрагменты ДНК, последовательность которых комплементарна последовательности ДНК исследуемых аберрантных хромосом. Таким образом, ДНК-пробы различаются по составу: для определения разных хромосомных аномалий используются разные, специфические ДНК-пробы. ДНК-пробы также различаются по размеру: одни могут быть направлены к целой хромосоме, другие – к конкретному локусу.

В ходе процесса гибридизации при наличии в исследуемом образце аберрантных хромосом происходит их связывание с ДНК-пробой, которое при исследовании с помощью флуоресцентного микроскопа определяется как флуоресцентный сигнал (положительный результат FISH-теста). При отсутствии аберрантных хромосом несвязанные ДНК-пробы в ходе реакции "отмываются", что при исследовании с помощью флуоресцентного микроскопа определяется как отсутствие флуоресцентного сигнала (отрицательный результат FISH-теста). Метод позволяет оценить не только наличие флуоресцентного сигнала, но и его интенсивность и локализацию. Таким образом, FISH-тест – это не только качественный, но и количественный метод.

FISH-тест обладает рядом преимуществ по сравнению с другими методами цитогенетики. В первую очередь, исследование FISH может быть применено как к метафазным, так и к интерфазным ядрам, то есть к неделящимся клеткам. Это основное преимущество FISH по сравнению с классическими способами кариотипирования (например, окрашиванием хромосом по Романовскому-Гимзе), которые применяются только к метафазным ядрам. Благодаря этому исследование FISH является более точным методом для определения хромосомных аномалий в тканях с низкой пролиферативной активностью, в том числе в солидных опухолях.

Так как в FISH-тесте используется стабильная ДНК интерфазных ядер, для исследования могут быть использованы самые различные биоматериалы – аспираты тонкоугольной аспирационной биопсии, мазки, аспираты костного мозга, биоптаты и, что немаловажно, сохраненные фрагменты ткани, например гистологические блоки. Так, например, FISH-тест может быть с успехом выполнен на повторных препаратах, полученных из гистологического блока биоптата молочной железы при подтверждении диагноза "аденокарцинома молочной железы" и необходимости определения HER2/neu-статуса опухоли. Следует особо подчеркнуть, что в данный момент исследование FISH рекомендовано в качестве подтверждающего теста при получении неопределенного результата иммуногистохимического исследования опухоли на онкомаркер HER2/neu(ИГХ 2+).

Другим преимуществом FISH является его способность определять микроделеции, которые не выявляются с помощью классического кариотипирования или ПЦР. Это имеет особое значение при подозрении на синдром Вильямса, Ди Джорджи и велокардиофациальный синдром.

FISH-тест широко используется в дифференциальной диагностике злокачественных заболеваний, в первую очередь в онкогематологии. Хромосомные аномалии в сочетании с клинической картиной и данными иммуногистохимического исследования являются основой классификации, определения тактики лечения и прогноза лимфо- и миелопролиферативнх заболеваний. Классическими примерами являются хронический миелолейкоз – t (9;22), острый промиелоцитарный лейкоз – t (15;17), хронический лимфолейкоз – трисомия 12 и другие. Что касается солидных опухолей, наиболее часто FISH-исследование применяется при диагностике рака молочной железы, мочевого пузыря, толстой кишки, нейробластомы, ретинобластомы и других.

Исследование FISH также может быть использовано в пренатальной и преимплантационной диагностике.

FISH-тест часто проводят в сочетании с другими методами молекулярной и цитогенетической диагностики. Результат этого исследования оценивают в комплексе с результатами дополнительных лабораторных и инструментальных данных.

Для чего используется исследование?

  • Для дифференциальной диагностики злокачественных заболеваний (крови и солидных органов).

Когда назначается исследование?

  • При подозрении на наличие злокачественного заболевания крови или солидных опухолей, тактика лечения и прогноз которых зависит от хромосомного состава опухолевого клона.

Что означают результаты?

Положительный результат:

  • Наличие в исследуемом образце аберрантных хромосом.

Отрицательный результат:

  • Отсутствие в исследуемом образце аберрантных хромосом.

Что может влиять на результат?

  • Количество аберрантных хромосом.
  • Иммуногистохимическое исследование клинического материала (с использованием 1 антитела)
  • Иммуногистохимическое исследование клинического материала (с использованием 4 и более антител)
  • Определение HER2 статуса опухоли методом FISH
  • Определение HER2 статуса опухоли методом СISH

Кто назначает исследование?

Онколог, педиатр, акушер-гинеколог, врач-генетик.

Литература

  • Wan TS, Ma ES. Molecular cytogenetics: an indispensable tool for cancer diagnosis. Anticancer Res. 2005 Jul-Aug;25(4):2979-83.
  • Kolialexi A, Tsangaris GT, Kitsiou S, Kanavakis E, Mavrou A. Impact of cytogenetic and molecular cytogenetic studies on hematologic malignancies. Chang Gung Med J. 2012 Mar-Apr;35(2):96-110.
  • Mühlmann M. Molecular cytogenetics in metaphase and interphase cells for cancer and genetic research, diagnosis and prognosis. Application in tissue sections and cell suspensions. Genet Mol Res. 2002 Jun 30;1(2):117-27.

Гибридизация in situ представляет собой молекулярный метод, при котором специфический меченый зонд может гибридизоваться прямо на цитологическом препарате, выявляя:

Определенный тип мРНК в какой-то клетке или ткани;

Ген на хромосоме или фрагменты хромосомы;

Изменение количества мРНК (а значит и активности гена) в зависимости от периода

онтогенеза или типа ткани.

Наличие в клетке вирусной ДНК;

Субмикроскопические делеции;

Наличие генов, отвечающих за развитие рака, их локализацию и уровень их экспрессии.

В последние годы используется метод FISH (Fluorescent In Situ Hybridization ), при котором зонды метятся различными флуоресцентными красителями. Метод FISH очень прост, используется и на архивных препаратах, быстрый, не вызывает разрушения клеток.

Наследственные признаки взаимоотношение генотип - фенотип

Биологическая индивидуальность человека определена совокупностью морфологических, физиологических, биохимических, психических и поведенческих признаков - фенотипом , контролируемых воздействием, в разных пропорциях, генетических факторов и факторов среды. Система генов диплоидного набора хромосом одного человека, которая определяет формирование фенотипа, называется генотип. Признаки, в образовании которых доля участия генотипа составляет более 50%, называются наследственными признаками . Наследственные признаки могут иметь моногенный или полигенный (мультифакториальный) детерминизм.

Характеристика аллельных и неаллельных генов

Аллельные гены локализованы в идентичных локусах гомологичных хромосом и контролируют один признак или альтернативные формы одного признака. Аллельные гены могут быть представленными в популяции многими молекулярными формами (множественные аллели ), но в генотипе одного индивидуума могут быть только два аллеля - пара аллелей (исключение составляют гены X и Y хромосом у мужчин, представленные только одним аллелем).

Генотип каждого человека содержит около 30 000 пар аллельных генов; по некоторым из них он является гомозиготным - имеет одинаковые аллели, по другим является гетерозиготным - имеет разные аллели, а у мужчин также гемизиготным - для генов, сцепленных с хромосомой X. В случае гетерозиготности проявляется только один аллель (доминантный ген ), в то время как проявление другого аллеля (рецессивного гена ) подавлено. По степени проявления различают аллели:

- нормоморфные - с умеренной активностью;

- гиперморфные - с повышенной активностью;

- гипоморфные - с пониженной активностью;

- аморфные - неактивные;

- неоморфные - с новой функцией.

Фенотипическое проявление аллеля зависит от других аллелей, а также факторов среды.

В процессе мейоза аллельные гены распределяются в разные гаметы (происходит сегрегация), а в результате оплодотворения сочетаются разным образом, образуют различные генотипы. Это процесс определяет расщепление признаков и лежит в основе законов менделевского наследования. Аллели одной пары имеют разное происхождение -материнское и отцовское. Гомозиготный организм формирует идентичные гаметы по данному аллелю, а гетерозиготный организм образует разные гаметы - 50% будут иметь один из аллелей и 50% - другой аллель.

Неаллельные гены имеют следующие характеристики:

Занимают разные локусы на гомологичных или негомологичных хромосомах;

Контролируют образование разных признаков;

Одна хромосома содержит много неаллельных генов (от нескольких сотен до нескольких тысяч); в течение мейоза гены одной хромосомы, как правило, передаются блоком – сцепленно ;

Неаллельные гены разных (негомологичных) хромосом в мейозе сегрегируют,

определяя независимое их комбинирование .