Методы исследования головного мозга физиология цнс. Основные методы исследования функций ЦНС у человека. · методы химического анализа

Классификация, строение и функции нейронов. Нейроглия.

ФИЗИОЛОГИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ.

Центральнаянервнаясистема (ЦНС ) – это комплекс различных образований спинного и головного мозга, которые обеспечивают восприятие, переработку, хранение и воспроизведение информации, а также формирование адекватных реакций организма на изменения внешней и внутренней среды.

Структурным и функциональным элементом ЦНС являются нейроны. Это высокоспециализированные клетки организма, чрезвычайно различающиеся по своему строению и функциям. В ЦНС нет двух одинаковых нейронов. Мозг человека содержит 25 млрд. нейронов. В общем плане, все нейроны имеют тело – сому и отростки – дендриты и аксоны. Точной классификации нейронов нет, но их условно разделяют по структуре и функциям на следующие группы:

1. По форме тела.

· Многоугольные.

· Пирамидные.

· Круглые.

· Овальные.

2. По количеству и характеру отростков.

· Униполярные – имеют один отросток.

· Псевдоуниполярные – от тела отходит один отросток, который затем делится на 2 ветви.

· Биполярные – 2 отростка, один дендритоподобный, другой аксон.

· Мультиполярные – имеют 1 аксон и много дендритов.

3. По медиатору, выделяемому нейроном в синапсе.

· Холинэргические.

· Адренегрическим.

· Серотонинергические.

· Пептидергические и т.д.

4. По функциям.

· Афферентные или чувствительные. Служат для восприятия сигнала из внешней и внутренней среды и передачи их в ЦНС.

· Вставочные или интернейроны – промежуточные. Обеспечивают переработку, хранение и передачу информации эфферентным нейронам. Их в ЦНС больше всего.

· Эфферентные или двигательные. Формируют управляющие сигналы и передают их к периферическим нейронам и исполнительным органам.

5. По физиологической роли.

· Возбуждающие.

· Тормозные.

Сома нейронов покрыта многослойной мембраной, обеспечивающей проведение потенциала действия к начальному сегменту аксона – аксонному холмику. В соме расположено ядро, аппарат Гольджи, митохондрии, рибосомы. В рибосомах синтезируется тигроид, содержащий РНК и необходимый для синтеза белков. Особую роль играют микротрубочки и тонкие нити – нейрофиламенты. Они имеются в соме и отростках. Обеспечивают транспорт веществ от сомы по отросткам и обратно. Кроме того, за счет нейрофиламентов происходит движение отростков. На дендритах имеются выступы для синапсов – шипики, через которые в нейрон поступает информация. По аксонам сигнал идет к другим нейронам или исполнительным органам. Таким образом, общими функциями нейронов ЦНС являются прием, кодирование и хранение информации, а также выработка нейромедиаторов. Нейроны, с помощью многочисленных синапсов, получают сигналы в виде постсинаптических потенциалов. Затем перерабатывают эту информацию и формируют определенную ответную реакцию. Следовательно, они выполняют и интегративную, т.е. объединительную функцию.


Кроме нейронов в ЦНС имеются клетки нейроглии . Размеры глиальных клеток меньше чем нейронов, но составляют 10% объема мозга. В зависимости от размеров и количества отростков выделяют астроциты, олигодендроциты, микроглиоциты. Нейроны и глиальные клетки разделены узкой (20 нм) межклеточной щелью. Эти щели соединяются между собой и образуют внеклеточное пространство мозга, заполненное интерстициальной жидкостью. За счет этого пространства нейроны и глионы обеспечиваются кислородом, питательными веществами. Глиальные клетки ритмически увеличиваются и уменьшаются с частотой несколько колебаний в час. Это способствует току аксоплазмы по аксонам и продвижению межклеточной жидкости. Таким образом, глионы служат опорным аппаратом ЦНС, обеспечивают обменные процессы в нейронах, поглощают избыток нейромедиаторов и продукты их распада. Предполагают, что глия участвует в формирование условных рефлексов и памяти.

Существуют следующие методы исследования функций ЦНС:

1. Метод перерезок ствола мозга на различных уровнях. Например, между продолговатым и спинным мозгом.

2. Метод экстирпации (удаления) или разрушения участков мозга. Например, удаление мозжечка.

3. Метод раздражения различных отделов и центров мозга.

4. Анатомо-клинический метод. Клинические наблюдения за изменениями функций ЦНС при поражении ее каких-либо отделов с последующими патологоанатомическим исследованием.

5. Электрофизиологические методы:

· Электроэнцефалография – регистрация биопотенциалов мозга с поверхности кожи черепа. Методика разработана и внедрена в клинику Г. Бергером.

· Регистрация биопотенциалов различных нервных центров: используется вместе со стереотаксической техникой при которой электроды с помощью микроманипуляторов вводят в строго определенное ядро.

· Метод вызванных потенциалов, регистрация электрической активности участков мозга при электрическом раздражении периферических рецепторов или других участков.

6. Метод внутримозгового введения веществ с помощью микроинофореза .

7. Хронорефлексометрия – определение времени рефлексов.

8. Метод моделирования .

Основные методы исследования ЦНС и нервно-мышечного аппарата - электроэнцефалография (ЭЭГ ), реоэнцефалография (РЭГ), электромиография (ЭМГ), определяют статическую устойчивость, тонус мышц, сухожильные рефлексы и др.

Электроэнцефалография (ЭЭГ) - метод регистрации электрической активности (биотоков) мозговой ткани с целью объективной оценки функционального состояния головного мозга. Она имеет большое значение для диагностики травмы головного мозга, сосудистых и воспалительных заболеваний мозга, а также для контроля за функциональным состоянием спортсмена, выявления ранних форм неврозов, для лечения и при отборе в спортивные секции (особенно в бокс, карате и другие виды спорта, связанные с нанесением ударов по голове). При анализе данных, полученных как в состоянии покоя, так и при функциональных нагрузках, различных воздействиях извне в виде света, звука и др.), учитывается амплитуда волн, их частота и ритм. У здорового человека преобладают альфа-волны (частота колебаний 8-12 в 1 с), регистрируемые только при закрытых глазах обследуемого. При наличии афферентной световой импульсации открытые глаза, альфа-ритм полностью исчезает и вновь восстанавливается, когда глаза закрываются. Это явление называется реакцией активации основного ритма. В норме она должна регистрироваться. Бета-волны имеют частоту колебаний 15-32 в 1 с, а медленные волны представляют собой тэта-волны (с диапазоном колебаний 4-7 с) и дельта - волны (с еще меньшей частотой колебаний). У 35-40% людей в правом полушарии амплитуда альфа-волн несколько выше, чем в левом, отмечается и некоторая разница в частоте колебаний - на 0,5-1 колебание в секунду.

При травмах головы альфа-ритм отсутствует, но появляются колебания большой частоты и амплитуды и медленные волны. Кроме того, методом ЭЭГ можно диагностировать ранние признаки неврозов (переутомлений, перетренированости) у спортсменов.

Реоэнцефалография (РЭГ) - метод исследования церебрального кровотока, основанный на регистрации ритмических изменений электрического сопротивления мозговой ткани вследствие пульсовых колебаний кровенаполнения сосудов. Реоэнцефалограмма состоит из повторяющихся волн и зубцов. При ее оценке учитывают характеристику зубцов, амплитуду реографической (систолической) волн и др. О состоянии сосудистого тонуса можно судить также по крутизне восходящей фазы. Патологическими показателями являются углубление инцизуры и увеличение дикротического зубца со сдвигом их вниз по нисходящей части кривой, что характеризует понижение тонуса стенки сосуда.

Метод РЭГ используется при диагностике хронических нарушений мозгового кровообращения, вегетососудистой дистонии, головных болях и других изменениях сосудов головного мозга, а также при диагностике патологических процессов, возникающих в результате травм, сотрясений головного мозга и заболеваний, вторично влияющих на кровообращение в церебральных сосудах (шейный остеохондроз, аневризмы и др.).

Электромиография (ЭМГ) - метод исследования функционирования скелетных мышц посредством регистрации их электрической активности - биотоков, биопотенциалов. Для записи ЭМГ используют электромиографы. Отведение мышечных биопотенциалов осуществляется с помощью поверхностных (накладных) или игольчатых (вкалываемых) электродов. При исследовании мышц конечностей чаще всего записывают электро-миограммы с одноименных мышц обеих сторон. Сначала регистрируют ЭМ покоя при максимально расслабленном состоянии всей мышцы, а затем - при ее тоническом напряжении. По ЭМГ можно на ранних этапах определить (и предупредить возникновение травм мышц и сухожилий изменения биопотенциалов мышц, судить о функциональной способности нервно-мышечного аппарата, особенно мышц, наиболее загруженных в тренировке. По ЭМГ, в сочетании с биохимическими исследованиями (определение гистамина, мочевины в крови), можно определить ранние признаки неврозов (переутомление, перетренированность). Кроме того, множественной миографией определяют работ/ мышц в двигательном цикле (например, у гребцов, боксеров во время тестирования). ЭМГ характеризует деятельность мышц, состояние периферического и центрального двигательного нейрона. Анализ ЭМГ дается по амплитуде, форме, ритму, частоте колебаний потенциалов и других параметрах. Кроме того, при анализе ЭМГ определяют латентный период между подачей сигнала к сокращению мышц и появлением первых осцилляции на ЭМГ и латентный период исчезновения осцилляции после команды прекратить сокращения.

Хронаксиметрия - метод исследования возбудимости нервов в зависимости от времени действия раздражителя. Сначала определяется реобаза - сила тока, вызывающая пороговое сокращение, а затем - хронаксия.

Хронансия - это минимальное время прохождения тока силой в две реобазы, которое дает минимальное сокращение. Хронаксия исчисляется в сигмах (тысячных долях секунды). В норме хронаксия различных мышц составляет 0,0001-0,001 с. Установлено, что проксимальные мышцы имеют меньшую хронаксию, чем дистальные. Мышца и иннервирующий ее нерв имеют одинаковую хронаксию (изохронизм). Мышцы - синергисты имеют также одинаковую хронаксию. На верхних конечностях хронаксия мышц-сгибателей в два раза меньше хронаксии разгибателей, на нижних конечностях отмечается обратное соотношение. У спортсменов резко снижается хронаксия мышц и может увеличиваться разница хронаксии (анизохронаксия) сгибателей и разгибателей при перетренировке (переутомлении), миозитах, паратенонитах икроножной мышцы и др. Устойчивость в статическом положении можно изучать с помощью стабилографии, треморографии, пробы Ромберга и др.

Существуют следующие методы исследования функций ЦНС:

1. метод перерезок ствола мозга на различных уровнях. Например, между продолговатым и спинным мозгом;

2. метод экстирпации (удаления) или разрушения участков мозга;

3. метод раздражения различных отделов и центров мозга;

4. анатомо-клинический метод . Клинические наблюдения за изменениями функций ЦНС при поражении ее каких-либо отделов с последующим патологоанатомическим исследованием;

5. электрофизиологические методы:

а. электроэнцефалография – регистрация биопотенциалов мозга с поверхности кожи черепа. Методика разработана и внедрена в клинику Г. Бергером;

б. регистрация биопотенциалов различных нервных центров; используется вместе со стереотаксической техникой, при которой электроды с помощью микроманипуляторов вводят в строго определенное ядро;

в. метод вызванных потенциалов , регистрация электрической активности участков мозга при электрическом раздражении периферических рецепторов или других участков.

6. метод внутримозгового введения веществ с помощью микроинофореза ;

7. хронорефлексометрия – определение времени рефлексов.

Свойства нервных центров

Нервным центром (НЦ) называется совокупность нейронов в различных отделах ЦНС, обеспечивающих регуляцию какой-либо функции организма. Например, бульбарный дыхательный центр.

Для проведения возбуждения через нервные центры характерны следующие особенности:

1. Одностороннее проведение . Оно идет от афферентного, через вставочный, к эфферентному нейрону. Это обусловлено наличием межнейронных синапсов.

2. Центральная задержка проведение возбуждения. Т.е. по НЦ возбуждение идет значительно медленнее, чем по нервному волокну. Это объясняется синаптической задержкой. Так как больше всего синапсов в центральном звене рефлекторной дуги, там скорость проведения наименьшая. Исходя из этого, время рефлекса – это время от начала воздействия раздражителя до появления ответной реакции. Чем длительнее центральная задержка, тем больше время рефлекса. Вместе с тем оно зависит от силы раздражителя. Чем она больше, тем время рефлекса короче и наоборот. Это объясняется явлением суммации возбуждений в синапсах. Кроме того, оно определяется и функциональным состоянием ЦНС. Например, при утомлении НЦ длительность рефлекторной реакции увеличивается.

3. Пространственная и временная суммация. Временная суммация возникает, как и в синапсах вследствие того, что чем больше поступает нервных импульсов, тем больше выделяется нейромедиатора в них, тем выше амплитуда возбуждения постсинаптических потенциалов (ВПСП). Поэтому рефлекторная реакция может возникать на несколько последовательных подпороговых раздражений. Пространственная суммация наблюдается тогда, когда к нервному центру идут импульсы от нескольких рецепторных нейронов. При действии на них подпороговых стимулов, возникающие постсинаптические потенциалы суммируются и в мембране нейрона генерируется распространяющийся ПД.

4. Трансформация ритма возбуждения – изменение частоты нервных импульсов при прохождении через нервный центр. Частота может понижаться или повышаться. Например, повышающая трансформация (увеличение частоты) обусловлено дисперсией и мультипликацией возбуждения в нейронах. Первое явление возникает в результате разделения нервных импульсов на несколько нейронов, аксоны которых образуют затем синапсы на одном нейроне. Второе – генерацией нескольких нервных импульсов при развитии возбуждающего постсинаптического потенциала на мембране одного нейрона. Понижающая трансформация объясняется суммацией нескольких ВПСП и возникновением одного ПД в нейроне.

5. Постетаническая потенциация – это усиление рефлекторной реакции в результате длительного возбуждения нейронов центра. Под влиянием многих серий нервных импульсов, проходящих с большой частотой через синапсы, выделяется большое количество нейромедиатора в межнейронных синапсах. Это приводит к прогрессирующему нарастанию амплитуды возбуждающего постсинаптического потенциала и длительному (несколько часов) возбуждению нейронов.

6. Последействие – это запаздывание окончания рефлекторного ответа после прекращения действия раздражителя. Связано с циркуляцией нервных импульсов по замкнутым цепям нейронов.

7. Тонус нервных центров – состояние постоянной повышенной активности. Он обусловлен постоянным поступлением к НЦ нервных импульсов от периферических рецепторов, возбуждающим влиянием на нейроны продуктов метаболизма и других гуморальных факторов. Например, проявлением тонуса соответствующих центров является тонус определенной группы мышц.

8. Автоматия (спонтанная активность) нервных центров. Периодическая или постоянная генерация нейронами нервных импульсов, которые возникают в них самопроизвольно, т.е. в отсутствии сигналов от других нейронов или рецепторов. Обусловлена колебаниями процессов метаболизма в нейронах и действием на них гуморальных факторов.

9. Пластичность нервных центров. Это их способность изменять функциональные свойства. При этом центр приобретает возможность выполнять новые функции или восстанавливать старые после повреждения. В основе пластичности НЦ лежит пластичность синапсов и мембран нейронов, которые могут изменять свою молекулярную структуру.

10. Низкая физиологическая лабильность и быстрая утомляемость . НЦ могут проводить импульсы лишь ограниченной частоты. Их утомление объясняется утомлением синапсов и ухудшением метаболизма нейронов.

Частная физиология центральной нервной системы — раздел , изучающий функции структур головного и спинного мозга, а также механизмы их осуществления.

К методам исследования функций центральной нервной системы относятся нижеперечисленные.

Электроэнцефалография — метод регистрации биопотенциалов, генерируемых головного мозга, при отведении их от поверхности кожи головы. Величина таких биопотенциалов составляет 1-300 мкВ. Они отводятся с помощью электродов, накладываемых на поверхность кожи головы в стандартных точках, над всеми долями мозга и некоторыми их областями. Биопотенциалы подаются на вход прибора электроэнцефалографа, который их усиливает и регистрирует в виде электроэнцефалограммы (ЭЭГ) — графической кривой непрерывных изменений (волн) биопотенциалов мозга. Частота и амплитуда электроэнцефалографических волн отражают уровень активности нервных центров. С учетом величин амплитуды и частоты волн выделяют четыре основных ритма ЭЭГ (рис. 1).

Альфа-ритм имеет частоту 8-13 Гц и амплитуду 30- 70 мкВ. Это относительно регулярный, синхронизированный ритм, регистрируемый у человека, находящегося в состоянии бодрствования и покоя. Он выявляется приблизительно у 90% людей, находящихся в спокойной обстановке, при максимальном расслаблении мышц, с закрытыми глазами или в темноте. Альфа-ритм наиболее выражен в затылочных и теменных долях мозга.

Бета-ритм характеризуется нерегулярными волнами с частотой 14-35 Гц и амплитудой 15-20 мкВ. Этот ритм регистрируется у бодрствующего человека в лобных и теменных областях , при открытии глаз, действии звука, света, обращении к испытуемому, выполнении им физических действий. Он свидетельствует о переходе нервных процессов к более активному, деятельному состоянию и повышению функциональной активности мозга. Смену альфа-ритма или других электроэнцефалографических ритмов мозга на бета-ритм называют реакцией десинхронизации, или активации.

Рис. 1. Схема основных ритмов биопотенциалов головного мозга (ЭЭГ) человека: а — ритмы, регистрируемые с поверхности кожи головы в покос; 6 — действие света вызывает реакцию десинхронизации (смену α-ритма на β-ритм)

Тета-ритм имеет частоту 4-7 Гц и амплитуду до 150 мкВ. Он проявляется при поздних стадиях засыпания человека и развитии наркоза.

Дельта-ритм характеризуется частотой 0,5-3,5 Гц и большой (до 300 мкВ) амплитудой воли. Он регистрируется над всей поверхностью мозга во время глубокого сна или наркоза.

Основную роль в происхождении ЭЭГ отводят постсинаптическим потенциалам . Считается, что на характер ЭЭГ-ритмов оказывает наибольшее влияние ритмическая активность пейсмекерных нейронов и ретикулярной формации ствола мозга. При этом таламус индуцирует в коре высокочастотные, а ретикулярная формация ствола мозга — низкочастотные ритмы (тета и дельта).

Метод ЭЭГ широко используется для регистрации нейронной активности в состояниях сна и бодрствования; для выявления очагов повышенной активности в мозге, например при эпилепсии; для исследования влияния лекарственных и наркотических веществ и решения других задач.

Метод вызванных потенциалов позволяет регистрировать изменение электрических потенциалов коры и других структур мозга, вызываемых стимуляцией различных рецепторных полей или проводящих путей, связанных с этими структурами мозга. Возникающие в ответ на одномоментное раздражение биопотенциалы коры носят волнообразный характер, длятся до 300 мс. Для выделения вызванных потенциалов из спонтанных электроэнцефалогических волн применяют сложную компьютерную обработку ЭЭГ. Эта методика используется в эксперименте и в клинике для определения функционального состояния рецепторной, проводниковой и центральной частей сенсорных систем.

Микроэлектродный метод позволяет с помощью тончайших электродов, вводимых в клетку или подводимых к нейронам, расположенным в определенной области мозга, регистрировать клеточную или внеклеточную электрическую активность , а также оказывать на них воздействие электрическими токами.

Стереотаксический метод позволяет вводить в заданные структуры мозга зонды, электроды с лечебной и диагностической целью. Их введение осуществляется с учетом трехмерных пространственных координат расположения интересующей структуры мозга, которые описаны в стереотаксических атласах. В атласах указывается под каким углом и на какую глубину относительно характерных анатомических точек черепа должны вводиться электрод или зонд для достижения интересующей структуры мозга. При этом голова больного фиксируется в специальном держателе.

Метод раздражения. Раздражение различных структур мозга чаще всего проводится с помощью слабого электрического тока. Такое раздражение легко дозируется, не вызывает повреждений нервных клеток и может наноситься многократно. В качестве раздражителей используются также различные биологически активные вещества.

Методы перерезок, экстирпации (удаления) и функциональной блокады нервных структур. Удаление структур мозга и их перерезки широко использовались в эксперименте в начальный период накопления знаний о мозге. В настоящее время сведения о физиологической роли различных структур ЦНС пополняются клиническими наблюдениями за изменением состояния функций мозга или других органов у больных, подвергшихся удалению или разрушению отдельных структур нервной системы (при опухолях, кровоизлияниях, травмах).

При функциональной блокаде производят временное выключение функций нервных структур путем введения веществ тормозного действия, воздействий специальных электрических токов, охлаждения.

Реоэнцефалография. Представляет собой методику исследования пульсовых изменений кровенаполнения мозговых сосудов. Она основана на измерении сопротивления нервной ткани электрическому току, которое зависит от степени их кровенаполнения.

Эхоэнцефалография. Позволяет определять локализацию и размеры уплотнений и полостей в мозге и костях черепной коробки. Эта методика основывается на регистрации ультразвуковых волн, отраженных от тканей головы.

Методы компьютерной томографии (визуализации). Основаны на регистрации сигналов от проникших в ткани мозга короткоживущих изотопов с помощью магниторезонансной, позитронно-эмиссионной томографии и регистрации поглощения проходящих через ткани рентгеновских лучей. Обеспечивают получение четкого послойного и трехмерного изображения структур мозга.

Методы исследования условных рефлексов и поведенческих реакций. Позволяют изучать интегративные функции высших отделов мозга. Эти методы подробнее рассмотрены в разделе интегративные функции мозга.

Современные методы исследования

Электроэнцефалография (ЭЭГ) — регистрация электромагнитных волн, возникающих в коре головного мозга при быстром изменении потенциалов корковых полей.

Магнитоэнцефалография (МЭГ) — регистрация магнитных полей в коре головного мозга; преимущество МЭГ над ЭЭГ связано с тем, что МЭГ не испытывает искажений от тканей, покрывающих мозг, не требует индифферентного электрода и отражает только источники активности, параллельные черепу.

Позитивно-эмиссионная томография (ПЭТ) — метод, позволяющий с помощью соответствующих изотопов, введенных в кровь, оценить структуры мозга, а по скорости их перемещения — функциональную активность нервной ткани.

Магнитно-резонансная томография (МРТ) — основана на том, что различные вещества, обладающие парамагнитными свойствами, способны в магнитном ноле поляризоваться и резонировать с ним.

Термоэнцефалоскопия — измеряет локальный метаболизм и кровоток мозга по его теплопродукции (недостатком его является то, что он требует открытой поверхности мозга, применяется в нейрохирургии).

Занятие 1. Общая физиология ЦНС. Рефлекторные принципы регуляции функций.

Вопросы для самоподготовки.

1. Нервная система и ее значение. Общая характеристика строения и функций ЦНС.

2. Методы исследования ЦНС.

3. Рефлекторная теория и основные этапы ее формирования. Принципы рефлекторной деятельности.

4. Концептуальная рефлекторная дуга. Основные элементы рефлекторной дуги. Структурные особенности простых и сложных рефлекторных дуг. Рефлекторное кольцо.

5. Классификация рефлексов. Уровни организации рефлекторных реакций.

6. Общие свойства рефлексов.

Базовая информация .

Появление многоклеточных организмов явилось начальным стимулом для дифференциации клеток и специализации части этих клеток в системы связи, что привело в конечном итоге к формированию сложнейшей нервной системы млекопитающих и человека. Нервная система регулирует деятельность всех органов и систем, обусловливая их функциональное единство, и обеспечивает связь организма как единого целого с внешней средой.

Нервная система условно подразделяется на два больших отдела - соматическую , или анимальную, нервную систему и вегетативную , или автономную, нервную систему.

Соматическая нервная система осуществляет преимущественно функции связи организма с внешней средой, обеспечивая чувствительность и движение вызывая сокращение скелетной мускулатуры. Так как функции движения и чувствования свойственны животным и отличают их от растений, эта часть нервной системы получила название анимальной (животной).

Вегетативная нервная система оказывает влияние на процессы так называемой растительной жизни, общие для животных и растений (обмен веществ, дыхание, выделение и др.), отчего и происходит ее название (вегетативная - растительная). Обе системы тесно связаны между собой, однако вегетативная нервная система обладает некоторой долей самостоятельности и не зависит от нашей воли, вследствие чего ее также называют автономной нервной системой. Ее делят на две части симпатическую и парасимпатичесакую.

В нервной системе выделяют центральную часть - головной и спинной мозг - центральная нервная система и переферическую, представленную отходящими от головного и спинного мозга нервами, - переферическая нервная система. На разрезе мозга видно, что он состоит из серого и белого вещества.

Серое вещество образуется скоплениями нервных клеток (с начальными отделами отходящих от их тел отростков). Отдельные ограниченные скопления серого вещества носят названияядер.
Белое вещество образуют нервные волокна, покрытые миелиновой оболочкой (отростки нервных клеток, образующих серое вещество). Нервные волокна в головном и спинном мозге образуют проводящие пути

Переферические нервы в зависимости от того, из каких волокон (чувствительных либо двигательных) они состоят, подразделяются на чувствительные, двигательные и смешанные. Тела нейронов, отростки которых составляют чувствительные нервы, лежат в нервных узлах вне мозга. Тела двигательных нейронов лежат в передних рогах спинного мозга или двигательных ядрах головного мозга.

Центральная нервная система (ЦНС) - часть нервной системы, включающая головной и спинной мозг, которые выполняют в организме человека и животных ряд сложнейших функции.

Деятельность мозга направленную на выполнение этих функций можно разделить на пять основных категорий:

  • ощущение - возникающее в нервной системе в результате восприятия органами чувств изменений внешней среды;
  • движение - изменения состояния мышц организма возникающее под действием сигналов нервной системы;
  • внутренняя регуляция - регулирование работы внутренних органов в зависимости от состояния внешней или внутренней среды;
  • регуляция продолжения рода – контроль гормональной регуляции репродуктивных функций организма, а также регуляция полового поведения;
  • адаптация - обеспечение приспособления организма к изменяющимся условиям внешней среды.

И.П. Павлов показал, что центральная нервная система может оказывать три рода воздействий на органы:

- пусковое , вызывающее либо прекращающее функцию органа (сокращение мышцы, секрецию железы);

- сосудодвигательное , изменяющее ширину просвета сосудов и тем самым регулирующее приток к органу крови;

- трофическое , повышающее или понижающее обмен веществ и, следовательно потребление питательных веществ и кислорода. Благодаря этому постоянно согласуется функциональное состояние органа и его потребность в питательных веществах и кислороде. Когда к работающей скелетной мышце по двигательным волокнам направляются импульсы, вызывающие ее сокращение, то одновременно по вегетативным нервным волокнам поступают импульсы, расширяющие сосуды и усиливающие обмен веществ. Тем самым обеспечивается энергетическая возможность выполнения мышечной работы.

Центральная нервная система воспринимает афферентную (чувствительную) информацию, возникающую при раздражении специфических рецепторов, и в ответ на это формирует соответствующие эфферентные импульсы, вызывающие изменения в деятельности определенных органов и систем организма.

Анализ функций ЦНС позволяет сформулировать значение центральной нервной системы:

1. Центральная нервная система обеспечивает взаимную связь отдельных органов и систем, согласует и объединяет их функции. Благодаря этому организм работает как единое целое. Точность контроля за работой внутренних органов достигается существованием двусторонней круговой связи между центральной нервной системой и периферическими органами.

2. Центральная нервная система осуществляет взаимодействие организма , как единого целого, с внешней средой, а также индивидуальное приспособление к внешней среде – поведение. Этот вид деятельности основанный на врожденных механизмах называют низшей нервной деятельностью (инстинкты), а на приобретенных - высшей нервной деятельностью (условные рефлексы).

3. Головной мозг является органом психической деятельности. В результате поступления нервных импульсов в клетки коры головного мозга возникают ощущения и на их основе проявляются специфические качества высокоорганизованной материи - процессы сознания и мышления. Психическая деятельность – это идеальная, субъективно осознаваемая деятельность организма осуществляемая с помощью нейрофизиологических процессов. То есть психическая деятельность реализуется с помощью ВНД, а не является ею.

Методы исследования функций ЦНС.

Интенсивное развитие физиологии ЦНС обусловило переход от описательных методов изучения функций различных отделов мозга к экспериментальным методам. Многие методы, используемые для изучения функции ЦНС, применяются в сочетании друг с другом.

Метод разрушения (экстерпации) различных отделов ЦНС. С помощью этого метода можно установить какие функции ЦНС выпадают после оперативного вмешательства и какие сохраняются. Данный методический прием давно используется в экспериментально-физиологических исследованиях.

Метод перерезки, дает возможность изучить значение в деятельности того или иного отдела ЦНС влияний, поступающих от других ее отделов. Перерезка производится на различных уровнях ЦНС. Полная перерезка, например, спинного мозга или ствола мозга разобщает вышележащие отделы ЦНС от нижележащих и позволяет изучить рефлекторные реакции, которые осуществляются нервными центрами, расположенными ниже места перерезки. Перерезка и локальное повреждение отдельных нервных центров производится не только в условиях эксперимента, но и в нейрохирургической клинике в качестве лечебных мероприятий.

Метод раздражения позволяет изучить функциональное значение различных образований ЦНС. При раздражении (химическом, электрическом, механическом и т. д.) определенных структур мозга можно наблюдать возникновение, особенности проявления и характер распространения процессов возбуждения.

Электроэнцефалография - метод регистрации суммарной электрической активности различных отделов головного мозга. Впервые запись электрической активности мозга была осуществлена В. В. Правдич-Неминским с помощью электродов, погруженных в мозг. Бергер зарегистрировал потенциалы мозга с поверхности черепа и назвал запись колебаний потенциалов мозга электроэнцефалограммой (ЭЭГ-ма).

Частота и амплитуда колебаний может меняться, но в каждый момент времени в ЭЭГ-ме преобладают определенные ритмы, которые Бергер назвал альфа-, бета-, тета- и дельта-ритмами. Альфа-ритм характеризуется частотой колебаний 8-13 Гц, амплитуда 50 мкВ. Этот ритм лучше всего выражен в затылочной и теменной областях коры и регистрируется в условиях физического и умственного покоя при закрытых глазах. Если глаза открыть, то альфа-ритм сменяется более быстрым бета-ритмом. Бета-ритм характеризуется частотой колебаний 14-50 Гц и амплитудой до 25 мкВ. У некоторых людей альфа-ритм отсутствует и поэтому в покое регистрируется бета-ритм. В связи с этим, различают бета-ритм 1 с частотой колебаний 16-20 Гц, он характерен для состояния покоя и регистрируется в лобной и теменной областях. Бета-ритм 2 с частотой 20-50 Гц и характерен он для состояния интенсивной деятельности мозга. Тета-ритм представляет собой колебания с частотой 4-8 Гц и амплитудой 100-150 мкВ. Этот ритм регистрируется в височной и теменной областях при психомоторной активности, при стрессе, во время сна, при гипоксии и легком наркозе. Дельта-ритм характеризуется медленными колебаниями потенциалов с частотой 0,5-3,5 Гц, амплитудой 250-300 мкВ. Этот ритм регистрируется во время глубокого сна, при глубоком наркозе, при гипоксии.

ЭЭГ метод используется в клинике с диагностической целью. Особенно широкое применение этот метод нашел в нейрохирургической клинике для определения локализации опухолей мозга. В неврологической клинике этот метод находит применение при определении локализации эпилептического очага, в психиатрической клинике- для диагностики расстройств психики. В хирургической клинике ЭЭГ используется для тестирования глубины наркоза.

Метод вызванных потенциалов - регистрация электрической активности определенных структур мозга при стимуляции рецепторов, нервов, подкорковых структур. Вызванные потенциалы (ВП) чаще всего представляют собой трехфазные колебания ЭЭГ-мы, сменяющие друг друга: позитивное, негативное, второе (позднее) позитивное колебание. Однако, они могут иметь и более сложную форму. Различают первичные (ПО) и поздние или вторичные (ВО) вызванные потенциалы. ВП - это фрагмент ЭЭГ-мы, записанный в момент стимуляции мозга и имеет ту же природу, что и электроэнцефалограмма.

Метод ВП находит применение в неврологии и в нейрофизиологии. С помощью ВП можно проследить онтогенетическое развитие проводящих путей мозга, провести анализ локализации представительства сенсорных функций, провести анализ связей между структурами мозга, показать количество переключении на пути распространения возбуждения и т. д.

Микроэлектродный метод применяется для изучения физиологии отдельного нейрона, его биоэлектрический активности как в состоянии покоя, так и при различных воздействиях. Для этих целей используются специально изготовленные стеклянные или металлические микроэлектроды, диаметр кончика которых составляет 0,5-1,0 мкм или чуть больше. Стеклянные микроэлектроды представляют собой микропипетки, заполненные раствором электролита. В зависимости от расположения микроэлектрода различают два способа отведения биоэлектрической активности клеток- внутриклеточное и внеклеточное.

Внутриклеточное отведение позволяет регистрировать и измерять:

Мембранный потенциал покоя;

Постсинаптические потенциалы (ВПСП и ТПСП);

Динамику перехода местного возбуждения в распространяющееся;

Потенциал действия и его компоненты.

Внеклеточное отведение дает возможность регистрировать:

Спайковую активность как отдельных нейронов, так и, в основном, их групп, расположенных вокруг электрода.

Для точного определения положения различных структур головного мозга и для введения в них различных микропредметов (электроды, термопары, пипетки и др.) широкое применение как в электрофизиологических исследованиях, так и в нейрохирургической клинике нашел стереотаксический метод. Его использование основано на результатах детальных анатомических исследованиях расположения различных структур головного мозга относительно костных ориентиров черепа. По данным таких исследований созданы специальные стереотаксические атласы как для различных видов животных, так и для человека. В настоящее время стереотаксический метод находит широкое применение в нейрохирургической клинике для следующих целей:

Разрушения структур мозга с целью ликвидации состояний гиперкинеза, неукротимой боли, некоторых психических расстройств, эпилептических нарушений и др.;

Выявления патологических эпилептогенных очагов;

Введения радиоактивных веществ в опухоли мозга и для разрушения этих опухолей;

Коагуляции аневризм мозговых сосудов;

Осуществления лечебных электростимуляций или торможений структур мозга.