Наша спиральная галактика. Спиральные галактики и их ветви. Спиральные галактики с перемычкой каталога Мессье

Подумайте о самых крупных объектах ночного неба, изображения которых вы видели. Да, конечно, они бывают совершенно разными – умирающие звёзды, остатки сверхновых, формирующие звёзды туманности и звёздные скопления, как старые, так и новые – но ничто не сравнится с красотой спиральных галактик. Содержащие от миллиардов до триллионов звёзд, эти «островные вселенные» демонстрируют уникальную структуру. Структуру довольно-таки загадочную, если задуматься об этом – как задумался читатель Грег Роджерс:

Что меня всегда удивляло по поводу спиральных галактик, так это их рукава, обёрнутые вокруг них не более чем на половину галактики. Поскольку внешняя часть вращается вокруг ядра медленнее, можно было бы ожидать встретить галактики, рукава которых обёрнуты множество раз вокруг ядра. Неужто Вселенная недостаточно старая для того, чтобы в ней появились так сильно закрученные галактики?

Рассматривайте какие угодно спиральные галактики, но у всех них будет схожая видимая структура.


Из центрального ядра наружу тянутся несколько спиральных рукавов – обычно от двух до четырёх – оборачивающихся вокруг галактики по мере удаления от центра. Одно из фантастических открытий 1970-х, вступившее в противоречие с ожиданиями, заключалось в том, что скорость движения звёзд по орбите вокруг галактики не уменьшается по мере отдаления от ядра – так, как это происходит с планетами в Солнечной системе, которые путешествуют по орбитам тем медленнее, чем дальше они расположены от центра. Скорость вращения звёзд остаётся постоянной – это ещё один из способов сказать, что у кривых вращения галактик плоский профиль.

Мы измеряли это, изучая галактики, расположенные к нам ребром, и подсчитывая, какое красное или синее смещение демонстрируют звёзды по отношению к их расстоянию от центра галактики. И хотя скорости отдельных звёзд практически не меняются, звезда, расположенная в два раза дальше от центра обращается вокруг него в два раза медленнее, а расположенная в десять раз дальше – в десять раз медленнее.

Вооружившись этим, можно подсчитать, что для галактики типа нашего Млечного пути Солнцу требуется 220 млн лет для завершения одного оборота вокруг галактики. Поскольку мы расположены примерно в 26000 световых годах от центра Галактики, наша позиция чуть ближе, чем половина пути от центра до самых окраин. Это значит, что поскольку нашей галактики около 12 млрд лет, внешние звёзды должны были совершить полный оборот всего 25 раз. Звёзды, расположенные так же, как Солнце, сделали 54 оборота. Звёзды внутри круга радиусом 10 000 световых лет совершили уже более 100 оборотов. Иначе говоря, можно ожидать, что галактики со временем закручиваются, как показано на видео ниже.

Но как показывают фотографии галактик, они не закручиваются многократно. В большинстве случаев рукава не обхватывают галактику даже единожды! Когда это свойство галактик выяснилось впервые, оно означало, по меньшей мере, следующее: эти спиральные рукава были нематериальны, это всего лишь видимость. И это так, вне зависимости от того, изолированы галактики или нет. Но есть ещё кое-что, если присмотреться.

Заметили розовые пятнышки, расположенные вдоль рукавов? Они появляются там, где присутствуют активные регионы формирования новых звёзд. Розовая точка – излишки излучаемого света на вполне определённой длине волны: 656,3 нм. Это излучение происходит, когда новые звёзды горят достаточно ярко для того, чтобы ионизировать газы, и затем, когда электроны воссоединяются с протонами, новообразованные атомы водорода испускают свет на определённой частоте, включая и ту, что делает эти регионы розовыми.

Нам это говорит о том, что эти спиральные рукава состоят из регионов, в которых плотность материала выше, чем в других частях галактики, и что звёзды свободно заходят и выходят из этих рукавов с течением времени.

Идея, объясняющая это, существует с 1964 года, и известна, как теория волн плотности . Теория утверждает, что рукава остаются на тех же самых местах с течением времени, так, как пробки на дороге остаются на тех же местах. Отдельные объекты (звёзды в галактике, автомобили на дороге) могут двигаться сквозь них, но примерно одно и то же количество объектов в любой момент всегда остаётся в «пробке». Из-за этого расположение уплотнённых участков остаётся неизменным.

Физика процесса проста: звёзды в определённых регионах создают привычные нам силы гравитации, и именно они и сохраняют спиральную форму. Иначе говоря, если мы начнём с региона с повышенной плотностью газа, и позволим нашему диску вращаться, то получим изначальный набор регионов, где впервые формируются звёзды: прото-рукава. С эволюцией галактики эти рукава – и регионы повышенной плотности – сохраняются только лишь благодаря эффектам гравитации.

Удивительно, что этот эффект так же хорошо работает как при наличии тёмной материи, окружающей галактику в виде гигантского гало, так и при её отсутствии.


Слева – галактика без тёмной материи, справа – с тёмной материей

И хотя предположения вопроса Грега были неверны, поскольку внешние звёзды галактики двигаются с такой же скоростью, как и внутренние, рукава и правда никогда не заворачиваются, вне зависимости от возраста галактики – просто из-за физики самой галактики. Как и пробки на дорогах, звёзды, газ и пыль, оказывающиеся в спиральных рукавах в любой момент времени, находятся в более плотном окружении, а когда они вырываются оттуда, расстояние от них до других звёзд увеличивается – в таком положении сегодня находится и наше Солнце.

Которые характеризуются следующими физическими свойствами:

  • значительный суммарный вращательный момент ;
  • состоят из центрального балджа (почти сферического утолщения), окружённого диском:
    • балдж имеет сходство с эллиптической галактикой , содержащей множество старых звёзд - так называемое «Население II » - и нередко сверхмассивную чёрную дыру в центре;
    • диск является плоским вращающимся образованием, состоящим из межзвёздного вещества , молодых звёзд «Населения I » и рассеянных звёздных скоплений .

Спиральные галактики названы так, потому что имеют внутри диска яркие рукава звёздного происхождения, которые почти логарифмически простираются из балджа. Хотя иногда их нелегко различить (например, во флоккулентных спиралях), эти рукава служат основным признаком, по которому спиральные галактики отличаются от линзообразных галактик , для которых характерно дисковое строение и отсутствие ярко выраженной спирали. Спиральные рукава представляют собой области активного звездообразования и состоят по большей части из молодых горячих звёзд; именно поэтому рукава хорошо выделяются в видимой части спектра. Абсолютное большинство наблюдаемых спиральных галактик вращается в сторону закручивания спиральных ветвей .

Диск спиральной галактики обычно окружён большим сфероидальным гало , состоящим из старых звёзд «Населения II », большинство которых сосредоточено в шаровых скоплениях , вращающихся вокруг галактического центра. Таким образом, спиральная галактика состоит из плоского диска со спиральными рукавами, эллиптического балджа и сферического гало, диаметр которого близок к диаметру диска.

Многие (в среднем две из трёх) спиральные галактики имеют в центре перемычку («бар» ), от концов которой отходят спиральные рукава . В рукавах содержится значительная часть пыли и газа, также множество звёздных скоплений . Вещество в них вращается вокруг центра галактики под действием гравитации.

Масса спиральных галактик достигает 10 12 масс Солнца. Крупнейшей открытой на текущий момент спиральной галактикой является NGC 6872 , общая протяженность которой составляет 522 тысяч световых лет, что в пять раз больше, чем диаметр Млечного пути .

Спиральные рукава

Известен следующий парадокс: время обращения звёзд вокруг ядра галактики составляет порядка 100 миллионов лет; возраст самих галактик в несколько десятков раз больше. Между тем спирали закручены как правило на небольшое число оборотов. Парадокс объясняется тем, что принадлежность звёзд спиралям не постоянна: звёзды входят в область, занимаемую спиральным рукавом, на некоторое время замедляют своё движение в этой области, и покидают спираль. Между тем спираль, как область повышенной плотности вещества в диске спиральной галактики, может существовать неограниченно долго - спирали подобны стоячим волнам.

Спирали галактик могут несильно отличаться по количеству звёзд от окружающего их диска, но могут быть существенно ярче. Газовые облака , пересекая спираль, испытывают сжатие или расширение, порождающие ударные волны в газе. Всё это приводит к нарушению равновесия в облаках и интенсивному звёздообразованию в области спирали. А если учесть, что время жизни ярчайших гигантов и сверхгигантов в тысячи раз меньше, чем возраст Солнца, то получается что большинство ярких голубых звёзд собрано в небольшом объёме спирального рукава: сверхгиганты не успевают покинуть спираль за те несколько миллионов лет, которые существуют до взрыва сверхновой . Как следствие, большое количество голубых сверхгигантов придаёт спиралям галактик яркий голубоватый оттенок.

Расположение Солнца

Солнце интересно тем, что расположено между спиральными рукавами Галактики и делает оборот вокруг центра Галактики в точности за то же время, что и спиральные рукава . Как следствие, Солнце не пересекает области активного звездообразования , в которых часто вспыхивают сверхновые - источники губительного для жизни излучения.

Спиральные галактики

  • Млечный Путь (наша галактика)

Ядро - крайне малая область в центре галактики. Когда речь заходит о ядрах галактик, то чаще всего говорят об активных ядрах галактик, где процессы нельзя объяснить свойствами сконцентрированных в них звёзд.

Диск - относительно тонкий слой, в котором сконцентрировано большинство объектов галактики. Подразделяется на газопылевой диск и звёздный диск. галактика ядро межзвёздный гравитационный

Балдж (англ.. bulge - вздутие) - наиболее яркая внутренняя часть сфероидального компонента.

Гало -- внешний сфероидальный компонент. Граница между балджем и гало размыта и достаточно условна.

Другие возможные элементы.

Полярное кольцо - редкий компонент. В классическом случае галактика с полярным кольцом имеет два диска, вращающихся в перпендикулярных плоскостях. Центры этих дисков в классическом случае совпадают. Причина возникновения полярных колец до конца не ясна.

Сфероидальный компонент - сфероподобное распределение звёзд.

Спиральная ветвь (спиральный рукав) - уплотнение из межзвёздного газа и преимущественно молодых звёзд в виде спирали. Скорее всего, являются волнами плотности, вызванными различными причинами, однако вопрос об их происхождении до сих пор окончательно не решён.

Бар (перемычка) - выглядит как плотное вытянутое образование, состоящее из звёзд и межзвёздного газа. По расчётам, главный поставщик межзвёздного газа к центру галактики. Однако почти все теоретические построения основываются на факте, что толщина диска много меньше его размеров, иными словами, диск плоский, и почти все модели - упрощённые двумерные модели, расчётов трёхмерных моделей дисков крайне мало. А трёхмерный расчёт галактики с баром и газом в известной литературе всего один. По данным автора данного расчёта, газ не попадает в центр галактики, а проходит довольно далеко.

Эволюция галактик

Эволюцией галактики называется изменение её интегральных характеристик со временем: спектра, цвета, химического состава, поля скоростей. Описать жизнь галактики непросто: на эволюцию галактики влияют не только эволюция отдельных её частей, но также и её внешнее окружение. Вкратце процессы, влияющие на эволюцию галактики, можно представить следующей схемой.


Эволюция протекает на лет быстрее при протогалактическое сжатие, большом мёрджинге (слияние галактик), давлении горячего межгалактического газа.

Эволюция протекает медленнее на лет при продолжительности аккреции на диске, малом слиянии, приливном взаимодействии галактик. А также, если эволюция вызвана неустойчивостью бара, темным гало, черной дырой, спиральными ветвями, галактическими ветрами и фонтанами.

На протяжении эволюционного развития возникают другие процессы важные для галактики: формирование звезд, обогащение металлами, обратная связь через сверхновые и активные ядра, возобновление газа.


Спиральная структура галактик

Спиральные ветви (рукава) - характерная особенность т.н. спиральных галактик, к к-рым принадлежит и наша . Ветви содержат сравнительно малую часть всех звезд галактики, но они явл. одним из наиболее заметных галактич. образований, т.к. в них сосредоточены почти все горячие звезды высокой светимости. Звезды этого типа относят к молодым, поэтому спиральные ветви можно считать местом образования звезд. Кроме молодых звезд в рукавах сосредоточена большай часть межзвездного газа галактики, из к-рого, по совр. представлениям, и образуются звезды. По характеру спиральных ветвей и по нек-рым др. особенностям спиральные галактики делятся на классы. В галактиках класса Sa (по классификации Хаббла, см. ) ветви относительно тонки (200-300 пк) и туго навиты, у галактик класса Sc они более размыты (диффузны) и круто удаляются от центарльной области. К спиральным галактикам близки галактики с перемычкой (баром), от концов к-рой обычно отходят спиральные ветви. Одна из распространенных классификаций спиральных галактик принадлежит франц. астроному Ж. Вокулеру, она приведена на рис. 1. Буквы A, B, AB характеризуют семейства спиральных галактик. SA обозначает нормальную спиральную галактику, SB - с перемычкой (баром), SAB - переходные формы. Кроме семейств, как видно из рис. 1, учитываются разновидности (кольцевая - r , спиральная s , смешанная - rs ).

Газ в спиральных рукавах состоит в основном из водорода. Обычно он практически неионизован (нейтральный водород, HI), но вокруг горячих звезд водород ионизован (). Газ часто образует плотные диффузные туманности, также служащие ориентиром при определении вида спиральных ветвей. Еще одним признаком ветвей явл. рассеянная в газе , обнаруживаемая по производимому ею поглощению. Она видна как тонкая темная полоса по внутреннему (ближе к центру галактики) краю спиральной ветви. Кроме того, в рукавах наблюдаются тонкие полоски, пересекающие рукава (рис. 2) и отдельные темные массы. Концентрация звезд, образующих галактич. диск, тоже несколько увеличивается в ветвях, но не так сильно, как концентрация газа.

Звезды, газ и др. объекты галактич. диска движутся по орбитам, близким к круговым. Экспериментально установлено, что угловая скорость этого движения как ф-ция радиуса, т.е. , убывает с удалением от центра галактики. При таком характере вращения большие газовые облака или др. протяженные образования растягиваются и становятся похожими на часть спиральной ветви. Однако спиральные ветви не могли возникнуть таким путем. Дифференциальное вращение способно создать структуры, похожие на наблюдаемые рукава, меньше чем за 10 9 лет. В течение неск. оборотов Галактики, возраст к-рой превышает 10 10 лет, такие структуры должны были разрушиться, пространственнное распределение водорода, пыли и горячих звезд стать нерегулярным, чего в большинстве случаев не наблюдается.

Б. Линдблад (Швеция) первым высказал идею о том, что спиральные ветви могут быть волнами плотности. В 1964 г. Ц. Лин и Ф. Шу (США) показали, что в галактиках действительно могут существовать волны плотности спиралевидной формы, вращающиеся с угловой скоростью (т.е. форма фронта таких волн не искажается дифференциальным вращением галаактич. диска) и распространяющиеся по радиусу с определенной групповой скоростью v гр. Поскольку в Галактике газа мало (2-5%), то волны распространяются по звездному населению, в к-ром они могут возбуждаться, а газ уже реагирует на возмущение , связанного с волнами, бегущими по системе звезд, т.е. его движение в гравитац. поле рукавов явл. несамосогласованным.

Галактики представляют собой т.н. бесстолкновительные звездные системы, т.к. время между двумя последовательными сближениями к.-л. звезды с др. звездой на 3-4 порядка больше возраста галактики. Поэтому возможность распространения волн в таких системах довольно необычна. Здесь упругость, необходимая для распространения волн плотности, обусловлена силами Кориолиса, приводящими к эпициклическому движению звезд, т.е. в конечном счете - вращению системы.

В волне концентрация звезд увеличивается незначительно (соответствующее изменение гравитац. потенциала 10-20%). Однако реакция межзвездного газа даже на столь значительное изменение гравитац. потенциала галактики велика: разгоняясь в поле спиральной волны звездной плотности, газ приобретает сверхзвуковую скорость и сжимается в неск. раз. Это может привести к возникновению глобальной (охватывающей большую часть диска) ударной волны в межзвездном газе. Одним из наблюдательных проявлений торможения газа в ударной волне (газ догоняет при своем галактич. движении рукава и затем тормозится) явл. темные полосы плотного газа с пылью на внутр. кромке спиральных рукавов (рис. 2). Сжатие газа может служить спусковым механизмом (триггером) для образования звезд. Действительно, индикаторами спиральной структуры обычно служат молодые OB-звезды и их ассоциации, зоны HII, остатки вспышек сверхновых, молекулярные темные облака, H 2 O-мазеры, источники -излучения (см. ). При протекании межзвездного газа через спиральные рукава в нем могут происходить своего рода фазовые переходы с образованием облачной структуры. Это проливает свет на происхождение сосуществующих одновременно различных фаз (холодной, теплой, горячей) межзвездного газа.

Волновая теория спиральной структуры галактик разработана достаточно детально и допускает количественное сравнение с наблюдениями. Однако имеется ряд нерешенных проблем. Регулярный спиральный узор наблюдается далеко не во всех галактиках, часто видна довольно нерегулярная структура, состоящая из многих коротких образований, к-рые лишь "в целом" формируют подобие спиральных рукавов. Регулярный глобальный спиральный узор наблюдается обычно у галактик, имеющих бар, и у галактик со "спутниками" (рис. 2). В этих случаях регулярная структура находит объяснение. Так, имеющийся в центре галактики бар действует как генератор, возбуждающий и поддерживающий волны плотности. Галактика-спутник, как показывают расчеты на ЭВМ, также может возбуждать спиральные волны плотности в осн. галактике, благодаря возникающим здесь приливным силам.

Несмотря на то что волновая интерпретация спирального узора галактик явл. практически общепринятой, в рамках самой волновой теории существуют точки зрения, окончательный выбор между к-рыми могут помочь сделать только наблюдения. Если Галактику со всеми ее подсистемами рассматривать как бесконечно тонкий диск с нек-рой ср. дисперсией скоростей звезд и споверхностной плотностью, соответствующей проекции полной плотности в данной точке, и приписать этой модели наблюдаемую кривую вращения галактики, то геометрия двухрукавного узора оказывается совпадающей с наблюдаемой при 13 км/(скпк) для определенного типа волн плотности. Согласно другой точке зрения, тип волн плотности определяется плоской подсистемой и дисперсией скоростей ее компонентов, к-рая намного меньше значения, принятого в первом случае. При этом геометрия наблюдаемого узора лучше описывается др. типом волн с 24 км/(скпк). Имеется ряд теоретич. соображений и данных наблюдений, свидетельствующих, по-видимому, в пользу того, что в Галактике реализуется второй случай. Если это так, то Солнце в Галактике находится в исключительном положении, что может иметь далеко идущие последствия для космогонии Солнечной системы и происхождения в ней жизни. Поскольку галактич. диск вращается дифференциально, а спиральные рукава - твердотельно, в Галактике должна существовать окружность, на к-рой угловые скорости диска и волны плотности равны. Такая окружность наз. коротационной (от англ. corotation - совместное вращение). Ее радиус R=R C определяется условием . Поскольку в каждой спиральной галактике может существовать только одна такая окружность, то, очевидно, она явл. выделенной. Угловая скорость вращения Солнца в Галактике 25 км/(скпк), расстояние Солнца до центра Галактики 10 кпк. Если 24 км/(скпк), то, согласно, модели Шмидта (1965 г.), напр., 10,3 кпк. Это значит, что галактич. орбита Солнечной системы близка к коротационной окружности и, следовательно, находится в особом положении.

Галактика Андромеды

Спираль или эллипс? А может, линза? В 1936 году Эдвин Хаббл предложил последовательность эволюции галактик, которая, с незначительными модификациями, остается актуальной до сих пор.

По этой классификации существует четыре основных типа галактик. Иногда к отдельному виду относят карликовые галактики, однако ничем, кроме своего относительно малого размера они не выделяются и сами принадлежат к тому или иному типу в классической категоризации.

Со стороны выглядит как гигантская звезда – светящийся шар с сильнейшей яркостью в центре и тускнеющий к краям. Эллиптические, или сфероидальные галактики почти полностью состоят из старых звезд, поэтому всегда имеют желтый или красноватый оттенок. Новые звезды в них практически не образуются, так как количество межзвездного газа и пыли в них ничтожно (хотя встречаются и исключения). Отличаются между собой эллиптические звездные системы лишь по размеру и степени сжатия. Именно по сжатию их и классифицируют, от E0 до E7. Составляют примерно четверть из числа видимых галактик. По классификации Хаббла – это начальная стадия галактической эволюции.

Эллиптическая галактика ESO 325-G004 / ©NASA/ESA

Спиральная галактика

Самый распространенный тип и, вероятно, самый красивый – составляет более половины числа всех известных галактик. Выглядит как диск с ярким желтым шаром в центре, вокруг которого в виде спиралей закручены более тусклые ветви-рукава голубоватого оттенка (из-за наличия особых звезд – белых и голубых сверхгигантов).

От эллиптических звездных систем отличается целым рядом особенностей строения. Во-первых, у спиральных галактик присутствуют рукава, где проходят процессы активного звездообразования. Во-вторых, присутствует звездный диск – относительно тонкий слой материи вдоль плоскости галактики, где находится основная масса объектов системы, и звезды в котором вращаются вокруг центра диска. В-третьих, широко наблюдается наличие межзвездного газа и пыли – необходимой для рождения звезд среды. Многие спиральные галактики имеют в своем центре своеобразную перемычку (бар), от концов которой расходятся рукава. Классифицируются буквой S и различаются по плотности расположения рукавов (Sa-Sd, с перемычкой – SBa-SBd).

Количество рукавов в среднем составляет пару, однако встречается и больше; в некоторых случаях рукава отличаются по размеру. Все они (если не переживают галактическое столкновение) закручены в одну сторону вокруг центра, где сосредоточена основная масса вещества в виде сверхмассивной черной дыры и плотного шарообразного скопления из старых звезд – балджа.

И наша галактика – Млечный путь, и Туманность Андромеды, с которой мы неминуемо столкнемся через 4 миллиарда лет, – обе представляют собой спиральные галактики. Солнце находится между рукавов и вдали от галактического центра, причем скорость его движения примерно равна скорости вращения рукавов; таким образом, солнечная система избегает опасных для земной жизни областей активного звездообразования, где часто вспыхивают сверхновые.

Спиральная галактика Водоворот и её компаньон NGC 5195 / ©NASA

Линзообразная галактика

По классификации Хаббла это промежуточный тип между эллиптической и спиральной галактиками (S0). Линзообразные звездные системы обладают звездным диском вокруг центрального шаровидного скопления-балджа, однако рукава относительно малы и выражены не очень ярко, а количества межзвездной газопылевой материи недостаточно для активного рождения новых звезд. Основные жители – старые большие звезды, красного или желтого цветов.

Различаются по количеству межзвездной пыли и плотности перемычки в галактическом центре. Составляют примерно 20% числа галактик.

Линзообразная галактика NGC 7049 / ©NASA/ESA

Неправильная галактика

Ни эллипс, ни спираль – неправильные галактики не обладают ни одной из распространенных форм. Как правило, это хаотически связанные гравитацией звездные скопления, порой не имеющие четкой формы и даже ярко выраженного центра. Составляют примерно 5% галактик.

Почему они так сильно отличаются от своих галактических собратьев? Очень вероятно, что каждая такая звездная система когда-то была эллиптической или спиральной, но ее изуродовало столкновение с другой галактикой, или тесное соседство с ней.

Делятся на два основных типа: те, кто имеет хоть какое-то подобие структуры, позволяющее отнести их к последовательности Хаббла (Irr I), и те, кто не обладает даже подобием (Irr II).

Иногда выделяют третий тип – карликовые неправильные галактики (dl или dIrr). В них наблюдается низкое количество тяжелых элементов и большое количество межзвездного газа, что делает их похожими на протогалактики ранней Вселенной. Поэтому изучение этого вида неправильных галактик имеет важное значение для понимания процесса галактической эволюции.

NGC 1569 является карликовой неправильной галактикой в созвездии Жирафа / ©NASA/ESA