Потенциал магния. Химические свойства магния. Биологическая роль и токсикология

МАГНИЙ

План:

1. Характеристика элемента.

2. Получение магния.


3. Свойства магния.

3.1. Физические свойства магния.

3.2. Химические свойства магния.

4. Соединения магния.

4.1. Неорганические соединения

4.2. Магнийорганические соединения

5. Природные соединения магния

6. Определение магния в почвах, в воде

7. Биологическое значение магния

8. Области применения магния

9. Жесткость воды

10. Практическая работа «Определение жесткости воды»

1. Характеристика элемента

Название «магнезия» встречается уже в III веке н.э., хотя не вполне ясно, какое вещество оно обозначает. Долгое время магнезит - карбонат магния - ошибочно отождествляли с известняком - карбонатом кальция. Слово магнезия происходит от названия одного из Греческих городов - Магнесии. До XVIII века соединения магния считали разновидностями кальциевых или натриевых солей. Открытию магния способствовало изучение состава минеральных вод. В 1695 году английский врач Крю сообщил, что им выделена из воды эпсомского минерального источника соль, обладающая лечебными свойствами, и вскоре был доказан её индивидуальный характер. Затем стали известны и другие соединения магния. Карбонат магния получил название "белая магнезия", в отличие от «чёрной магнезии» - оксида марганца. Отсюда и созвучие названий металлов, выделенных впоследствии из этих соединений.

Впервые магний был получен Деви (XIX в.) из окиси магния. Бюсси, Либих, Девильс, Карон и др получали магний действием паров калия или натрия на хлористый магний.

В 1808 г. английский химик Г. Деви электролизом увлажнённой смеси магнезии и оксида ртути получил амальгаму неизвестного металла, которому и дал название "магнезии", сохранившееся до сих пор во многих странах. В России с 1831 года принято название "магний". В 1829 г. Французский химик А. Бюсси получил магний, восстанавливая его расплавленный хлорид калием. Следующий шаг к промышленному получению сделал М. Фарадей. В 1830 г. он впервые получил магний электролизом расплавленного хлористого магния.

Промышленное производство магния электролитическим способом предпринято в Германии в конце XIX в. Перед второй мировой войной началось освоение термических способов получения магния.

В настоящее время наряду с развитием электролитического способа совершенствуются силикотермический и карботермический способы получения магния. На первой стадии развития магниевой промышленности в качестве сырья применяли хлористые соли карналлит, природные рассолы, хлоромагниевые щёлочи калийной промышленности.

Сейчас наряду с хлористыми солями широко используют доломит и магнезит. Большой интерес представляет применение в качестве сырья для производства магния из морской воды. В России электролитический метод получения магния впервые разработал П.П. Федотьев в 1914 г. в Петроградском политехническом институте. В 1931 г. в Ленинграде вступил в строй первый опытный магниевый завод. Промышленное производство магния в СССР начато в 1935 г.

+12 Mg))) 1S 2 2S 2 2P 6 3S 2 3P 0 –электронная формула нормального атома 282

При затрате необходимой энергии один из электронов переходит в P-состояние, т.е. оба электрона становятся неспаренными. Поэтому магний проявляет степень окисления +2.

3S 2 -валентные электроны

1S 2 2S 2 2P 6 3S 1 3P 1


- электронная формула возбуждённого атома +12 Mg +P 12 ,n 0 12 e12

Строение внешней электронной оболочки магния, обладающей структурой 3S 2 , с двумя слабо связанными электронами объясняет восстановительный характер типичных реакций, в которых магний переходит в двухвалентный катион Mg 2+ . Благодаря большому химическому сродству к кислороду, магний способен отнимать кислород у многих окислов и хлор у хлоридов. Это свойство в последнее время используется при магниетермическом получении титана, циркония, урана. При комнатной температуре на воздухе компактный магний химически стоек. На его поверхности образуется окисная пленка, предох­раняющая от окисления. При нагревании химическая активность магния воз­растает. Считается, что верхний температурный предел устойчивости магния в кислороде находится в интервале 350-400 о С. Кипящую воду магний разлагает с выделением водорода.

На магний не оказывает заметного действия дис­тиллированная вода, фтористоводородная кислота любой концентрации, хромовая кислота, водные растворы фтористых солей и др.

Разрушающее действие оказывает на магний морская и минеральная вода, водные растворы соля­ной, серной, азотной, фосфорной, кремнефтористоводородной кислот, вод­ные растворы галоидных солей, сернистых соединений, аммиак и его вод­ные растворы, органические кислоты, гликоли и гликолевые смеси, многи альдегиды.

Магний - один из самых распространенных в земной коре элементов, по распространенности занимает шестое место после кислорода, кремния, алюминия, железа и кальция. Содержание магния в литосфере, по А.П. Ви­ноградову, сотавляет 2,10%. В природе магний встречается исключительно в виде соединений и входит в состав многих минералов: карбонатов, си­ликатов и др. Важнейшими являются следующие из них: магнезит MgCO 3 , доломит MgCO 3 *CaCO 3 , карналлит MgCl 2 *KCL*6H 2 O, бруцит Mg(OH) 2 , кизерит MgSO 4 , эпсонит MgSO 4 *7H 2 O, каинит MgSO 4 *KCl*3H 2 O, оливин (Mg,Fe) 2 , серпентин H 4 Mg 3 Si 2 O 9 .

Природный или естественный маг­ний представляет собой смесь трех устойчивых изотопов 24 Mg -78,6 %, 25 Mg -10,1 %, 26 Mg -11,3 %.

В реакциях магний практически всегда проявляет степень окисления +2 (валентность II). Для того, чтобы перевести атом магния из состояния 3S 2 в реакционноспособное состояние 3S 1 3P 1 , нужно затратить 259 КДж/моль, а при последовательном отрыве электронов, т.е. ионизации Mg до Mg + и Mg +2 , требуется соответственно 737 КДж/моль и 1450 КДж/моль. Магний кристаллизуется в гексагональную плотноупакованную решетку.

2. ПОЛУЧЕНИЕ МАГНИЯ.

Преобладающий промышленный способ получения магния - электролиз расплава смеси MgCl 2

MgCl 2 Mg 2+ 2Cl - К -) А +)

Mg 2+ +2 e Mg 0 2Cl - -2 e Cl 2 0

В среднем человеческий организм содержит около 25 г магния главным образом в костях и скелетной мускулатуре. Выведение магния из организма усиливается при стрессе, некоторых расстройствах здоровья и типах медикаментозного лечения, а также при высоких физических нагрузках. Меню, богатое рафинированными продуктами, не всегда дает человеку нужного количества магния. Дефицит нетрудно компенсировать биодобавками. Магний выпускается в виде соединений - оксида, сульфата, аспартата, карбоната, цитрата, глюконата.

Полезные свойства магния для организма

Необходим для сжигания в клетках органических веществ с выделением энергии, для нервного проведения, расслабления мышц, формирования костей и зубов. В сочетании с кальцием и калием он управляет сердечным ритмом и участвует в образовании инсулина.

Профилактика

Недавние исследования наводят на мысль о гипотензивном (снижающем артериальное давление) и антикоагулянтном (от тромбоза) действии магния, которое в сочетании со способностью этого элемента предупреждать спазмы артерий и опасные сердечные аритмии особенно полезно выздоравливающим после инфаркта миокарда.

Его адекватное поступление в организм важно для профилактики инсулинонезависимого диабета. Американские исследователи в течение 6 лет следили за уровнем магния более чем у 12 тыс. предрасположенных к диабету людей. Как выяснилось, когда этого элемента у них недостаточно, собственно болезнь развивается на 94% чаще, чем когда его много.

Основная польза магния

Магний – лёгкий серебристо-белый металл, блестящий, но тускнеющий на воздухе из-за образования защитной оксидной плёнки на его поверхности. Химическая формула магния – Mg. 12 - атомный номер магния в периодической системе химических элементов Д.И. Менделеева.

Магний довольно распространён в земной коре. Опережают магний в этом плане только кислород, кремний, алюминий, железо и кальций. В природе он встречается в виде соединений. Важнейшие минералы, содержащие магний – магнезит MgCO 3 и двойная соль доломит CaMg 2 . Огромные запасы магния содержатся в морях и океанах в виде MgCl 2 . Науке известно около 1500 минералов. И почти 200 из них содержат магний.

Получение магния


Как же был открыт магний?

В 1695 г. английский врач Крю проводил анализы минеральной воды из источника поблизости города Эпсом. При упаривании этой воды на стенках сосуда образовалась белая соль c горьким вкусом. Эта соль обладала лечебными свойствами. Аптекари называли эту соль английской или эпсонской. Позже соль получила название белой магнезии из-за своего сходства с белым порошком, который получали, прокаливая минерал, обнаруженный вблизи греческого города Магнезии.

Металл магний впервые удалось получить в 1808 г. британскому химику Хемфри Дэви. Дэви подвергал электролизу смесь белой магнезии и окиси ртути. В результате он получил сплав ртути и неизвестного металла. Выделив металл, Дэви предложил назвать его магнием. Но магний, полученный Дэви, содержал примеси. Чистый, без примесей, магний удалось получить только в 1829 г. французскому химику Антуану Бюсси.

Химические свойства магния


Магний – активный металл. И как все активные металлы, он хорошо горит. В обычных условиях его поверхность защищена оксидной плёнкой. Но при нагревании до 600 градусов плёнка разрушается, и магний реагирует с кислородом. Продукт горения магния – оксид магния, белый порошок.

2Mg + O 2 = 2MgO

При горении выделяется много тепла и света. Причём по своему спектральному анализу свет при горении магния почти такой же, как солнечный свет. Это свойство использовали первые фотографы более 100 лет назад. Горение магниевого порошка с добавками перманганата калия или нитрата бария освещало объект фотографирования, что позволяло делать чёткие снимки в закрытом помещении, где освещение было недостаточным.

Магний вступает в реакцию с водой только при нагревании. В результате этой реакции выделяется водород.

Mg + 2H 2 O = Mg(OH) 2 + H 2

Горит магний и в среде углекислого газа.

2Mg + C O 2 = 2MgO + C

С галогенами магний взаимодействует при комнатной температуре.

Mg + Br 2 = MgBr 2

С серой магний вступает в реакцию только при нагревании, образуя сульфид магния.

Mg + S = MgS

В реакцию со щелочами магний не вступает.

Получение магния

Металлический магний получают электротермическим или электролитическим способом.

В первом случае магнезит или доломит, находящиеся в реакционном аппарате, прокаливают. В результате получают окись магния MgO. Затем окись магния восстанавливается алюминием, кремнием или углем. Так получают чистый магний.

Но основным промышленным способом получения магния является электролитический. В специальных ваннах-электролизёрах находится расплав хлорида магния MgCl2. В результате электролиза на железном катоде выделяется магний, а на графитовом аноде собираются ионы хлора. Расплавленный магний собирают и разливают по формам. Затем магний проходит очистку от примесей.

Применение магния


Способность магния легко взаимодействовать с кислородом позволяет использовать его в производстве стали для удаления кислорода, растворённого в расплавленных металлах. Магниевый порошок применяется в ракетостроении как высококалорийное горючее. Высокоочищенный магний используют в производстве полупроводников.

Магний – самый лёгкий из металлов. Он в четыре раза легче железа и в полтора раза легче алюминия. В чистом виде магний мягкий и непрочный. Из него нельзя делать технические конструкции. Но механическая прочность магния значительно повышается, если в него добавить цинк, алюминий или марганец. Добавки вводят в небольшом количестве, чтобы не увеличить удельный вес магния. К сожалению, эти сплавы при нагревании теряют свою прочность. Но если к ним добавить цинк, медь, серебро, бериллий, торий, цирконий, титан, то они сохраняют свою механическую прочность даже при повышении температуры. Корпуса из магниевых сплавов можно обнаружить в мобильных телефонах, видеокамерах, ноутбуках. Кроме того, детали из магниевых сплавов поглощают вибрацию в 100 раз лучше алюминия и в 20 раз лучше легированной стали. Поэтому их широко применяют в авиации, автомобилестроении и других областях техники.

Магний (лат. – Magnesium, Mg) содержится в организме в относительно большом количестве. Поэтому его относят к макроэлементам. Из-за мягкого седативного действия магний еще называют минералом спокойствия. Помимо этого магний участвует в работе сердечно-сосудистой системы, почек, опорно-двигательного аппарата, регулирует обмен других полезных веществ (нутриентов).

История открытия

Человек еще в глубокой древности использовал в прикладных целях соединения магния – асбест, тальк, магнезит. Особенно большие залежи магнезита, сульфата магния, обнаружились близ города Магнезита, что в Малой Азии. Отсюда и название металла. Однако сам магний долгое время оставался неизвестным, а его соединения из-за внешнего сходства часто путали с соединениями кальция, в частности, с известняком, гашеной и негашеной известью (с сульфатом, гидроксидом и оксидом кальция).

Изучение магния берет начало с XVII в. В 1618 г. в английском городе Эпсом открыли минеральный источник. Целебная вода в этом источнике была горьковатой на вкус, и оказывала послабляющее действие. Позднее, в 1695 г., из этой воды выделили соль, которую назвали горькой, эпсомской или английской. Эта соль представляла собой порошкообразное вещество.

Данное вещество назвали белой магнезией. Это был магния сульфат или сернокислая магнезия, MgSO 4 . Примечательно, что поначалу магнезиями называли многие вещества, которые вместо магния содержали соли железа, марганца, сурьмы, и других металлов.

В 1818 г. магний в чистом виде был выделен из гидроксида магния путем электролиза. В 1829 г. металлический магний получили из хлорида магния при его взаимодействии с калием. Примечательно, что во многих европейских странах вновь открытый металл назвали магнезием. И лишь в России за ним закрепилось название магний.

Свойства

Магний – металл серебристо-белого цвета. В периодической системе элементов Менделеева располагается во II группе III периода под №12, и относится к щелочноземельным металлам. Вокруг атомного ядра вращаются 12 электронов, 2 из которых – неспаренные. Соответственно, магний является двухвалентным металлом, Mg (II). Атомная масса магния – 26. Но у металла есть множество других стабильных и нестабильных изотопов.

Металл довольно легкий, легче алюминия. Его плотность составляет 1,738 г/см3. При этом он прочный, пластичный, и легко поддается обработке. В этой связи он нашел широкое применение в промышленности как в чистом виде, так и в сплавах с цинком, алюминием, и другими металлами.

Температура плавления Mg 650 0 С, температура кипения 1090 0 С. Он с легкостью реагирует с кислородом и многими другими неметаллами. При взаимодействии с атмосферным кислородом на его поверхности образуется тончайшая оксидная пленка MgO. Эта пленка плотно покрывает поверхность металла, и предохраняет его от дальнейшего окисления.

В земной коре на долю магния приходится 1,87%, и по распространенности он занимает 8 место среди других элементов. При этом из-за высокой способности реагировать с другими соединениями магний в чистом виде практически не встречается. Зато многие природные минералы содержат магний.

Довольно много магниевых солей находится в воде океанов, морей, некоторых озер и природных источников. Немаловажную роль он играет в живой природе. Растительный пигмент хлорофилл содержит 2,7% магния. Этот минерал выполняет жизненно важные функции в организме человека и животных.

Физиологическое значение

Название данного металла созвучно с другим латинским словом, magnum, что означает большой, великий. Действительно, магний в нашем организме является великим и в буквальном, и в образном смысле. Магний великий, ведь его действительно много. По содержанию в организме человека магний занимает 4 место, уступая лишь натрию, калию и кальцию. Магний сосредоточен внутри клеток, и во внутриклеточной среде он самый важный после калия макроэлемент.

Велика роль магния и в поддержании на должном уровне физиологических процессов, регулировании состояния органов и систем.

Биологическая ценность Mg в значительной степени обусловлена антагонизмом с другим макроэлементом, кальцием (Ca). Подобно магнию кальций относится к щелочноземельным металлам II группы. Поэтому оба минерала обладают сходством химической структуры и свойств.

Этим сходством и обусловлено их конкурентное соперничество во влиянии на физиологические процессы. Это влияние во многом противоположно. Разумеется, это не значит, что кальций является «плохим» макроэлементом, а магний – «хорошим». Все неоднозначно, и кальций для нас тоже незаменим. Он обеспечивает проведение нервных импульсов, укрепляет опорно-двигательный аппарат, формирует тонус сосудов, и выполняет другие, не менее важные функции.

Магний регулирует обмен кальция. При низком содержании кальция он усиливает всасывание этого макроэлемента, и тормозит выведение с мочой. А при большом содержании кальция его всасывание под действием магния тормозится. Противостояние между Са и Mg в наибольшей степени проявляется на клеточном и субклеточном уровне.

В противоположность магнию кальций является внеклеточным элементом, и его концентрация во внеклеточном пространстве примерно в 25 раз превышает таковую внутри клетки. Разница или градиент концентрации кальция по обе стороны клеточной мембраны поддерживается ферментом кальций-зависимой АТФ-азой. Этот фермент выталкивает кальций наружу, и таким способом поддерживает градиент. Однако некоторая часть кальция все-таки проникает внутрь клеток.

Перенос ионов Ca осуществляется специфическими белками-переносчиками, т.н. кальциевыми каналами. Проникая внутрь мышечных клеток, кальций инициирует взаимодействие сократительных белков, актина и миозина. Со стороны скелетных мышц это сопровождается их сокращением. Аналогичные процессы происходят в сердечной мышце, в результате чего увеличивается сила сердечных сокращений.

Благодаря тоническим сокращениям гладких мышц мелких артерий (артериол) артериальное давление (АД) поддерживается на должном уровне. Кроме того, кальций наряду с другими факторами обеспечивает проведение импульсов по нервным волокнам и их последующую передачу на мышцы.

Но иногда эти и другие жизненно важные процессы приобретают патологические, уродливые черты с развитием заболеваний. И в этих случаях на помощь приходит магний. Будучи сходен с кальцием, он конкурентно блокирует кальциевые каналы на клеточных мембранах. Спазм мелких артерий (артериол) под действием Ca сопровождается повышением АД. Это один из механизмов развития гипертонической болезни. Магний расслабляет артериолы, и снижает АД у гипертоников.

Помимо повышения АД кальций вызывает ряд других негативных эффектов со стороны сердечно-сосудистой системы. Он активирует специфические ферменты, которые запускают агрегацию, склеивание, тромбоцитов с формированием внутрисосудистых тромбов. Другие кальций-зависимые ферменты повреждают эндотелий, внутрисосудистую стенку, и способствуют отложению на ней низкоплотного холестерина в виде атеросклеротических бляшек.

Спазм сердечных или коронарных сосудов на фоне тромбоза и атеросклероза сопровождается ишемией, недостаточным притоком крови к миокарду. Ишемическая болезнь сердца (ИБС) – прямой путь к инфаркту миокарда. Положение усугубляется еще и тем, что под действием кальция сократимость миокарда повышается, и соответственно, возрастает его потребность в кислороде.

Формируется своего рода порочный круг: спазм – тромботическая и атеросклеротическая закупорка – повышение потребности в кислороде – ишемия с исходом в инфаркт. Сами по себе эти изменения – уже катастрофа. Но ситуация отягощается т.н. феноменом обкрадывания. Кровь устремляется по нормальным сосудам в неповрежденные участки, минуя зоны ишемии. В результате ишемизированная ткань еще больше обкрадывается кислородом, и ее площадь расширяется.

Магний помогает разорвать этот порочный круг. Он блокирует кальций-зависимые ферменты, и тем самым расширяет коронарные сосуды, и препятствует образованию внутрисосудистых тромбов, Доказано его антиатерогенное действие. Под действием Mg снижается уровень общего холестерина, главным образом за чет его низкоплотной фракции и триглицеридов, ответственных за формирование атеросклеротических бляшек.

Mg ускоряет расщепление не только холестерина, но и других липидов (жиров), и тем самым препятствует развитию ожирения и связанных с ним заболеваний, гипертонической болезни и сахарного диабета. Вообще, антидиабетический эффект у магния довольно выражен. Этот минерал повышает активность некоторых ферментов, запускающих процессы гликолиза, распада глюкозы.

Помимо кальция магний регулирует обмен других макроэлементов, натрия и калия. Калий – внутриклеточный элемент, а натрий – внеклеточный. Градиент натрия и калия по обе стороны клеточной мембраны поддерживается магний-зависимым ферментом натрий-калиевой АТФ-азой. Поскольку магний регулирует баланс ионов натрия, калия, и кальция, он тем самым способствует правильной генерации и распространению импульсов в проводящей системе сердца.

Велика его роль в профилактике тахиаритмий (нарушений ритма сердца с учащением частоты сокращений) – наджелудочковой и желудочковой экстрасистолии, пароксизмальной тахикардии, мерцательной аритмии. Некоторые из этих аритмий представляют опасность для жизни.

Магний угнетает активность ренин-ангиотензин-альдостероновой системы (РААС). Действие этой системы направлено на повышение АД путем спазма артериол и задержки натрия в организме. Замедленное выведение натрия с мочой, задержка его в организме, сопровождается развитием отеков, застойной сердечной недостаточностью на фоне высокого АД.

Магний в значительной степени устраняет эти негативные эффекты. Он замедляет реабсорбцию (обратное всасывание) натрия в почечных канальцах. В результате выделение натрия почками усиливается. Вместе с натрием выделяется вода. Повышается диурез, объем выделенной мочи. Кроме того, натрий расширяет просвет почечных артерий. В результате усиливаются фильтрационные процессы почках, что тоже способствует повышению диуреза. Диуретическое действие Mg способствует устранению отеков, и дополнительно снижает АД.

Аналогичным образом магний влияет на состояние центральной нервной системы (ЦНС) и периферических нервов. Расширяя мозговые или церебральные сосуды, он улучшает кровоснабжение мозговой ткани. Кроме того, Mg замедляет развитие церебрального атеросклероза и тромбоза, и тем самым предотвращает развитие мозговых инсультов. А при развившихся инсультах он снижает тяжесть патологических изменений, связанных с феноменом обкрадывания. Магний способствует скорейшему восстановлению ЦНС после перенесенных инсультов и черепно-мозговых травм.

В ЦНС кальций активирует проведение и распространение возбуждающих импульсов по нервным волокнам, и их передачу на скелетные мышцы. Этот механизм лежит в основе появления судорог, и такого тяжелого заболевания как эпилепсия. У здоровых людей возбуждение в ЦНС, запущенное кальцием, проявляется бессонницей и негативными эмоциями тревоги, страха, неуверенности себе, а также раздражительностью и гневом.

Магний как антагонист кальция оказывает седативное тормозное влияние на ЦНС, и устраняет эти эмоции. В этой связи его иногда образно называют минералом спокойствия. При этом он выступает в качестве природного противосудорожного средства. Эти эффекты Mg в значительной степени обусловлены его влиянием на выделение и захват ацетилхолина и норадреналина, основных нейромедиаторов.

Действие магния не ограничивается одним лишь антагонизмом с кальцием. Этот макроэлемент входит в состав около 600 белковых соединений. Его функция контролируются примерно 280 генами, и он участвует в более чем 500 биохимических реакциях. Mg через натрий-калий-зависимую АТФ-азу способствует расщеплению АТФ в митохондриях с выделением энергии. Благодаря тому, что он синхронизирует процессы окислительного фосфорилирования и клеточного дыхания, эта энергия расходуется более экономно. В результате клетки тканей становятся более устойчивыми к дефициту кислорода, к гипоксии.

Данный минерал позитивно влияет на состояние опорно-двигательного аппарата. Если при многих патологических состояниях магний является антагонистом кальция, то здесь он его синергист, союзник. Mg регулирует выделение гормона кальцитонина щитовидной железой и параттгормона паращитовидными железам, и тем самым способствует откладыванию солей кальция в костной ткани.

Особое значение этот механизм имеет в детском и подростковом возрасте, в период роста и формирования костного скелета. В более зрелом возрасте Mg уменьшает риск развития остеопороза. Опасность этой патологии возрастает у женщин из-за дисгормональных нарушений, связанных с климаксом и приемом оральных контрацептивов.

У женщин Mg нормализует менструальный цикл, и, будучи металлом спокойствия, устраняет негативные изменения, связанные с предменструальным синдромом. Во время беременности Mg оказывает токолитическое действие – расслабляет тонус матки, угнетает ее сократимость, и тем самым предотвращает выкидыши и преждевременные роды

Магний стабилизирует состояние ДНК, транспортных РНК, осуществляющих биосинтез белка, и стимулирует образование многих белковых соединений. Под его действием синтезируются белки коллаген и эластин, которые обеспечивают прочность соединительнотканных структур – костей, связок, сухожилий. Кроме того, магний повышает прочность и эластичность кожи.

Желудочно-кишечный тракт (ЖКТ) тоже контролируется магнием. Как антагонист кальция этот макроэлемент расслабляет гладкую мускулатуру ЖКТ, контролирует ее волнообразные сокращения (перистальтику), и предотвращает появление спасических болей. Кроме того Mg нормализует кислотность желудочного сока, стимулирует выделение пищеварительных соков 12-перстной кишкой и поджелудочной железой. На образование желчи в печени Mg также влияет позитивно. Под его действием улучшается способность печени связывать и выводить токсины.

Магний влияет на выделение некоторых солей, в частности, уратов и оксалатов, а также препятствует образованию нерастворимых солей кальция. Поэтому он предотвращает камнеобразование в желчевыводящей системе и в почечных лоханках.

Магний угнетает выделение гистамина тучными клетками, и таким способом предупреждает появление аллергических реакций с явлениями кожной сыпи и бронхоспазма. Этот макроэлемент активирует клеточный и гуморальный иммунитет, т.к. способствует образованию Т- и В-лимфоцитов, повышает фагоцитарную активность нейтрофилов и тканевых макрофагов. Помимо этого Mg обладает свойствами онкопротектора. Он снижает вероятность развития многих видов злокачественных опухолей.

В организме взрослого человека содержится в среднем 25 г магния, но это количество может варьировать от 20 до 30 г. Суточная потребность в Mg зависит от пола, возраста, и от некоторых других факторов.

Источники поступления

Магний содержится во многих продуктах растительного и животного происхождения

Продукт Содержание, мг/100 г
Пшеничные отруби 448
Необработанные ростки пшеницы 239
Тыквенные семечки 534
Семечки подсолнечника 129
Жареный миндаль 286
Кофе в зернах 200
Чай 440
Какао 20% 442
Соевые бобы 240
Сырая гречка 231
Лесные орехи 310
Фундук 172
Грецкие орехи 100
Свежий шпинат 79
Сушеные финики 84
Шиповник сушеный 120
Гречневая крупа 231
Хлопья овсяные 130
Курага 47
Чернослив 45
Арбуз 224
Сыр 35
Брынза 23
Треска 30
Сардины консервированные 34
Баранина 25
Говядина 22
Мясо курицы 20
Молоко 3,2% 10
Молочный шоколад 63
Картофель 25
Лук зеленый, репчатый 20
Хлеб белый пшеничный 23
Хлеб ржаной 40
Зеленый горошек 33

При термической обработке продуктов содержание магния уменьшается. Кроме того, магний в виде солей сульфата, хлорида, гидрокарбоната присутствует во многих минеральных водах (Нарзан, Улеймская, Дороховская, и др.).

Причины и признаки дефицита

До недавних пор дефициту магния не придавали особого значения. Но, как оказалось, это отклонение встречается довольно часто, и его последствия более серьезны, чем приято полагать.

Немаловажную роль в магниевом дефиците играет пищевой фактор. Проблема в том, что в последнее время многие продукты не содержат положенное количество магния. Причина проста: обеднение магнием почв из-за ежегодного истощения, мелиоративных работ, нерационального использования удобрений, применения ядохимикатов.

Если здоровая натуральная пища не способна удовлетворить потребность в этом микроэлементе, что тогда говорить о погрешностях в питании. В этих случаях к дефициту Mg могут привести многие причины:

  • Рафинированные продукты, в т.ч. и еда быстрого приготовления, содержат минимальное количество Mg .
  • Жирная пища затрудняет его всасывание.
  • Для усваивания белков необходим магний. Поэтому прием белковой пищи сопровождается его усиленным расходом.
  • То же самое касается сладостей. Ведь магнию надо утилизировать поступившую глюкозу, чтобы привести ее содержание в норму.
  • Прием кофе, чая, и других напитков, содержащих кофеин. При этом магний усиленно выводится с мочой.
  • Прием пищи с большим количеством консервантов, усилителей вкуса, и прочих синтетических ингредиентов.
  • Прием продуктов, богатых кальцием, фосфатами.
  • «Лечебное» голодание, при котором магний вообще не поступает в организм.

Наряду с пищевым фактором существует и водный. Насыщение организма магнием в немалой степени зависит от жесткости воды. Жесткость формируют соли кальция и магния. Поэтому прием мягкой воды, бедной солями Mg, влечет за собой магниевый дефицит.

Именно такая вода подается в городскую водопроводную сеть после очистки, в ходе которой удаляется большинство минеральных соединений. Этому же способствует фторирование воды, после которого магниевые соли выпадают в нерастворимый осадок.

Помимо пищевого и водного факторов есть лекарственный. Лекарства некоторых групп негативно влияют на содержание магния в организме. Это:

  • Противозачаточные средства, синтетические эстрогены
  • Диуретики (мочегонные)
  • Слабительные
  • Глюкокортикостероиды
  • Антибиотики.

Разумеется, однократное или непродолжительное использование этих средств едва ли отразится на количестве Mg . Но их длительное употребление приведет к уменьшению данного макроэлемента. Вредные привычки, алкоголь и курение, предрасполагают к дефициту магния. То же самое касается других видов хронических интоксикаций промышленными и бытовыми ядами.

Еще один причинный фактор: заболевания ЖКТ, при которых нарушается всасывание поступившего извне Mg, или же происходит его усиленная потеря из-за диареи. Магний теряется с потом. Поэтому обильное потоотделение при физическом труде, спортивных тренировках, работе в горячих цехах, будет сопровождаться потерей этого макроэлемента.

Кроме физических нагрузок к повышенному расходу магния предрасполагают следующие состояния:

  • умственные нагрузки
  • негативные эмоции, стрессовые ситуации
  • период бурного роста
  • беременность и кормление грудью.

Усиленный расход магния отмечается при некоторых заболеваниях, среди которых:

  • сахарный диабет, особенно II типа на фоне ожирения
  • ИБС, перенесенный инфаркт миокарда
  • гипертоническая болезнь
  • болезни почек с нарушением их выделительной функции
  • нарушение функции щитовидной и паращитовидных желез
  • последствия тяжелых травм
  • цирроз печени
  • гиперальдостеронизм, первичное или опосредованное повышенное выделение гормона альдостерона корой надпочечников

Если не восполнять потери извне, в органах и тканях формируется недостаток Mg.Это состояние негативно сказывается на состоянии тканей и систем органов.

  • Сердечно-сосудистая система

ИБС с частыми приступами стенокардии. Развитие гипертонической болезни. Повышение риска инфаркта миокарда, тахиаритмий, застойной сердечной недостаточности с периферическими отеками. Кроме того, из-за нарушения синтеза коллагена могут развиваться клапанные пороки, в т.ч. и пролапс митрального клапана.

Общая слабость, головные боли, головокружение, нарушения сна, депрессия. Ухудшение ментальных функций: снижение памяти, слабая концентрация внимания, плохие аналитические способности. Отклонения в эмоционально-волевой сфере: страх, раздражительность, неуверенность в себе, депрессия. Возрастает риск мозговых инсультов, болезни Паркинсона, болезни Альцгеймера.

  • Опорно-двигательный аппарат

Снижение мышечной силы и выносливости. Судороги в различных мышечных группах, усиливающиеся при эмоциональном волнении и при физических нагрузках. Остеопороз, частые переломы костей.

  • Органы чувств

Снижение остроты зрения и слуха.

Затруднения глотания, боли в желудке и в кишечнике спастического характера. Тошнота, отрыжка, изжога после приема пищи. Чередование запоров и поносов.

  • Обмен веществ

Сахарный диабет II типа на фоне ожирения.

  • Иммунитет

Ослабление защитных сил, частые простуды. Формирование аллергических реакций на различные вещества, сопровождающиеся отеками, кожной сыпью, приступами удушья из-за бронхоспазма.

Во время беременности дефицит магния приводит к ухудшению фетоплацентарного кровообращения и к гипотрофии плода. Из-за активации возбуждающих импульсов в ЦНС, обусловленных кальцием, развивается гестоз с эклампсией. Повышение тонуса матки чревато выкидышами и преждевременными родами.

Метаболизм

Поступивший внутрь магний в количестве 30-50% всасывается в тонком кишечнике. Остальная невсосавшаяся часть выводится с калом. Хотя некоторое его количество может всасываться в толстом кишечнике.

Процесс всасывания зависит от нескольких факторов. Прежде всего, это виды соединений Mg. Органический молочнокислый и лимоннокислый магний (магния цитрат и магния лактат) всасывается намного лучше, чем неорганическиий сульфат. Правда, это вовсе не означает, что принятый внутрь магния сульфат бесполезен.

В просвете кишечника он не всасывается, но, будучи осмотически активным, привлекает воду. При этом объем кишечника увеличивается, усиливается кишечная перистальтика. Отсюда и послабляющий эффект английской соли. Весь этот процесс сопровождается отхождением желчи и панкреатического сока, что тоже позитивно сказывается на пищеварении.

Кроме того, сернокислая магнезия эффективна при отравлении солями тяжелых металлов. В просвете кишечника она реагирует с этими солями с образованием нетоксичных сульфатов, которые выводятся наружу.

Усваиваемость магния в немалой степени зависит от компонентов пищи. Жирная пища, продукты питания, содержащие натуральные пищевые волокна, а также оксалаты, фосфаты, фитаты (соли фитиновой кислоты) ухудшают всасывание Mg. Напротив, вит. D, а также парагормон паращитовидных желез улучшают этот процесс.

Всосавшийся внутрь Mg с током крови разносится по органам и тканям, и распределяется в них неравномерно. 60% откладывается в костях и зубах, 20% – в мышцах. Еще 19% приходится на органы, несущие на себе повышенную функциональную нагрузку: сердце, почки, печень, головной мозг. Оставшийся 1% содержится во внеклеточной жидкости, в т.ч. 0,3% в плазме, и 0,5% в эритроцитах.

Из всего магния, находящегося в плазме, 75% пребывает в ионизированной форме, 22% — в связи с высокомолекулярными белками-глобулинами, 3% – с низкомолекулярными альбуминами. Выводится магний через почки. Благодаря сложным регуляторным механизмам при недостаточном поступлении Mg или при повышении потребности в нем всасывание облегчается, а выделение через почки снижается. Если магний поступает в повышенных количествах, то, наоборот, затрудняется всасывание, и усиливается выделение почками.

Синтетические аналоги

Самый известный препарат магния – это сернокислая магнезия, MgSO 4 .Препарат выпускают в ампулах 25% раствора, и в виде порошка для приема внутрь.

Инъекционное введение показано при сердечно-сосудистой, неврологической и акушерско-гинекологической патологии:

  • гипертоническая болезнь
  • экстрасистолия, пароксизмальная тахикардия
  • последствия инсультов и черепно-мозговых травм
  • мозговые дисфункции, энцефалопатии
  • угрожающий аборт
  • гестозы с эклампсией
  • эпилепсия
  • другие состояния, сопровождающиеся судорожным синдромом.

Сернокислая магнезия в порошке принимается внутрь как слабительное средство, а также при отравлении солями тяжелых металлов.

Не уступают в популярности сернокислой магнезии Панангин и Аспаркам. Здесь магния аспарагинат сочетается с калия аспарагинатом. Данные препараты являются аналогами, и используются в кардиологической практике, а также для профилактики и лечения водно-электролитных нарушений.

Присутствует магний и в других комбинированных средствах. Его сочетают с вит. В 6 (Магний В 6 , Магнелис В 6 , Магний плюс В 6), с Ацетилсалициловой кислотой (Кардиомагнил), с вит. В 13 или Оротовой кислотой (Магния оротат, Магнерот).

В этих и других препаратах магний присутствует в виде цитрата, лактата, оксида, гидроксида, хлорида, и других соединений. Усваиваемость этих соединений различна. Например, магния гидроксид, Mg(OH) 2 вообще практически не всасывается. Это соединение обладает антацидными свойствами, реагирует с соляной кислотой желудочного сока, и снижает кислотность. Магния гидроксид включен в состав многих антацидных обволакивающих средств, в т.ч. таких известных как Маалокс, Алмагель.

Еще один важный фактор: наличие других ингредиентов в комбинированных средствах. Кальций в таких средствах может негативно сказываться на усваивании магния. Оптимальное соотношение ме6жду этими двумя элементами – 2:1 в сторону увеличения магния.

Кристаллогидрат хлорида магния, Mg Cl 2 x 6H 2 O более известен как Бишофит. Его используют как наружное средство в виде ванн, аппликаций, компрессов, при заболеваниях опорно-двигательного аппарата, в частности, при остеохондрозе и при деформирующем остеоартрозе.

Взаимодействие с другими веществами

Магний способствует усваиванию кальция. Однако в большом количестве наблюдается обратный эффект, т.к. оба минерала конкурируют друг с другом. Оптимальное соотношение Mg: Ca должно быть 2:1. Магний несовместим с железом.

Фосфор и марганец ухудшают всасывание магния. А магний, в свою очередь, затрудняет всасывание фосфора. Магний облегчает усваивание витаминов группы В, за исключением вит. В 1 . Вит.Е в сочетании с магнием тоже плохо усваивается. Вит. D 3 улучшает всасывание магния в кишечнике.

Наличие вит. В 9 приводит к повышенному расходу магния. То же самое касается жиров, углеводов. Пищевые волокна ухудшают всасывание магния. Прием алкоголя сопровождается усиленным выведением магния через почки.

Признаки избытка

Избыток магния в клинической практике наблюдается редко. Ведь магний, не накапливаясь, выводится почками. Для формирования избытка Mg необходимо одно из двух условий, или их сочетание: усиленное бесконтрольное поступление магния в составе препаратов, или замедление его выделения из-за болезней почек.

При этом отмечаются следующие симптомы:

  • общая слабость, заторможенность, сонливость
  • плохая координация движений
  • снижение мышечного тонуса
  • сухость во рту, жажда
  • боли в животе, тошнота, диарея
  • снижение АД
  • брадикардия, уменьшение частоты сердечных сокращений.

Все эти симптомы неспецифичны. Об избыточном содержании магния говорит гипермагниемия, повышение его содержания в плазме крови. Нормальные значения Mg находятся в пределах 0,7-1,1 ммоль/л. Клинические проявления начинаются уже при гипермагниемии 1,5/л. При значениях 2,5-5 ммоль/л развиваются выраженные изменения в сердечно-сосудистой системе с гипоксией в тканях. Дальнейшее превышение этих показателей принимает угрожающий для жизни характер. А при содержании Mg в крови 7,5 ммоль/л останавливается сердце.

При отравлении магнием необходимо сразу же прекратить прием магнийсодержащих средств. В пищевом рационе ограничивают содержание продуктов, богатым магнием. Проводят дезинтоксикационную терапию.

Мы стараемся дать максимально актуальную и полезную информацию для вас и вашего здоровья. Материалы, размещенные на данной странице, носят информационный характер и предназначены для образовательных целей. Посетители сайта не должны использовать их в качестве медицинских рекомендаций. Определение диагноза и выбор методики лечения остается исключительной прерогативой вашего лечащего врача! Мы не несёт ответственности за возможные негативные последствия, возникшие в результате использования информации, размещенной на сайте сайт

ОПРЕДЕЛЕНИЕ

Магний - двенадцатый элемент Периодической таблицы. Обозначение - Mg от латинского «magnesium». Расположен втретьем периоде, IIА группе. Относится к металлам. Заряд ядра равен 12.

Магний весьма распространен в природе. В больших количествах он встречается в виде карбоната магния, образуя минералы магнезит MgCO 3 и доломит MgCO 3 ×CaCO 3 . Сульфат и хлорид магния входят в состав минералов каинита KCl×MgSO 4 ×3H 2 O и карналлита KCl×MgCl 2 ×6H 2 O. Ион Mg 2+ содержится в морской воде, сообщая ей горький вкус. Общее количество магния в земной коре составляет около 2% (масс.).

В виде простого вещества магний представляет собой серебристо-белый (рис. 1), очень легкий металл. На воздухе он мало изменяется, так как быстро покрывается тонким слоем оксида, защищающего его от дальнейшего окисления.

Рис. 1. Магний. Внешний вид.

Атомная и молекулярная масса магния

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии магний существует в виде одноатомных молекул Mg, значения его атомной и молекулярной масс совпадают. Они равны 24,304.

Изотопы магния

Известно, что в природе магний может находиться в виде трех стабильных изотопов 24 Mg (23,99%), 25 Mg (24,99%) и 26 Mg (25,98%). Их массовые числа равны 24, 25 и 26 соответственно. Ядро атома изотопа магния 24 Mg содержит двенадцать протонов и двенадцать нейтронов, а изотопов 25 Mg и 26 Mg- такое же количество протонов, тринадцать и четырнадцать нейтронов соответственно.

Существуют искусственные изотопы магния с массовыми числами от 5-ти до 23-х и от 27-ми до 40-ка.

Ионы магния

На внешнем энергетическом уровне атома магния имеется два электрона, которые являются валентными:

1s 2 2s 2 2p 6 3s 2 .

В результате химического взаимодействия маний отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

Mg 0 -2e → Mg 2+ .

Молекула и атом магния

В свободном состоянии магний существует в виде одноатомных молекул Mg. Приведем некоторые свойства, характеризующие атом и молекулу магния:

Сплавы магния

Главная область применения металлического магния - это получение на его основе различных легких сплавов. Прибавка к магнию небольших количеств других металлов резко изменяет его механические свойства, сообщая сплаву значительную твердость, прочность и сопротивляемость коррозии.

Особенно ценными свойствами обладают сплавы, называемые электронами. Они относятся к трем системам: Mg-Al-Zn, Mg-Mn и Mg-Zn-Zr. Наиболее широкое применение имеют сплавы системы Mg-Al-Zn, содержащие от 3 до 10% алюминия и от 0,2 до 3% цинка. Достоинством магниевых сплавов является их малая плотность (около 1,8 г/см 3).

Примеры решения задач

ПРИМЕР 1