Уравнение параллелограмма. Параллелограмм и его свойства. Площадь параллелограмма. Биссектрисы углов параллелограмма. Характеристики диагоналей фигуры

Для того, чтобы определить является ли данная фигура параллелограммом существует ряд признаков. Рассмотрим три основных признака параллелограмма.

1 признак параллелограмма

Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник будет являться параллелограммом.

Доказательство:

Рассмотрим четырехугольник ABCD. Пусть в нем стороны AB и СD параллельны. И пусть AB=CD. Проведем в нем диагональ BD. Она разделит данный четырехугольник на два равных треугольника: ABD и CBD.

Эти треугольники равны между собой по двум сторонам и углу между ними (BD - общая сторона, AB = CD по условию, угол1 = угол2 как накрест лежащие углы при секущей BD параллельных прямых AB и CD.), а следовательно угол3 = угол4.

А эти углы будут являться накрест лежащими при пересечении прямых BC и AD секущей BD. Из этого следует что BC и AD параллельны между собой. Имеем, что в четырехугольнике ABCD противоположные стороны попарно параллельны, и, значит, четырехугольник ABCD является параллелограммом.

2 признак параллелограмма

Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник будет параллелограммом.

Доказательство:

Рассмотрим четырехугольник ABCD. Проведем в нем диагональ BD. Она разделит данный четырехугольник на два равных треугольника: ABD и CBD.

Эти два треугольника буду равны между собой по трем сторонам (BD - общая сторона, AB = CD и BC = AD по условию). Из этого можно сделать вывод, что угол1 = угол2. Отсюда следует, что AB параллельна CD. А так как AB = CD и AB параллельна CD, то по первому признаку параллелограмма, четырехугольник ABCD будет являться параллелограммом.

3 признак параллелограмма

Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник будет являться параллелограммом.

Рассмотрим четырехугольник ABCD. Проведем в нем две диагонали AC и BD, которые будут пересекаться в точке О и делятся этой точкой пополам.

Треугольники AOB и COD будут равны между собой, по первому признаку равенства треугольников. (AO = OC, BO = OD по условию, угол AOB = угол COD как вертикальные углы.) Следовательно, AB = CD и угол1 = угол 2. Из равенства углов 1 и 2 имеем, что AB параллельна CD. Тогда имеем, что в четырехугольнике ABCD стороны AB равны CD и параллельны, и по первому признаку параллелограмма четырехугольник ABCD будет являться параллелограммом.

При-зна-ки па-рал-ле-ло-грам-ма

1. Определение и основные свойства параллелограмма

Нач-нем с того, что вспом-ним опре-де-ле-ние па-рал-ле-ло-грам-ма.

Опре-де-ле-ние. Па-рал-ле-ло-грамм - че-ты-рех-уголь-ник, у ко-то-ро-го каж-дые две про-ти-во-по-лож-ные сто-ро-ны па-рал-лель-ны (см. Рис. 1).

Рис. 1. Па-рал-ле-ло-грамм

Вспом-ним ос-нов-ные свой-ства па-рал-ле-ло-грам-ма :

Для того, чтобы иметь воз-мож-ность поль-зо-вать-ся всеми этими свой-ства-ми, необ-хо-ди-мо быть уве-рен-ным, что фи-гу-ра, о ко-то-рой идет речь, - па-рал-ле-ло-грамм. Для этого необ-хо-ди-мо знать такие факты, как при-зна-ки па-рал-ле-ло-грам-ма. Пер-вые два из них мы се-год-ня и рас-смот-рим.

2. Первый признак параллелограмма

Тео-ре-ма. Пер-вый при-знак па-рал-ле-ло-грам-ма. Если в че-ты-рех-уголь-ни-ке две про-ти-во-по-лож-ные сто-ро-ны равны и па-рал-лель-ны, то этот че-ты-рех-уголь-ник - па-рал-ле-ло-грамм . .

Рис. 2. Пер-вый при-знак па-рал-ле-ло-грам-ма

До-ка-за-тель-ство. Про-ве-дем в че-ты-рех-уголь-ни-ке диа-го-наль (см. Рис. 2), она раз-би-ла его на два тре-уголь-ни-ка. За-пи-шем, что мы знаем об этих тре-уголь-ни-ках:

по пер-во-му при-зна-ку ра-вен-ства тре-уголь-ни-ков.

Из ра-вен-ства ука-зан-ных тре-уголь-ни-ков сле-ду-ет, что по при-зна-ку па-рал-лель-но-сти пря-мых при пе-ре-се-че-нии их се-ку-щей. Имеем, что:

До-ка-за-но.

3. Второй признак параллелограмма

Тео-ре-ма. Вто-рой при-знак па-рал-ле-ло-грам-ма. Если в че-ты-рех-уголь-ни-ке каж-дые две про-ти-во-по-лож-ные сто-ро-ны равны, то этот че-ты-рех-уголь-ник - па-рал-ле-ло-грамм . .

Рис. 3. Вто-рой при-знак па-рал-ле-ло-грам-ма

До-ка-за-тель-ство. Про-ве-дем в че-ты-рех-уголь-ни-ке диа-го-наль (см. Рис. 3), она раз-би-ва-ет его на два тре-уголь-ни-ка. За-пи-шем, что мы знаем об этих тре-уголь-ни-ках, ис-хо-дя из фор-му-ли-ров-ки тео-ре-мы:

по тре-тье-му при-зна-ку ра-вен-ства тре-уголь-ни-ков.

Из ра-вен-ства тре-уголь-ни-ков сле-ду-ет, что и по при-зна-ку па-рал-лель-но-сти пря-мых при пе-ре-се-че-нии их се-ку-щей. По-лу-ча-ем:

па-рал-ле-ло-грамм по опре-де-ле-нию. Что и тре-бо-ва-лось до-ка-зать.

До-ка-за-но.

4. Пример на применение первого признака параллелограмма

Рас-смот-рим при-мер на при-ме-не-ние при-зна-ков па-рал-ле-ло-грам-ма.

При-мер 1. В вы-пук-лом че-ты-рех-уголь-ни-ке Найти: а) углы че-ты-рех-уголь-ни-ка; б) сто-ро-ну .

Ре-ше-ние. Изоб-ра-зим Рис. 4.

па-рал-ле-ло-грамм по пер-во-му при-зна-ку па-рал-ле-ло-грам-ма.

А. по свой-ству па-рал-ле-ло-грам-ма о про-ти-во-по-лож-ных углах, по свой-ству па-рал-ле-ло-грам-ма о сумме углов, при-ле-жа-щих к одной сто-роне.

Б. по свой-ству ра-вен-ства про-ти-во-по-лож-ных сто-рон.

ре-тий при-знак па-рал-ле-ло-грам-ма

5. Повторение: определение и свойства параллелограмма

На-пом-ним, что па-рал-ле-ло-грамм - это че-ты-рёх-уголь-ник, у ко-то-ро-го про-ти-во-по-лож-ные сто-ро-ны по-пар-но па-рал-лель-ны. То есть, если - па-рал-ле-ло-грамм, то (см. Рис. 1).

Па-рал-ле-ло-грамм об-ла-да-ет целым рядом свойств: про-ти-во-по-лож-ные углы равны (), про-ти-во-по-лож-ные сто-ро-ны равны (). Кроме того, диа-го-на-ли па-рал-ле-ло-грам-ма в точке пе-ре-се-че-ния де-лят-ся по-по-лам, сумма углов, при-ле-жа-щих к любой сто-роне па-рал-ле-ло-грам-ма, равна и т.д.

Но для того, чтобы поль-зо-вать-ся всеми этими свой-ства-ми, необ-хо-ди-мо быть аб-со-лют-но уве-рен-ны-ми в том, что рас-смат-ри-ва-е-мый че-ты-рёх-уголь-ник - па-рал-ле-ло-грамм. Для этого и су-ще-ству-ют при-зна-ки па-рал-ле-ло-грам-ма: то есть те факты, из ко-то-рых можно сде-лать од-но-знач-ный вывод, что че-ты-рёх-уголь-ник яв-ля-ет-ся па-рал-ле-ло-грам-мом. На преды-ду-щем уроке мы уже рас-смот-ре-ли два при-зна-ка. Сей-час рас-смот-рим тре-тий.

6. Третий признак параллелограмма и его доказательство

Если в че-ты-рёх-уголь-ни-ке диа-го-на-ли в точке пе-ре-се-че-ния де-лят-ся по-по-лам, то дан-ный че-ты-рёх-уголь-ник яв-ля-ет-ся па-рал-ле-ло-грам-мом.

Дано:

Че-ты-рёх-уголь-ник; ; .

До-ка-зать:

Па-рал-ле-ло-грамм.

До-ка-за-тель-ство:

Для того чтобы до-ка-зать дан-ный факт, необ-хо-ди-мо до-ка-зать па-рал-лель-ность сто-рон па-рал-ле-ло-грам-ма. А па-рал-лель-ность пря-мых чаще всего до-ка-зы-ва-ет-ся через ра-вен-ство внут-рен-них на-крест ле-жа-щих углов при этих пря-мых. Таким об-ра-зом, на-пра-ши-ва-ет-ся сле-ду-ю-щий спо-соб до-ка-за-тель-ства тре-тье-го при-зна-ка па-рал-ле-ло-грам-ма: через ра-вен-ство тре-уголь-ни-ков .

До-ка-жем ра-вен-ство этих тре-уголь-ни-ков. Дей-стви-тель-но, из усло-вия сле-ду-ет: . Кроме того, по-сколь-ку углы - вер-ти-каль-ные, то они равны. То есть:

(пер-вый при-знак ра-вен-ства тре-уголь-ни-ков - по двум сто-ро-нам и углу между ними).

Из ра-вен-ства тре-уголь-ни-ков: (так как равны внут-рен-ние на-крест ле-жа-щие углы при этих пря-мых и се-ку-щей ). Кроме того, из ра-вен-ства тре-уголь-ни-ков сле-ду-ет, что . Зна-чит, мы по-лу-чи-ли, что в че-ты-рёх-уголь-ни-ке две сто-ро-ны равны и па-рал-лель-ны. По пер-во-му при-зна-ку па-рал-ле-ло-грам-ма: - па-рал-ле-ло-грамм.

До-ка-за-но.

7. Пример задачи на третий признак параллелограмма и обобщение

Рас-смот-рим при-мер на при-ме-не-ние тре-тье-го при-зна-ка па-рал-ле-ло-грам-ма.

При-мер 1

Дано:

- па-рал-ле-ло-грамм; . - се-ре-ди-на , - се-ре-ди-на , - се-ре-ди-на , - се-ре-ди-на (см. Рис. 2).

До-ка-зать: - па-рал-ле-ло-грамм.

До-ка-за-тель-ство:

Зна-чит, в че-ты-рёх-уголь-ни-ке диа-го-на-ли в точке пе-ре-се-че-ния де-лят-ся по-по-лам. По тре-тье-му при-зна-ку па-рал-ле-ло-грам-ма из этого сле-ду-ет, что - па-рал-ле-ло-грамм.

До-ка-за-но.

Если про-ве-сти ана-лиз тре-тье-го при-зна-ка па-рал-ле-ло-грам-ма, то можно за-ме-тить, что этот при-знак со-от-вет-ству-ет свой-ству па-рал-ле-ло-грам-ма. То есть, то, что диа-го-на-ли де-лят-ся по-по-лам, яв-ля-ет-ся не про-сто свой-ством па-рал-ле-ло-грам-ма, а его от-ли-чи-тель-ным, ха-рак-те-ри-сти-че-ским свой-ством, по ко-то-ро-му его можно вы-де-лить из мно-же-ства че-ты-рёх-уголь-ни-ков.

ИСТОЧНИК

http://interneturok.ru/ru/school/geometry/8-klass/chyotyrehugolniki/priznaki-parallelogramma

http://interneturok.ru/ru/school/geometry/8-klass/chyotyrehugolniki/tretiy-priznak-parallelogramma

http://www.uchportfolio.ru/users_content/675f9820626f5bc0afb47b57890b466e/images/46TThxQ8j4Y.jpg

http://cs10002.vk.me/u31195134/116260458/x_56d40dd3.jpg

http://wwww.tepka.ru/geometriya/16.1.gif

Тема урока

  • Свойство диагоналей параллелограмма.

Цели урока

  • Познакомиться с новыми определениями и вспомнить некоторые уже изученные.
  • Сформулировать и доказать свойство диагоналей параллелограмма.
  • Научиться применять свойства фигур при решении задач.
  • Развивающие – развить внимание учащихся, усидчивость, настойчивость, логическое мышление, математическую речь.
  • Воспитательные - посредством урока воспитывать внимательное отношение друг к другу, прививать умение слушать товарищей, взаимовыручке, самостоятельность.

Задачи урока

  • Проверить умение учащихся решать задачи.

План урока

  1. Вступительное слово.
  2. Повторение ранее изученного материала.
  3. Параллелограмм, его свойства и признаки.
  4. Примеры задач.
  5. Самостоятельная проверка.

Введение

«Крупное научное открытие дает решение крупной проблемы, но и в решении любой задачи присутствует крупица открытия».

Свойство противолежащих сторон параллелограмма

У параллелограмма противолежащие стороны равны.

Доказательство.

Пусть ABCD – данный параллелограмм. И пусть его диагонали пересекаются в точке O.
Так как Δ AOB = Δ COD по первому признаку равенства треугольников (∠ AOB = ∠ COD, как вертикальные, AO=OC, DO=OB, по свойству диагоналей параллелограмма), то AB=CD. Точно также из равенства треугольников ВОС и DOA, следует что BC=DA. Теорема доказана.

Свойство противолежащих углов параллелограмма

У параллелограмма противолежащие углы равны.

Доказательство.

Пусть ABCD – данный параллелограмм . И пусть его диагонали пересекаются в точке O.
Из доказанного в теореме о свойства противолежащих сторон параллелограмма Δ ABC = Δ CDA по трем сторонам (AB=CD, BC=DA из доказанного, AC – общая). Из равенства треугольников следует, что ∠ ABC = ∠ CDA.
Так же доказывается, что ∠ DAB = ∠ BCD, которое следует из ∠ ABD = ∠ CDB. Теорема доказана.

Свойство диагоналей параллелограмма

Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.

Доказательство.

Пусть ABCD – данный параллелограмм. Проведем диагональ AC. Отметим на ней середину O. На продолжении отрезка DO отложим отрезок OB 1 , равный DO.
По предыдущей теореме AB 1 CD – параллелограмм. Поэтому, прямая AB 1 параллельна DC. Но через точку A можно провести только одну прямую, параллельную DC. Значит, прямая AB 1 совпадает с прямой AB.
Также доказывается, что BC 1 совпадает с BC. Значит, точка С совпадает с С 1 . параллелограмм ABCD совпадает с параллелограммом AB 1 CD. Следовательно, диагонали параллелограмма пересекаются и точкой пересечения делятся пополам. Теорема доказана.

В учебниках для обычных школ (например, в Погорелове) доказывается она так: диагонали делят параллелограмм на 4 треугольника. Рассмотрим одну пару и выясним - они равны: основания у них - противоположные стороны, прилежащие к нему соответствующие углы равны как вертикальные при параллельных прямых. То есть отрезки диагоналей попарно равны. Всё.

Всё ли?
Выше доказано, что точка пересечения делит диагонали пополам - если существует. Само её существование приведённое рассуждение не доказывает ни в коей мере. То есть часть теоремы "диагонали параллелограмма пересекаются" остаётся недоказанной.

Забавно, что доказать эту часть намного сложнее. Следует это, кстати, из более общего результата: у любого выпуклого четырёхугольника диагонали будут пересекаться, у любого невыпуклого - не будут.

О равенстве треугольников по стороне и двум прилежащим к ней углам (второй признак равенства треугольников) и другие.

Теореме о равенстве двух треугольников по стороне и двум прилежащим к ней углам Фалес нашел важное практическое применение. В гавани Милета был построен дальномер, определяющий расстояние до корабля в море. Он представлял собой три вбитых колышка А, В и С (АВ = ВС) и размеченную прямую СК, перпендикулярную.СА. При появлении корабля на прямой СК находили точку D такую, чтобы точки D, .В и Е оказывались на одной прямой. Как ясно из чертежа, расстояние CD на земле является искомым расстоянием до корабля.

Вопросы

  1. Диагонали квадрата точкой пересечения делятся пополам?
  2. Диагонали параллелограмма равны?
  3. Противолежащие углы параллелограмма равны?
  4. Сформулируйте определение параллелограмма?
  5. Сколько признаков параллелограмма?
  6. Может ли ромб быть параллелограмом?

Список использованных источников

  1. Кузнецов А. В., учитель математики (5-9 класс), г. Киев
  2. «Единый государственный экзамен 2006. Математика. Учебно-тренировочные материалы для подготовки учащихся/ Рособрнадзор, ИСОП – М.: Интеллект-Центр, 2006»
  3. Мазур К. И. «Решение основных конкурсных задач по математике сборника под редакцией М. И. Сканави»
  4. Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев, Э. Г. Позняк, И. И. Юдина «Геометрия, 7 – 9: учебник для общеобразовательных учреждений»

Над уроком работали

Кузнецов А. В.

Потурнак С.А.

Евгений Петров

Поставить вопрос о современном образовании, выразить идею или решить назревшую проблему Вы можете на Образовательном форуме , где на международном уровне собирается образовательный совет свежей мысли и действия. Создав блог, Вы не только повысите свой статус, как компетентного преподавателя, а и сделаете весомый вклад в развитие школы будущего. Гильдия Лидеров Образования открывает двери для специалистов высшего ранга и приглашает к сотрудничеству в направлении создания лучших в мире школ.

Предмети > Математика > Математика 8 класс

1. Определение параллелограмма.

Если пару параллельных прямых пересечём другой парой параллельных прямых, то получим четырёхугольник, у которого противоположные стороны попарно параллельны.

В четырёхугольниках ABDС и ЕFNМ (рис. 224) ВD || АС и AB || СD;

ЕF || МN и ЕМ || FN.

Четырёхугольник, у которого противоположные стороны попарно параллельны, называется параллелограммом.

2. Свойства параллелограмма.

Теорема . Диагональ параллелограмма делит его на два равных треугольника.

Пусть имеется параллелограмм ABDС (рис. 225), в котором AB || СD и АС || ВD.

Требуется доказать, что диагональ делит его на два равных треугольника.

Проведём в параллелограмме ABDС диагональ СВ. Докажем, что \(\Delta\)CAB = \(\Delta\)СDВ.

Сторона СВ общая для этих треугольников; ∠ABC = ∠BCD, как внутренние накрест лежащие углы при параллельных AB и СD и секущей СВ; ∠ACB = ∠СВD, тоже как внутренние накрест лежащие углы при параллельных АС и ВD и секущей CB.

Отсюда \(\Delta\)CAB = \(\Delta\)СDВ.

Таким же путём можно доказать, что диагональ AD разделит параллелограмм на два равных треугольника АСD и ABD.

Следствия:

1 . Противоположные углы параллелограмма равны между собой.

∠А = ∠D, это следует из равенства треугольников CAB и СDВ.

Аналогично и ∠С = ∠В.

2. Противоположные стороны параллелограмма равны между собой.

AB = СD и АС = ВD, так как это стороны равных треугольников и лежат против равных углов.

Теорема 2. Диагонали параллелограмма в точке их пересечения делятся пополам.

Пусть BC и AD - диагонали параллелограмма AВDС (рис. 226). Докажем, что АО = OD и СО = OB.

Для этого сравним какую-нибудь пару противоположно расположенных треугольников, например \(\Delta\)AOB и \(\Delta\)СОD.

В этих треугольниках AB = СD, как противоположные стороны параллелограмма;

∠1 = ∠2, как углы внутренние накрест лежащие при параллельных AB и СD и секущей AD;

∠3 = ∠4 по той же причине, так как AB || СD и СВ - их секущая.

Отсюда следует, что \(\Delta\)AOB = \(\Delta\)СОD. А в равных треугольниках против равных углов лежат равные стороны. Следовательно, АО = OD и СО = OB.

Теорема 3. Сумма углов, прилежащих к одной стороне параллелограмма, равна 180° .

В параллелограмме ABCD проведем диагональ АС и получим два треугольника ABC и ADC.

Треугольники равны, так как ∠1 = ∠4, ∠2 = ∠3 (накрест лежащие углы при параллельных прямых), а сторона АС общая.
Из равенства \(\Delta\)ABC = \(\Delta\)ADC следует, что AB = CD, BC = AD, ∠B = ∠D.

Сумма углов, прилежащих к одной стороне, например углов А и D, равна 180° как односторонних при параллельных прямых.

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.