Уравнения с двумя переменными и его график. §1. Линейные уравнения с двумя переменными

Видеоурок «Уравнение с двумя переменными и его график» знакомит учеников с понятием уравнения с двумя переменными, его решением, дает представление о графике уравнения с двумя переменными, его построении. Задача видеоурока - наглядно представить учебный материал по данной теме, облегчая выполнение задач учителя на уроке и давая возможность ему более эффективно использовать время урока.

Возможности видеоурока больше, чем любого другого наглядного пособия. Возможность использовать анимационные эффекты, заменить учителя в демонстрации построения графиков, чертежей, выполнение голосового сопровождения позволяет повысить эффективность урока, более рационально распределять время, удерживать внимание учеников на изучаемом материале.

Видеоурок начинается с представления темы. Ученикам представляются примеры уравнений с двумя переменными: 3х+4у=16, х 2 =9-у 2 , ху-8=0. Далее дается представление о решениях уравнения с двумя переменными. Демонстрируется подстановка значений переменных х=4 и у=1, которые превращают уравнение 3х+4у=16 в справедливое равенство. После объяснения сути решения уравнения, вводится понятие решения уравнения, которое в данном случае представляет собой пару чисел (4;1), в котором на первом месте представлено значение переменной х, а на втором - значение переменной у. Далее для запоминания учениками на экран выведено определение, что такое решение уравнения, которым называется пара значений для переменных, обращающая уравнение в верное равенство.

Уточняется особенность уравнения, имеющего две переменные - в большинстве случаев они имеют бесконечное множество решений. Вводится понятие равносильных уравнений, представляющих собой уравнения, имеющие одинаковое множество решений. Отмечается одинаковый способ определения степени целого уравнения, имеющего две переменные, и целого уравнения, имеющего одну переменную. Также уточняется, что уравнение, содержащее две переменные, у которого в левой части - многочлен, а в правой - 0, имеет степень, равной степени данного многочлена. Способом определения степени уравнения остается замена его равносильным уравнением таким образом, чтобы в левой части уравнения остался многочлен стандартного вида, а в левой - нуль. Приведен пример такой замены: отмечается, что уравнения (х 2 -у) 2 =х 4 -1 и -2х 2 у+у 2 +1=0 равносильны. После приведения уравнения к виду, когда в левой части остается многочлен стандартного вида, можно установить, что данное уравнение - третьей степени.

Далее рассматриваются особенности графика уравнения, имеющего две переменные. В представленном определении графиком некоторого уравнения, имеющего две переменные, является множество точек на координатной плоскости, подставив координаты которых, можно получить верное равенство. Ученикам напоминается вид графиков, уже изученных ранее и представляющих собой график уравнения с двумя переменными. Это прямая, представляющая собой график линейного уравнения ax+by=c, где a≠0 и b≠0, а также парабола - график уравнения у=х 2 , гипербола - график ух=15.

Ученикам демонстрируется построение графика функции x 2 +y 2 =r 2 , где r - произвольное положительное число. Окружность, являющаяся графиком данного уравнения, представлена на экране. Доказывается, что любая точка окружности будет удовлетворять данному уравнению. Для этого отмечаем произвольную точку В(х;у). Длина опущенного на ось абсцисс перпендикуляра равна модулю ординаты данной точки, а отрезок, проведенный из данной точки в начало координат - радиусу. Длина отрезка от начала координат до точки пересечения перпендикуляра с осью абсцисс равна модулю абсциссы. Из полученного прямоугольного треугольника АОВ имеем равенство: АО 2 +АВ 2 =ВО 2 , то есть |x| 2 +|y| 2 =r 2 . Это равенство также справедливо без знака модуля.

Чтобы убедиться, что уравнение верно в любом положении В(х;у) на окружности, предлагается рассмотреть точку В, которая лежит в точке пересечения окружности с осью абсцисс. Отмечается, что в этом случае одна координата точкиу равняется радиусу, а вторая - нуль. Уравнение x 2 +y 2 =r 2 превращается в 0 2 +r 2 =r 2 , поэтому равенство также справедливо. При этом для всех точек, которые не лежат в области определения, их координаты не удовлетворяют уравнению окружности x 2 +y 2 =r 2 . Примеры таких точек отмечены на координатной плоскости. Общий вывод из рассмотренного построения следует, что уравнение окружности в записи х 2 +у 2 =r 2 верно для случаев, когда точки А(х;у) принадлежат области определения φ, О(0;0) - центр окружности, а r - радиус.

Далее рассматривается, как уравнение окружности зависит от положения ее центра. Отмечается, что при переносе центра на |а| единиц вправо или влево параллельно х, а также на |b| единиц вверх или вниз, параллельно у, получается окружность того же радиуса, только с центром в точке с новыми координатами О(a;b). Уравнением такой окружности будет (x-a) 2 +(y-b) 2 =r 2 .

Видеоурок «Уравнение с двумя переменными и его график» может быть использован как наглядное пособие на уроке алгебры по данной теме или заменить объяснение учителя по теме. Также данный материал может быть полезен при дистанционном обучении, поможет освоить тему ученикам самостоятельно.

ЦЕЛЬ:1) Познакомить учащихся с понятием «уравнение с двумя переменными»;

2) Научить определять степень уравнения с двумя переменными;

3) Научить определять по заданной функции, какая фигура является графиком

данного уравнения;

4) Рассмотреть преобразования графиков с двумя переменными;

заданному уравнению с двумя переменными, используя программу Agrapher ;

6) Развивать логическое мышление учащихся.

I.Новый материал - объяснительная лекция с элементами беседы.

(лекцияпроводится с использованием авторских слайдов; построение графиков выполнено в программе Agrapher)

У: При изучении линий возникают две задачи:

По геометрическим свойствам данной линии найти её уравнение;

Обратная задача: по заданному уравнению линии исследовать её геометрические свойства.

Первую задачу мы рассматривали в курсе геометрии применительно к окружности и прямой.

Сегодня мы будем рассматривать обратную задачу.

Рассмотрим уравнения вида:

а) х(х-у)=4; б) 2у-х 2 =-2 ; в) х(х+у 2 ) = х +1 .

– это примеры уравнений с двумя переменными.

Уравнения с двумя переменными х и у имеет вид f(x,y)=(x,y) , где f и – выражения с переменными х и у.

Если в уравнении х(х-у)=4 подставить вместо переменной х её значение -1, а вместо у – значение 3, то получится верное равенство: 1*(-1-3)=4,

Пара (-1; 3) значений переменных х и у является решением уравнения х(х-у)=4 .

То есть решением уравнения с двумя переменными называют множество упорядоченных пар значений переменных, образующих это уравнение в верное равенство.

Уравнения с двумя переменными имеет, как правило, бесконечно много решений. Исключения составляют, например, такие уравнения, как х 2 +(у 2 - 4) 2 = 0 или

2х 2 + у 2 = 0 .

Первое из них имеет два решения (0; -2) и (0; 2), второе – одно решение (0;0).

Уравнение х 4 + у 4 +3 = 0 вообще не имеет решений. Представляет интерес, когда значениями переменных в уравнении служат целые числа. Решая такие уравнения с двумя переменными, находят пары целых чисел. В таких случаях говорят, что уравнения решено в целых числах.

Два уравнения, имеющие одно и тоже множество решений, называют равносильными уравнениями . Например, уравнение х(х + у 2) = х + 1 есть уравнение третьей степени, так как его можно преобразовать в уравнение ху 2 + х 2 - х-1 = 0, правая часть которого – многочлен стандартного вида третьей степени.

Степенью уравнения с двумя переменными, представленного в виде F(х, у) = 0, где F(х,у)-многочлен стандартного вида, называют степень многочлена F(х, у).

Если все решения уравнения с двумя переменными изобразить точками в координатной плоскости, то получится график уравнения с двумя переменными.

Графиком уравнения с двумя переменными называется множество точек, координаты которых служат решениями этого уравнения.

Так, график уравнения ax + by + c = 0 представляет собой прямую, если хотя бы один из коэффициентов a или b не равен нулю(рис.1) . Если a = b = c = 0 , то графиком этого уравнения является координатная плоскость(рис.2) , если же a = b = 0 , а c0 , то графиком является пустое множество(рис.3) .

График уравнения y = a х 2 + by + c представляет собой параболу(рис.4), график уравнения xy=k (k0) гиперболу(рис.5) . Графиком уравнения х 2 + у 2 = r , где x и y – переменные, r – положительное число, является окружность с центром в начале координат и радиусом равнымr (рис.6). Графиком уравнения является эллипс , где a и b – большая и малая полуоси эллипса (рис.7).

Построение графиков некоторых уравнений облегчается использованием их преобразований. Рассмотрим преобразования графиков уравнений с двумя переменными и сформулируем правила, по которым выполняются простейшие преобразования графиков уравнений

1) График уравнения F (-x, y) = 0 получается из графика уравнения F (x, y) = 0 с помощью симметрии относительно оси у.

2) График уравнения F (x, -y) = 0 получается из графика уравнения F (x, y) = 0 с помощью симметрии относительно оси х .

3) График уравнения F (-x, -y) = 0 получается из графика уравнения F (x, y) = 0 с помощью центральной симметрии относительно начала координат.

4) График уравнения F (x-а, y) = 0 получается из графика уравнения F (x, y) = 0 с помощью перемещения параллельно оси х на |a| единиц (вправо, если a > 0, и влево, если а < 0).

5) График уравнения F (x, y-b) = 0 получается из графика уравнения F (x, y) = 0 с помощью перемещения на |b| единиц параллельно оси у (вверх, если b > 0, и вниз, если b < 0).

6) График уравнения F (аx, y) = 0 получается из графика уравнения F (x, y) = 0 с помощью сжатия к оси у и а раз, если а > 1, и с помощью растяжения от оси у в раз, если 0 < а < 1.

7) График уравнения F (x, by) = 0 получается из графика уравнения F (x, y) = 0 с помощью с помощью сжатия к оси х в b раз, если b > 1, и с помощью растяжения от оси x в раз, если 0 < b < 1.

Если график некоторого уравнения повернуть на некоторый угол около начала координат, то новый график будет графиком другого уравнения. Важными являются частные случаи поворота на углы 90 0 и 45 0 .

8) График уравнения F (x, y) = 0 в результате поворота около начала координат на угол 90 0 по часовой стрелке переходит в график уравнения F (-y, x) = 0, а против часовой стрелки – в график уравнения F (y, -x) = 0.

9) График уравнения F (x, y) = 0 в результате поворота около начала координат на угол 45 0 по часовой стрелке переходит в график уравнения F = 0, а против часовой стрелки – в график уравнения F = 0.

Из рассмотренных нами правил преобразования графиков уравнений с двумя переменными легко получаются правила преобразования графиков функций.

Пример 1. Покажем, что графиком уравнения х 2 + у 2 + 2х – 8у + 8 = 0 является окружность (рис.17).

Преобразуем уравнение следующим образом:

1) сгруппируем слагаемые, содержащие переменную х и содержащие переменную у , и представим каждую группу слагаемых в виде полного квадрата трехчлена: (х 2 + 2х + 1) + (у 2 -2*4*у + 16) + 8 – 1 – 16 = 0;

2) запишем в виде квадрата суммы (разности) двух выражений полученные трехчлены: (х + 1) 2 + (у – 4) 2 - 9 = 0;

3) проанализируем, согласно правилам преобразования графиков уравнений с двумя переменными, уравнение (х + 1) 2 + (у – 4) 2 = 3 2: графиком данного уравнения является окружность с центром в точке (-1; 4) и радиусом 3 единицы.

Пример 2. Построим график уравнения х 2 + 4у 2 = 9 .

Представим 4у 2 в виде (2у) 2 , получим уравнение х 2 + (2у) 2 = 9, график которого можно получить из окружности х 2 + у 2 = 9 сжатием к оси х в 2 раза.

Начертим окружность с центром в начале координат и радиусом 3 единицы.

Уменьшим в 2 раза расстояние каждой её точки от оси Х, получим график уравнения

х 2 + (2у) 2 = 9.

Мы получили фигуру с помощью сжатия окружности к одному из её диаметров(к диаметру, который лежит на на оси Х). Такую фигуру называют эллипсом (рис.18).

Пример 3. Выясним, что представляет собой график уравнения х 2 - у 2 = 8.

Воспользуемся формулой F= 0.

Подставим в данное уравнение вместо Х и вместо У, получим:

У: Что представляет собой график уравнения у = ?

Д: Графиком уравнения у = является гипербола.

У: Мы преобразовали уравнение вида х 2 - у 2 = 8 в уравнение у = .

Какая линия будет являться графиком данного уравнения?

Д: Значит, и графиком уравнения х 2 - у 2 = 8 является гипербола.

У: Какие прямые являются асимптотами гиперболы у = .

Д: Асимптотами гиперболы у = являются прямые у = 0 и х = 0.

У: При выполненном повороте эти прямые перейдут в прямые = 0 и =0, т.е в прямые у = х и у = - х. (рис.19).

Пример 4: Выясним, какой вид примет уравнение у = х 2 параболы при повороте около начала координат на угол 90 0 по часовой стрелке.

Используя формулу F (-у; х) = 0, заменим в уравнении у = х 2 переменную х на – у, а переменную у на х. Получим уравнение х = (-у) 2 , т. е. х = у 2 (рис.20).

Мы рассмотрели примеры графиков уравнений второй степени с двумя переменными и выяснили, что графиками таких уравнений могут быть парабола, гипербола, эллипс (в частности окружность). Кроме того, графиком уравнения второй степени может являться пара прямых (пересекающихся или параллельных).Это так называемый вырожденный случай. Так графиком уравнения х 2 - у 2 = 0 является пара пересекающихся прямых (рис.21а), а графиком уравнения х 2 - 5х + 6 + 0у = 0- параллельных прямых.

II Закрепление.

(учащимся выдаются «Карточки-инструкции» по выполнению построений графиков уравнений с двумя переменными в программе Agrapher (Приложение 2) и карточки «Практическое задание» (Приложение 3) с формулировкой заданий 1-8 Графики уравнений к заданиям 4-5 учитель демонстрирует на слайдах).

Задание1. Какие из пар (5;4), (1;0), (-5;-4) и (-1; -) являются решениями уравнения:

а) х 2 - у 2 = 0, б) х 3 - 1 = х 2 у + 6у?

Решение:

Подставив в заданное уравнение, поочерёдно координаты данных точек убеждаемся, что ни одна данная пара не является решением уравнения х 2 - у 2 = 0, а решениями уравнения х 3 - 1 = х 2 у + 6у являются пары (5;4), (1;0) и (-1; -).

125 - 1 = 100 + 24 (И)

1 - 1= 0 + 0 (И)

125 – 1 =-100 – 24 (Л)

1 – 1 = - - (И)

Ответ: а); б) (5;4), (1; 0), (-1; -).

Задание 2. Найдите такие решения уравнения ху 2 - х 2 у = 12, в которых значение х равно 3.

Решение: 1)Подставим вместо Х в заданное уравнение значение 3.

2)Получим квадратное уравнение относительно переменной У, имеющее вид:

3у 2 - 9у = 12.

4) Решим это уравнение:

3у 2 - 9у – 12 = 0

Д = 81 + 144 = 225

Ответ: пары (3;4) и (3;-1) являются решениями уравнения ху 2 - х 2 у = 12

Задание3. Определите степень уравнения:

а) 2у 2 - 3х 3 + 4х = 2; в) (3 х 2 + х)(4х - у 2) = х;

б) 5у 2 - 3у 2 х 2 + 2х 3 = 0; г) (2у - х 2) 2 = х(х 2 + 4ху + 1).

Ответ: а) 3; б) 5; в) 4; г) 4.

Задание4. Какая фигура является графиком уравнения:

а) 2х = 5 + 3у; б) 6 х 2 - 5х = у – 1; в) 2(х + 1) = х 2 - у;

г) (х - 1,5)(х – 4) = 0; д) ху – 1,2 = 0; е) х 2 + у 2 = 9.

Задание5. Напишите уравнение, график которого симметричен графику уравнения х 2 - ху + 3 = 0 (рис.24) относительно: а) оси х ; б) оси у ; в)прямой у = х; г) прямой у = -х.

Задание6. Составьте уравнение, график которого получается растяжением графика уравнения у= х 2 -3 (рис.25):

а) от оси х в 2 раза; б) от оси у в 3 раза.

Проверьте с помощью программы Agrapher правильность выполнения задания.

Ответ: а)у - х 2 + 3 = 0 (рис.25а); б) у-(x) 2 + 3 = 0 (рис.25б).

б) прямые параллельны, перемещение параллельно оси х на 1 единицу вправо и параллельно оси у на 3 единицы вниз (рис.26б);

в) прямые пересекаются, симметричное отображение относительно оси х (рис.26в);

г) прямые пересекаются, симметричное отображение относительно оси у (рис.26г);

д) прямые параллельны, симметричное отображение относительно начала координат (рис.26д);

е) прямые пересекаются, поворот около начала координат на 90по часовой стрелке и симметричное отображение относительно оси х (рис.26е).

III. Самостоятельная работа обучающего характера.

(учащимся выдаются карточки «Самостоятельная работа» и «Отчётная таблица результатов самостоятельной работы», в которую учащиеся записывают свои ответы и после самопроверки, по предложенной схеме оценивают работу) Приложение 4 ..

I.вариант.

а) 5х 3 -3х 2 у 2 + 8 = 0; б) (х + у + 1) 2 -(х-у) 2 = 2(х+у).

а) х 3 + у 3 -5х 2 = 0; б) х 4 +4х 3 у +6х 2 у 2 + 4ху 3 + у 4 = 1.

х 4 + у 4 -8х 2 + 16 = 0.

а) (х + 1) 2 + (у-1) 2 = 4;

б) х 2 -у 2 = 1;

в) х - у 2 = 9.

х 2 - 2х + у 2 - 4у = 20.

Укажите координаты центра окружности и её радиус.

6. Как следует на координатной плоскости переместить гиперболу у = , чтобы её уравнение приняло вид х 2 - у 2 = 16 ?

Проверьте свой ответ, выполнив графическое построение, используя программу Agrapher.

7.Как следует на координатной плоскости переместить параболу у = х 2 , чтобы её уравнение приняло вид х = у 2 - 1

II вариант.

1.Определите степень уравнения:

а)3ху = (у-х 3)(х 2 +у); б) 2у 3 +5х 2 у 2 - 7 = 0.

2. Является ли пара чисел (-2;3) решением уравнения:

а) х 2 -у 2 -3х = 1; б) 8х 3 + 12х 2 у + 6ху 2 +у 3 =-1.

3. Найдите множество решений уравнения:

х 2 + у 2 -2х – 8у + 17 = 0.

4. Какой кривой (гиперболой, окружностью, параболой) является множество точек, если уравнение этой кривой имеет вид:

а) (х-2) 2 + (у + 2) 2 =9

б) у 2 - х 2 =1

в) х = у 2 - 1.

(проверьте с помощью программы Agrapher правильность выполнения задания)

5. Постройте, используя программуAgrapher, график уравнения:

х 2 + у 2 - 6х + 10у = 2.

6.Как следует на координатной плоскости переместить гиперболу у = , чтобы её уравнение приняло вид х 2 - у 2 = 28 ?

7.Как следует на координатной плоскости переместить параболу у = х 2 , чтобы её уравнение приняло вид х = у 2 + 9.

Вы знаете, что каждой упорядоченной паре чисел соответствует определенная точка на координатной плоскости. Поскольку каждое решение уравнения с двумя переменными х и у - это упорядоченная пара чисел, то все его решения можно изобразить точками па координатной плоскости. В этих точек абсцисса - это значение переменной х, а ордината - соответствующее значение переменной у. Следовательно, получим график уравнения с двумя переменными.

Запомните!

Графиком уравнения с двумя переменными называется изображение на координатной плоскости всех точек, координаты которых удовлетворяют данное уравнение.

Посмотрите на рисунки 64 и 65. Вы видите график уравнения 0,5 x - у = 2, где х - четное одноцифрове число (рис. 64), и график уравнения х 2 + у 2 = 4 (рис. 65). Первый график содержит всего четыре точки, поскольку переменные х и у могут принимать только четыре значения. Второй же график является линией на координатной плоскости. Он содержит множество точек, поскольку переменная х может принимать любые значения от -2 до 2 и таких чисел - множество. Соответствующих значений в тоже множество. Они изменяются от 2 до 2.

На рисунке 66 показан график уравнения х + у = 4. В отличие от графика уравнения х 2 + у 2 = 4 (см. рис. 65), каждой абсцисі точек данного графика соответствует единственная ордината. А это означает, что на рисунке 66 изображен график функции. Убедитесь самостоятельно, что график уравнения на рисунке 64 также является графиком функции.

Обратите внимание

не у каждого уравнение его график является графиком функции, однако каждый график функции является графиком некоторого уравнения.

Уравнение x + y = 4 является линейным уравнением с двумя переменными. Решив его относительно у, получим: у = -х + 4. Полученное равенство можно понимать как формулу, которая задает линейную функцию у = -х + 4. Графиком такой функции является прямая. Итак, графиком линейного уравнения х + у = 4, который изображен на рисунке 66, есть прямая.

Можно ли утверждать, что график любого линейного уравнения с двумя переменными является прямой? Нет. Например, линейное уравнение 0 ∙ х + 0 ∙ у = 0 удовлетворяет любая пара чисел, а потому график этого уравнения содержит все точки координатной плоскости.

Выясним, что является графиком линейного уравнения с двумя переменными ах + bу + с = 0 в зависимости от значений коэффициентов а, b и с. Возможны такие случаи.

Пусть a ≠ 0, b ≠ 0, с ≠ 0. Тогда уравнение ах + by + с = 0 можно представить в виде:

Получили равенство, задающее линейную функцию у(х). Ее графику, а значит, и графиком данного уравнения является прямая, не проходящая через начало координат (рис. 67).

2. Пусть а ≠ 0, b ≠ 0, с = 0. Тогда уравнение ах + by + с = 0 приобретает вид ах + by + 0 = 0, или у = х.

Получили равенство, что задает прямую пропорциональность у(х). Ее графику, а значит, и графиком данного уравнения является прямая, проходящая через начало координат (рис. 68).

3. Пусть a ≠ 0, b = 0, с ≠ 0. Тогда уравнение ах + by + с = 0 приобретает вид ах + 0 ∙ у + с = 0, или х = -.

Получили равенство не задает функцию y(). Это равенство удовлетворяют такие пары чисел (х; у), в которых х = , а у - любое число. На координатной плоскости эти точки лежат на прямой, параллельной оси OY. Итак, графиком данного уравнения является прямая, параллельная оси ординат (рис. 69).

4. Пусть a ≠ 0, b = 0, с = 0. Тогда уравнение ах + by + с = 0 приобретает вид ах + 0 ∙ у + 0 = 0, или х = 0.

Это равенство удовлетворяют такие пары чисел (x; у), в которых х = 0, а у - любое число. На координатной плоскости эти точки лежат на оси OY. Итак, графиком данного уравнения с прямая, совпадающая с осью ординат.

5. Пусть а ≠ 0, b ≠ 0, с ≠0. Тогда уравнение ах + bу + с = 0 приобретает вид 0 ∙ х + by + с = 0, или у = -. Это равенство задает функцию y(x), что приобретает тех же значений для любых значений x, то есть является постоянной. Ее графику, а значит, и графиком данного уравнения является прямая, параллельная оси абсцисс (рис. 70).

6. Пусть а = 0, b ≠ 0, с = 0. Тогда уравнение ах + by + с = 0 приобретает вид 0 ∙ х + by + 0 = 0, или в = 0. Получили постоянную функцию у(х), в которой каждая точка графика лежит на оси ОХ. Итак, графиком данного уравнения является прямая, совпадающая с осью абсцисс.

7. Пусть a = 0, b = 0, с ≠ 0. Тогда уравнение ах + by + с = 0 приобретает вид 0 ∙ х + 0 ∙ у + с = 0, или 0 ∙ х + 0 ∙ в = с. А такое линейное уравнение не имеет решений, поэтому его график не содержит ни одной точки координатной плоскости.

8. Пусть а = 0, b = 0, с = 0. Тогда уравнение ах + by + с = 0 приобретает вид 0 ∙ х + 0 ∙ y + 0 = 0, или 0 ∙ х + 0 ∙ у = 0. А такое линейное уравнение имеет множество решений, поэтому его с графиком-вся координатная плоскость.

Можем подытожить полученные результаты.

График линейного уравнения с двумя переменными ах + bу +с = 0:

Является прямой, если а ≠ 0 или b ≠ 0;

Является всей плоскостью, если а = 0, b = 0 и с = 0;

Не содержит ни одной точки координатной плоскости, если а = 0, b = 0 и с ≠ 0.

Задача. Постройте график уравнения 2х - у - 3 = 0

Решения. Уравнения 2х - у - 3 = 0 является линейным. Поэтому его графиком является прямая у = 2х - 3. Для ее построения достаточно задать две точки, принадлежащие этой прямой. Составим таблицу значений у для двух произвольных значений х, например, для х = 0 и х = 2(табл. 27).

Таблица 27

На координатной плоскости обозначим точки с координатами (0; -3) и (2; 1) и проведем через них прямую (рис. 70). Эта прямая - искомый график уравнения 2х - у - 3 = 0.

Можно ли отождествлять график линейного уравнения с двумя переменными и график уравнения первой степени с двумя переменными? Нет, поскольку существуют линейные уравнения не являются уравнениями первой степени. Например, таковыми являются уравнение 0 ∙ х + 0 ∙ у + с = 0, 0 ∙ х + 0 ∙ у + 0 = 0.

Обратите внимание:

График линейного уравнения с двумя переменными может быть прямой, всей плоскостью или не содержать ни одной точки координатной плоскости;

График уравнения первой степени с двумя переменными всегда является прямой.

Узнайте больше

1. Пусть а ≠ 0. Тогда общее решение уравнения можно представить еще и в таком виде: Х = - у -. Получили линейную функцию х(у). Ее графиком является прямая. Для построения такого графика надо по-другому состковать оси координат: первой координатной осью (независимой переменной) считать ось ОУ, а второй (зависимой переменной)

Ось ОХ. Тогда ось ОУ удобно расположить горизонтально, а ось ОХ

Вертикально (рис. 72). График уравнения в этом случае тоже будет по-разному размещаться на координатной плоскости в зависимости отмечаний коэффициентов b и с. Исследуйте это самостоятельно.

2. Николай Николаевич Боголюбов (1909-1992) - выдающийся отечественный математик и механик, физик-теоретик, основатель научных школ по нелинейной механике и теоретической физике, академик АН УССР (1948) и АН СССР (с 1953). Родился в г. Нижний Новгород Российской империи. В 1921 г. семья переехала в Киев. После окончания семилетней школы Боголюбов самостоятельно изучал физику и математику и с 14-ти лет уже принимал участие в семинаре кафедры математической физики Киевского университета под руководством академика Д. А. Граве. В 1924 г. в 15-летнем возрасте Боголюбов написал первую научную работу, а в следующем году был принят в аспирантуру АНУРСР к академикам. М. Крылова, которую закончил в 1929 г., получив в 20 лет степень доктора математических наук.

В 1929 p. М.М. Боголюбов стал научным сотрудником Украинской академии наук, в 1934 начал преподавать в Киевском университете (с 1936 г. - профессор). С конца 40-х годов XX века. одновременно работал в России. Был директором Объединенного института ядерных исследований, а впоследствии - директором Математического института имени. А. Стеклова в Москве, преподавал в Московском государственном университете имени Михаила Ломоносова. В 1966 г. стал первым директором созданного им Института теоретической физики АН УССР в Киеве, одновременно (1963-1988) он - академик - секретарь Отдела математики АН СССР.

М.М. Боголюбов -дважды Герой Социалистического Труда (1969,1979), награжден Ленинской премией (1958), Государственной премией СССР (1947.1953,1984), Золотой медалью им. М. В. Ломоносова АН СССР (1985).

21 сентября 2009 г. на фасаде Красного корпуса Киевского национального университета имени Тараса Шевченко была открыта мемориальная доска гениальному ученому-академику Николаю Боголюбову в честь столетия со дня его рождения.

В 1992 г. Национальной академией наук Украины была основана Премия НАН Украины имени Н. М. Боголюбова, которая вручается Отделением математики НАН Украины за выдающиеся научные работы в области математики и теоретической физики. В честь ученого была названа малая планета «22616 Боголюбов».

ВСПОМНИТЕ ГЛАВНОЕ

1. Что является графиком линейного уравнения с двумя переменными?

2. В любом случае графиком уравнения с двумя переменными является прямая; плоскость?

3. В каком случае график линейного уравнения с двумя переменными проходит через начало координат?

РЕШИТЕ ЗАДАЧИ

1078 . На каком из рисунков 73-74 изображен график линейного уравнения с двумя переменными? Ответ объясните.

1079 . При каких значений коэффициентов а, b и с прямая ах + bу + с =0.

1) проходит через начало координат;

2) параллельна оси абсцисс;

3) параллельна оси ординат;

4) совпадает с осью абсцисс;

5) совпадает с осью ординат?

1080 . Не выполняя построения, определите, принадлежит графику линейного уравнения с двумя переменными 6х - 2у + 1 = 0 точка:

1)А(-1;2,5); 2)В(0;3,5); 3) С(-2; 5,5); 4)D(1,5;5).

1081 . Не выполняя построения, определите, принадлежит графику линейного уравнения с двумя переменными 3х + 3у - 5 = 0 точка:

1) A (-1; ); 2) B (0; 1).

1082

1) 2х + у - 4 = 0, если х = 0; 3) 3х + 3у - 1 = 0, если х = 2;

2) 4х - 2y + 5 = 0, если х = 0; 4)-5х - у + 6 = 0, если х = 2.

1083 . Для данного линейного уравнения с двумя переменными найдите значение у, соответствующее заданному значению х:

1)3х - у + 2 = 0, если х = 0; 2) 6х - 5y - 7 = 0, если х = 2.

1084

1) 2х + у - 4 = 0; 4) -х + 2у + 8 = 0; 7) 5х - 10 = 0;

2) 6х - 2y + 12 = 0; 5)-х - 2у + 4 = 0; 8)-2у + 4 = 0;

3) 5х - 10y = 0; 6)х - у = 0; 9) х - у = 0.

1085 . Постройте график линейного уравнения с двумя переменными:

1) 4х + у - 3 = 0; 4) 10х - 5у - 1 = 0;

2) 9х - 3у + 12 = 0; 5) 2х + 6 = 0;

3)-4х - 8у = 0; 6) у - 3 = 0.

1086 . Найдите координаты точки пересечения графика линейного уравнения с двумя переменными 2х - 3у - 18 = 0 с осью:

1) оси; 2) оси.

1087 . Найдите координаты точки пересечения графика линейного уравнения с двумя переменными 5х + 4у - 20 = 0 с осью:

1) оси; 2) оси.

1088 . На прямой, которая является графиком уравнения 0,5 х + 2у - 4 = 0, обозначено точку. Найдите ординату этой точки, если ее абсцисса равна:

5) 4(х - у) = 4 - 4у;

6) 7х - 2у = 2(1 + 3,5 х).

1094 . График линейного уравнения с двумя переменными проходит через точку А(3; -2). Найдите неизвестный коэффициент уравнения:

1) ах + 3у - 3 = 0;

2) 2х - by + 8 = 0;

3)-х + 3у - с = 0.

1095 . Определите вид четырехугольника, вершинами которого являются точки пересечения графиков уравнений:

х - y + 4 = 0, х - у - 4 = 0, -х - у + 4 = 0, -х - у - 4 = 0

1096 . Постройте график уравнения:

1) а - 4b + 1 = 0; 3) 3a + 0 ∙ b - 12 = 0;

2) 0 ∙ а + 2b + 6 = 0; 4) 0 ∙ a + 0 ∙ b + 5 = 0.

ПРИМЕНИТЕ НА ПРАКТИКЕ

1097 . Составьте линейное уравнение с двумя переменными по следующим данным: 1) 3 кг конфет и 2 кг печенья стоят 120 грн; 2) 2 ручки дороже 5 карандашей на 20 грн. Постройте график составленного уравнения.

1098 . Постройте график уравнения к задаче о: 1) количество девушек и парней в вашем классе; 2) покупку тетрадей в линейку и в клеточку.

ЗАДАЧИ НА ПОВТОРЕНИЕ

1099. Турист прошел 12 км за час. За сколько часов турист преодолеет расстояние 20 км с такой же скоростью движения?

1100. Какой должна быть скорость поезда по новому расписанию, чтобы он мог проехать расстояние между двумя станциями за 2,5 ч, если согласно старого расписания, двигаясь со скоростью 100 км/ч он преодолевал ее за 3 ч?

    Нарисуйте числовую линию. Поскольку для изображения неравенства с одной переменной достаточно одной оси, нет необходимости рисовать прямоугольную систему координат. Вместо этого просто проведите прямую линию.

    Изобразите неравенство. Это довольно просто, так как имеется всего лишь одна координата. Предположим, необходимо изобразить неравенство x <1. Для начала следует найти на оси число 1.

    • Если неравенство задается знаком > или < (“больше” или “меньше”), обведите заданное число пустым кружком.
    • Если неравенство задается знаком ≥ {\displaystyle \geq } (“больше или равно”) или ≤ {\displaystyle \leq } (“меньше или равно”), закрасьте кружок вокруг точки.
  1. Проведите линию. Проведите линию из только что отмеченной точки на числовой оси. Если переменная больше данного числа, отложите линию вправо. Если переменная меньше, проведите линию влево. На конце линии поставьте стрелку, чтобы показать, что она не является конечным отрезком и продолжается дальше.

    Проверьте ответ. Подставьте вместо переменной x какое-либо число и отметьте его положение на числовой оси. Если это число лежит на проведенной вами линии, график верен.

График линейного неравенства

    Используйте формулу прямой линии. Подобная формула использовалась выше для обычных линейных уравнений, однако в данном случае вместо знака ‘=’ следует поставить знак неравенства. Это может быть один из следующих знаков: <, >, ≤ {\displaystyle \leq } или ≥ {\displaystyle \geq } .

    • Уравнение прямой линии имеет вид y=mx+b , где m соответствует наклону, а b - пересечению с осью y.
    • Знак неравенства означает, что данное выражение имеет множество решений.
  1. Изобразите неравенство. Найдите точку пересечения прямой с осью y и ее наклон, после чего отметьте соответствующие координаты. В качестве примера рассмотрим неравенство y >1/2x +1. В этом случае прямая будет пересекать ось y при x =1, а ее наклон составит ½, то есть при движении вправо на 2 единицы мы будем подниматься вверх на 1 единицу.

    Проведите линию. Перед этим посмотрите на знак неравенства. Если это < или >, следует провести пунктирную линию. Если в неравенстве стоит знак ≤ {\displaystyle \leq } или ≥ {\displaystyle \geq } , линия должна быть сплошной.

    Заштрихуйте график. Так как неравенство имеет множество решений, на графике следует показать все возможные решения. Это означает, что следует заштриховать область над линией или под ней.

График квадратного уравнения

    Посмотрите на формулу. В квадратном уравнении хотя бы одна переменная возводится в квадрат. Обычно квадратное уравнение записывается в следующем виде: y=ax 2 +bx+c .

    • При построении графика квадратного уравнения у вас получится парабола, то есть кривая в виде латинской буквы ‘U’.
    • Для построения параболы необходимо знать координаты хотя бы трех точек, в том числе вершины параболы (ее центральной точки).
  1. Определите a, b и c. Например, в уравнении y=x 2 +2x+1 a =1, b =2 и c =1. Каждый параметр представляет собой число, которое стоит перед переменной в соответствующей степени. Например, если перед x не стоит никакого числа, значит b =1, поскольку соответствующее слагаемое можно записать в виде 1x .

    Найдите вершину параболы. Чтобы найти среднюю точку параболы, используйте выражение -b /2a . Для нашего примера получаем -2/2(1), то есть -1.

    Составьте таблицу. Итак, мы знаем, что координата x вершины равна -1. Однако это лишь одна координата. Чтобы найти соответствующую ей координату y , а также две другие точки параболы, необходимо составить таблицу.

    Постройте таблицу из трех строк и двух столбцов.

    • Запишите координату x вершины параболы в центральной ячейке левого столбца.
    • Выберите еще две координаты x на одинаковом расстоянии слева и справа (в отрицательную и положительную стороны вдоль горизонтальной оси). Например, можно отступить от вершины на 2 единицы влево и вправо, то есть записать в соответствующих ячейках -3 и 1.
    • Можно выбрать любые целые числа, которые отстоят от вершины на равном расстоянии.
    • Если вы хотите построить более точный график, вместо трех можно взять пять точек. В этом случае следует делать то же самое, только таблица будет состоять не из трех, а из пяти строк.
  2. Используйте уравнение и таблицу, чтобы найти неизвестные координаты y . Берите по одной координате x из таблицы, подставляйте ее в заданное уравнение и находите соответствующую координату y.

    • В нашем случае мы подставляем в уравнение y =x 2 +2x +1 вместо x -3. В результате находим y = -3 2 +2(-3)+1, то есть y =4.
    • Записываем найденную координату y в ячейке возле соответствующей ей координаты x.
    • Найдите таким образом все три (или пять, если вы используете больше точек) координаты y .
  3. Нанесите на график точки. Итак, у вас получилось по крайней мере три точки с известными координатами, которые можно отметить на графике. Соедините их кривой в форме параболы. Готово!

График квадратного неравенства

    Постройте график параболы. В квадратном неравенстве используется формула, аналогичная квадратному уравнению, однако вместо знака ‘=’ стоит знак неравенства. Например, квадратное неравенство может выглядеть следующим образом: y x 2 +bx +c. Используйте шаги из предыдущего метода “График квадратного уравнения” и найдите три точки параболы.