Всякое ли тело вращения имеет осевое сечение. Тела и поверхности вращения

Тела вращения

Работу выполнили студентки 1ДО группы: Вилачева Мария

Коркина Елена


Тела вращения

  • Телами вращения называются объемные тела, возникающие при вращении плоской геометрической фигуры, ограниченная кривой, вокруг оси, лежащий в той же плоскости.

Цилиндр.

Эллиптический цилиндр

Правильный круглый цилиндр

Цили́ндр (греч. kýlindros, валик, каток) - геометрическое тело, которое состоит из двух кругов, не лежащих в одной плоскости и совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих кругов. Круги называются основаниями цилиндра , а отрезки, соединяющие соответствующие точки окружностей кругов, - образующими цилиндра .


Примеры тел, имеющих форму цилиндра:

  • Сквозное отверстие в стене, сделанное дрелью, является цилиндром: его основание – круг с диаметром, равным диаметру сверла, высота – толщина стены.

Связанные определения.

  • Цилиндр называется прямым , если его образующие перпендикулярны плоскостям оснований.
  • Радиусом цилиндра называется радиус его основания.
  • Высотой цилиндра называется расстояние между его плоскостями.
  • Осью цилиндра называется прямая, проходящая через центр оснований. Она параллельна образующим.
  • Осевое сечение сечение цилиндра плоскостью, проходящей через его ось.

Свойства

  • Основания цилиндра равны.
  • У цилиндра основания лежат в параллельных плоскостях.
  • У цилиндра образующие параллельны и равны.
  • Поверхность цилиндра состоит из оснований и боковой поверхности. Боковая поверхность составлена из образующих.

Основные формулы

  • V = π r 2 h - объём прямого кругового цилиндра
  • S = 2π rh - Площадь боковой поверхности цилиндра
  • (где r - радиус основания, h - высота).

Площадь полной поверхности цилиндра

складывается из площади боковой поверхности и площади оснований. Для прямого кругового цилиндра:

S = 2π rh + 2π r 2 .


Конус

Ко́нус - тело , которое состоит из круга – основания конуса , точки, не лежащей в плоскости этого круга, - вершины конуса и всех отрезков, соединяющих вершину конуса с точками основания.

Прямой круговой конус


  • Отрезок, соединяющий вершину и границу основания, называется образующей конуса .
  • Объединение образующих конуса называется образующей (или боковой) поверхностью конуса .
  • Отрезок, опущенный перпендикулярно из вершины на плоскость основания (а также длина такого отрезка), называется высотой конуса.

  • Конус называется прямым , если прямая, соединяющая вершину конуса с центром основания, перпендикулярна плоскости основания. При этом прямая, соединяющая вершину и центр основания, называется осью конуса .
  • Сечение конуса плоскостью, проходящей через его ось, называется осевым сечением .

  • Плоскость, перпендикулярная оси конуса, пересекает конус по кругу, а боковую поверхность – по окружности с центром на оси конуса.
  • Сечение конуса плоскостью, параллельной основанию, отсекает от него конус, подобный данному.
  • Площадь полной поверхности конуса равна

S ппк = S бп + S осн


  • Площадь боковой поверхности конуса равна

S = πRl

где R - радиус основания, l - длина образующей.

  • Объем кругового конуса равен

V=⅓πR 2 H


Шар и сфера

Шар - геометрическое тело, ограниченное поверхностью, все точки которой отстоят на равном расстоянии от центра. Это расстояние называется радиусом шара . Шар образуется вращением полукруга около его неподвижного диаметра. Этот диаметр называется осью шара , а его оба конца - полюсами шара . Поверхность шара называется сферой .


Примеры тел, имеющих форму шара или сферы:

  • Купол здания может иметь форму части сферы, отсеченной плоскостью.
  • Земля имеет форму, близкую к шару.
  • Мячи для игры в футбол, теннис имеют форму шара.

Связанные определения

  • Если секущая плоскость проходит через центр шара, то сечение шара называется большим кругом . Другие плоские сечения шара называются малыми кругами
  • Любой отрезок, соединяющий центр шара с точкой шаровой поверхности (сферы), называется радиусом .
  • Отрезок, соединяющий две точки шаровой поверхности и проходящей через центр шара, называется диаметром .

  • Концы любого диаметра называются диаметрально противоположными точками шара.
  • Плоскость, проходящая через центр шара, называется диаметральной плоскостью .

Свойства

  • Всякое сечение шара плоскостью есть круг. Центр этого круга есть основание перпендикуляра, опущенного из центра шара на секущую плоскость.
  • Любая диаметральная плоскость шара является его плоскостью симметрии. Центр шара является его центром симметрии .

Основные формулы

Площадь сферы радиуса R вычисляется по формуле

Поверхности вращения и ограничиваемые ими тела имеют широкое применение во многих областях техники: баллон электронно-лучевой трубки (рис. 8.11, а), центр токарного станка (рис. 8.11, б), объемный сверхвысокочастотный резонатор электромагнитных колебаний (рис. 8.11, в), сосуд Дьюара для хранения жидкого воздуха (рис. 8.11, г), коллектор электронов мощного электронно-лучевого прибора (рис. 8.11, д) и т.д.

В зависимости от вида образующей поверхности вращения могут быть линейчатыми, нелинейчатыми или состоять из частей таких поверхностей.

Поверхностью вращения называют поверхность, получающуюся от вращения некоторой образующей линии вокруг неподвижной прямой- оси поверхности.


На чертежах ось изображают штрихпунктирной линией. Образующая линия может в общем случае иметь как криволинейные, так и прямолинейные участки. Поверхность вращения на чертеже можно задать образующей и положением оси. На рисунке 8.12 изображена поверхность вращения, которая образована вращением образующей AьCD (ее фронтальная проекция a"b"c"d") вокруг оси OO 1 (фронтальная проекция о"o 1 " , перпендикулярной плоскости Н. При вращении каждая точка образующей описывает окружность, плоскость которой перпендикулярна оси. Соответственно линия пересечения поверхности вращения любой плоскостью, перпендикулярной оси, является окружностью. Такие окружности называют параллелями. На виде сверху (рис. 8.12) показаны проекции окружностей, описываемых точками А, В, С и D, проходящие через проекции а, b, с, d. Наибольшую параллель из двух соседних с нею параллелей по обе стороны от нее называют экватором, аналогично наименьшую - горлом.

Плоскость, проходящую через ось поверхности вращения, называют меридиональной, линию ее пересечения с поверхностью вращения - меридианом. Если ось поверхности параллельна плоскости проекций, то меридиан, лежащий в плоскости, параллельной этой плоскости проекций, называют главным меридианом. На эту плоскость проекций главный меридиан проецируется без искажений. Так, если ось поверхности вращения параллельна плоскости V, то главный меридиан проецируется на плоскость V без искажений, например проекция a"f"b"c"d". Если ось поверхности вращения перпендикулярна к плоскости Н, то горизонтальная проекция поверхности имеет очерк в виде окружности.

Наиболее удобными для выполнения изображений поверхностей вращения являются случаи, когда их оси перпендикулярны к плоскости Н, к плоскости V или к плоскости W.

Некоторые поверхности вращения являются частными случаями поверхностей, рассмотренных в 8.1, например цилиндр вращения, конус вращения. Для цилиндра и конуса вращения меридианами являются прямые линии. Они параллельны оси и равноудалены от нее для цилиндра или пересекают ось в одной и той же ее точке под одним и тем же углом к оси для конуса. Цилиндр и конус вращения - поверхности, бесконечные в направлении их образующих; поэтому на изображениях их ограничивают какими-либо линиями, например линиями пересечения этих поверхностей с плоскостями проекций или какими-либо из параллелей. Из стереометрии известно, что прямой круговой цилиндр и прямой круговой конус ограничены поверхностью вращения и плоскостями, перпендикулярными к оси поверхности. Меридиан такого цилиндра - прямоугольник, конуса - треугольник.

Такая поверхность вращения, как сфера, является ограниченной и может быть изображена на чертеже полностью. Экватор и меридианы сферы - равные между собой окружности. При ортогональном проецировании на все три плоскости проекций очертания сферы проецируются в окружность.

Тор. При вращении окружности (или ее дуги) вокруг оси, лежащей в плоскости этой окружности, но не проходящей через ее центр, получается поверхность с названием тор. На рисунке 8.13 приведены: открытый тор, или круговое кольцо, - рисунок 8.13, а, закрытый тор - рисунок 8.13, б, самопересекающийся тор - рисунок 8.13, в, г. Тор (рис. 8.13, г) называют также лимоновидным. На рисунке 8.13 они изображены в положении, когда ось тора перпендикулярна к плоскости проекций Н. В открытый и закрытый торы могут быть вписаны сферы. Тор можно рассматривать как поверхность, огибающую одинаковые сферы, центры которых находятся на окружности.

В построениях на чертежах широко используют две системы круговых сечений тора: в плоскостях, перпендикулярных к его оси, и в плоскостях, проходящих через ось тора. При этом в плоско-

стях, перпендикулярных к оси тора, в свою очередь имеются два семейства окружностей - линий пересечения плоскостей с наружной поверхностью тора и линий пересечения плоскостей с внутренней поверхностью тора. У лимоновидного тора (рис. 8.13, г) имеется только первое семейство окружностей.

Кроме того, тор имеет еще и третью систему круговых сечений, которые лежат в плоскостях, проходящих через центр тора и касательных к его внутренней поверхности. На рисунке 8.14 показаны круговые сечения с центрами о 1р и о 2р на дополнительной плоскости проекций Р, образованные фронтально-проецирующей плоскостью Q (Q v), проходящей через центр тора с проекциями о" о и касательной к внутренней поверхности тора в точках с проекциями 1" , 1, 2" 2. Проекции точек 1, 2, 3, 4, 5, 6, 7, 8, 9 и 10 облегчают чтение чертежа. Диаметр d этих круговых сечений равен длине больших осей эллипсов, в которые проецируются круговые сечения на горизонтальной плоскости проекций: d = 2R.

Точки на поверхности вращения. Положение точки на поверхности вращения определяют по принадлежности точки линии каркаса поверхности, т. е. с помощью окружности, проходящей через эту точку на поверхности вращения. В случае линейчатых поверхностей для этой цели возможно применение и прямолинейных образующих.

Применение параллели и прямолинейной образующей для построения проекций точек, принадлежащих данной поверхности вращения, показано на рисунке 8.12. Если

дана проекция т", то проводят фронтальную проекцию f"f1" параллели, а затем радиусом R проводят окружность - горизонтальную проекцию параллели - и на ней находят проекцию т. Если бы была задана горизонтальная проекция т, то следовало бы провести радиусом R=om окружность, по точке f построить f" и провести f"f1" - фронтальную проекцию параллели - и на ней в проекционной связи отметить точку т". Если дана проекция п" на линейчатом (коническом) участке поверхности вращения, то проводят фронтальную проекцию d"s" очерковой образующей и через проекцию n" - фронтальную проекцию s"к" образующей на поверхности конуса. Затем на горизонтальной проекции sk этой образующей строят проекцию n. Если бы была задана горизонтальная проекция n, то следовало бы провести через нее горизонтальную проекцию sk образующей, по проекции к" и s" (построение ее было рассмотрено выше) построить фронтальную проекцию s "к" и на ней в проекционной связи отметить проекцию n"

На рисунке 8.15 показано построение проекций точки К, принадлежащей поверхности тора. Следует отметить, что построение выполнено для видимых горизонтальной проекции к и фронтальной проекции к".

На рисунке 8.16 показано построение по заданной фронтальной проекции т" точки на поверхности сферы ее горизонтальной т и профильной т" проекций. Проекция т построена с помощью окружности - параллели, проходящей через проекцию т". Ее радиус - о-1. Проекция т "" построена с помощью окружности, плоскость которой параллельна профильной плоскости проекций, проходящей через проекцию т". Ее радиус о "2".

Построение проекций линий на поверхности вращения может быть выполнено также при помощи окружностей - параллелей, проходящих через точки, принадлежащие этой линии.

На рисунке 8.17 показано построение горизонтальной проекции aь линии, заданной фронтальной проекцией a"b" на поверхности вращения, состоящей из частей поверхностей сферы, тора, конической. Для более точного вычерчивания горизонтальной проекции линии продолжим ее фронтальную проекцию вверх и вниз и отметим проекции 6" и 5" крайних точек. Горизонтальные проекции 6, 1, 3, 4, 5 построены с помощью линий связи. Проекции b , 2, 7, 8, а построены с помощью параллелей, фронтальные проекции которых проходят через проекции b " 2", 7", 8", а" этих точек. Количество и расположение промежуточных точек выбирают исходя из формы линии и требуемой точности построения. Горизонтальная проекция линии состоит из участков: b -1 - части эллипса,

Определение 3. Тело вращения – это тело, полученное вращением плоской фигуры вокруг оси, не пересекающей фигуру и лежащей с ней в одной плоскости.

Ось вращения может и пересекать фигуру, если это ось симметрии фигуры.

Теорема 2.
, осью
и отрезками прямых
и

вращается вокруг оси
. Тогда объём получающегося тела вращения можно вычислить по формуле

(2)

Доказательство. Для такого тела сечение с абсциссой – это круг радиуса
, значит
и формула (1) даёт требуемый результат.

Если фигура ограничена графиками двух непрерывных функций
и
, и отрезками прямых
и
, причём
и
, то при вращении вокруг оси абсцисс получим тело, объём которого

Пример 3. Вычислить объём тора, полученного вращением круга, ограниченного окружностью

вокруг оси абсцисс.

Решение. Указанный круг снизу ограничен графиком функции
, а сверху –
. Разность квадратов этих функций:

Искомый объём

(графиком подынтегральной функции является верхняя полуокружность, поэтому написанный выше интеграл – это площадь полукруга).

Пример 4. Параболический сегмент с основанием
, и высотой, вращается вокруг основания. Вычислить объём получающегося тела («лимон» Кавальери).

Решение. Параболу расположим как показано на рисунке. Тогда её уравнение
, причем
. Найдём значение параметра:
. Итак, искомый объём:

Теорема 3. Пусть криволинейная трапеция, ограниченная графиком непрерывной неотрицательной функции
, осью
и отрезками прямых
и
, причём
, вращается вокруг оси
. Тогда объём получающегося тела вращения может быть найден по формуле

(3)

Идея доказательства. Разбиваем отрезок
точками

, на части и проводим прямые
. Вся трапеция разложится на полоски, которые можно считать приближенно прямоугольниками с основанием
и высотой
.

Получающийся при вращении такого прямоугольника цилиндр разрежем по образующей и развернём. Получим «почти» параллелепипед с размерами:
,
и
. Его объём
. Итак, для объёма тела вращения будем иметь приближенноё равенство

Для получения точного равенства надо перейти к пределу при
. Написанная выше сумма есть интегральная сумма для функции
, следовательно, в пределе получим интеграл из формулы (3). Теорема доказана.

Замечание 1. В теоремах 2 и 3 условие
можно опустить: формула (2) вообще нечувствительна к знаку
, а в формуле (3) достаточно
заменить на
.

Пример 5. Параболический сегмент (основание
, высота) вращается вокруг высоты. Найти объём получающегося тела.

Решение. Расположим параболу как показано на рисунке. И хотя ось вращения пересекает фигуру, она – ось – является осью симметрии. Поэтому надо рассматривать лишь правую половину сегмента. Уравнение параболы
, причем
, значит
. Имеем для объёма:

Замечание 2. Если криволинейная граница криволинейной трапеции задана параметрическими уравнениями
,
,
и
,
то можно использовать формулы (2) и (3) с заменойна
и
на
при измененииt от
до.

Пример 6. Фигура ограничена первой аркой циклоиды
,
,
, и осью абсцисс. Найти объём тела, полученного вращением этой фигуры вокруг: 1) оси
; 2) оси
.

Решение. 1) Общая формула
В нашем случае:

2) Общая формула
Для нашей фигуры:

Предлагаем студентам самостоятельно провести все вычисления.

Замечание 3. Пусть криволинейный сектор, ограниченный непре-рывной линией
и лучами
,

, вращается вокруг полярной оси. Объём получающегося тела можно вычислить по формуле.

Пример 7. Часть фигуры, ограниченной кардиоидой
, лежащая вне окружности
, вращается вокруг полярной оси. Найти объём тела, которое при этом получается.

Решение. Обе линии, а значит и фигура, которую они ограничивают, симметричны относительно полярной оси. Поэтому необходимо рассматривать лишь ту часть, для которой
. Кривые пересекаются при
и

при
. Далее, фигуру можно рассматривать как разность двух секторов, а значит и объём вычислять как разность двух интегралов. Имеем:

Задачи для самостоятельного решения.

1. Круговой сегмент, основание которого
, высота , вращается вокруг основания. Найти объём тела вращения.

2. Найти объём параболоида вращения, основание которого , а высота равна.

3. Фигура, ограниченная астроидой
,
вращает-ся вокруг оси абсцисс. Найти объём тела, которое получается при этом.

4. Фигура, ограниченная линиями
и
вращается вокруг оси абсцисс. Найти объём тела вращения.

Пусть T - тело вращения, образованное вращением вокруг оси абсцисс криволинейной трапеции, расположенной в верхней полуплоскости и ограниченной осью абсцисс, прямыми x=a и x=b и графиком непрерывной функции y=f(x) .

Докажем, что это тело вращения кубируемо и его объем выражается формулой

V=\pi \int\limits_{a}^{b} f^2(x)\,dx= \pi \int\limits_{a}^{b}y^2\,dx\,.

Сначала докажем, что это тело вращения регулярно, если в качестве \Pi выберем плоскость Oyz , перпендикулярную оси вращения. Отметим, что сечение, находящееся на расстоянии x от плоскости Oyz , является кругом радиуса f(x) и его площадь S(x) равна \pi f^2(x) (рис. 46). Поэтому функция S(x) непрерывна в силу непрерывности f(x) . Далее, если S(x_1)\leqslant S(x_2) , то это значит, что . Но проекциями сечений на плоскость Oyz являются круги радиусов f(x_1) и f(x_2) с центром O , и из f(x_1)\leqslant f(x_2) вытекает, что круг радиуса f(x_1) содержится в круге радиуса f(x_2) .


Итак, тело вращения регулярно. Следовательно, оно кубируемо и его объем вычисляется по формуле

V=\pi \int\limits_{a}^{b} S(x)\,dx= \pi \int\limits_{a}^{b}f^2(x)\,dx\,.

Если бы криволинейная трапеция была ограничена и снизу и сверху кривыми y_1=f_1(x), y_2=f_2(x) , то

V= \pi \int\limits_{a}^{b}y_2^2\,dx- \pi \int\limits_{a}^{b}y_1^2\,dx= \pi\int\limits_{a}^{b}\Bigl(f_2^2(x)-f_1^2(x)\Bigr)dx\,.

Формулой (3) можно воспользоваться и для вычисления объема тела вращения в случае, когда граница вращающейся фигуры задана параметрическими уравнениями. В этом случае приходится пользоваться заменой переменной под знаком определенного интеграла.

В некоторых случаях оказывается удобным разлагать тела вращения не на прямые круговые цилиндры, а на фигуры иного вида.

Например, найдем объем тела, получаемого при вращении криволинейной трапеции вокруг оси ординат . Сначала найдем объем, получаемый при вращении прямоугольника с высотой y#, в основании которого лежит отрезок . Этот объем равен разности объемов двух прямых круговых цилиндров

\Delta V_k= \pi y_k x_{k+1}^2- \pi y_k x_k^2= \pi y_k \bigl(x_{k+1}+x_k\bigr) \bigl(x_{k+1}-x_k\bigr).

Но теперь ясно, что искомый объем оценивается сверху и снизу следующим образом:

2\pi \sum_{k=0}^{n-1} m_kx_k\Delta x_k \leqslant V\leqslant 2\pi \sum_{k=0}^{n-1} M_kx_k\Delta x_k\,.

Отсюда легко следует формула объёма тела вращения вокруг оси ординат :

V=2\pi \int\limits_{a}^{b} xy\,dx\,.

Пример 4. Найдем объем шара радиуса R .

Решение. Не теряя общности, будем рассматривать круг радиуса R с центром в начале координат. Этот круг, вращаясь вокруг оси Ox , образует шар. Уравнение окружности имеет вид x^2+y^2=R^2 , поэтому y^2=R^2-x^2 . Учитывая симметрию круга относительно оси ординат, найдем сначала половину искомого объема

\frac{1}{2}V= \pi\int\limits_{0}^{R}y^2\,dx= \pi\int\limits_{0}^{R} (R^2-x^2)\,dx= \left.{\pi\!\left(R^2x- \frac{x^3}{3}\right)}\right|_{0}^{R}= \pi\!\left(R^3- \frac{R^3}{3}\right)= \frac{2}{3}\pi R^3.

Следовательно, объем всего шара равен \frac{4}{3}\pi R^3 .


Пример 5. Вычислить объем конуса, высота которого h и радиус основания r .

Решение. Выберем систему координат так, чтобы ось Ox совпала с высотой h (рис. 47), а вершину конуса примем за начало координат. Тогда уравнение прямой OA запишется в виде y=\frac{r}{h}\,x .

Пользуясь формулой (3), получим:

V=\pi \int\limits_{0}^{h} y^2\,dx= \pi \int\limits_{0}^{h} \frac{r^2}{h^2}\,x^2\,dx= \left.{\frac{\pi r^2}{h^2}\cdot \frac{x^3}{3}}\right|_{0}^{h}= \frac{\pi}{3}\,r^2h\,.

Пример 6. Найдем объем тела, полученного при вращении вокруг оси абсцисс астроиды \begin{cases}x=a\cos^3t\,\\ y=a\sin^3t\,.\end{cases} (рис. 48).


Решение. Построим астроиду. Рассмотрим половину верхней части астроиды, расположенной симметрично относительно оси ординат. Используя формулу (3) и меняя переменную под знаком определенного интеграла, найдем для новой переменной t пределы интегрирования.

Если x=a\cos^3t=0 , то t=\frac{\pi}{2} , а если x=a\cos^3t=a , то t=0 . Учитывая, что y^2=a^2\sin^6t и dx=-3a\cos^2t\sin{t}\,dt , получаем:

V=\pi \int\limits_{a}^{b} y^2\,dx= \pi \int\limits_{\pi/2}^{0} a^2\sin^6t \bigl(-3a\cos^2t\sin{t}\bigr)\,dt= \ldots= \frac{16\pi}{105}\,a^3.

Объем всего тела, образованного вращением астроиды, будет \frac{32\pi}{105}\,a^3 .

Пример 7. Найдем объем тела, получаемого при вращении вокруг оси ординат криволинейной трапеции, ограниченной осью абсцисс и первой аркой циклоиды \begin{cases}x=a(t-\sin{t}),\\ y=a(1-\cos{t}).\end{cases} .

Решение. Воспользуемся формулой (4): V=2\pi \int\limits_{a}^{b}xy\,dx , и заменим переменную под знаком интеграла, учитывая, что первая арка циклоиды образуется при изменении переменной t от 0 до 2\pi . Таким образом,

\begin{aligned}V&= 2\pi \int\limits_{0}^{2\pi} a(t-\sin{t})a(1-\cos{t})a(1-\cos{t})\,dt= 2\pi a^3 \int\limits_{0}^{2\pi} (t-\sin{t})(1-\cos{t})^2\,dt=\\ &= 2\pi a^3 \int\limits_{0}^{2\pi}\bigl(t-\sin{t}- 2t\cos{t}+ 2\sin{t}\cos{t}+ t\cos^2t- \sin{t}\cos^2t\bigr)\,dt=\\ &= \left.{2\pi a^3\!\left(\frac{t^2}{2}+ \cos{t}- 2t\sin{t}- 2\cos{t}+ \sin^2t+ \frac{t^2}{4}+ \frac{t}{4}\sin2t+ \frac{1}{8}\cos2t+ \frac{1}{3}\cos^3t\right)}\right|_{0}^{2\pi}=\\ &= 2\pi a^3\!\left(2\pi^2+1-2+\pi^2+\frac{1}{8}+ \frac{1}{3}-1+2- \frac{1}{8}- \frac{1}{3}\right)= 6\pi^3a^3. \end{aligned}

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Цилиндром (точнее, круговым цилиндром) называется тело, которое состоит из двух кругов, совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих кругов. Круги называются основаниями

цилиндра, а отрезки, соединяющие соответствующие точки окружностей кругов, - образующими цилиндра. На рисунке 156 изображен цилиндр. Круги с центрами О и являются его основаниями, его образующие.

Можно доказать, что основания цилиндра равны и лежат в параллельных плоскостях, что у цилиндра образующие - параллельны и равны. Поверхность цилиндра состоит из оснований и боковой поверхности. Боковая поверхность составлена из образующих.

Цилиндр называется прямым, если его образующие перпендикулярны плоскостям оснований. На рисунке 155, б изображен наклонный цилиндр, а на рисунке 155, а - прямой.

В дальнейшем мы будем рассматривать только прямой цилиндр, называя его для краткости просто цилиндром. Его можно рассматривать как тело, полученное при вращении прямоугольника вокруг одной из сторон как оси (рис. 156).

Радиусом цилиндра называется радиус его основания. Высотой цилиндра назаывается расстояние между плоскостями оснований. Осью цилиндра называется прямая, проходящая через центры оснований. Она параллельна образующим. Сечение цилиндра плоскостью, проходящей через ось цилиндра, называется осевым сечением. Плоскость, проходящая через образующую прямого цилиндра и перпендикулярная осевому сечению, проведенному через эту образующую, называется касательной плоскостью цилиндра.

На рисунке 157 сечение проходит через ось цилиндра ОО и т. е. является осевым сечением.

Плоскость, перпендикулярная оси цилиндра» пересекает его боковую поверхность по окружности, равной окружности основания.

Призмой, вписанной в цилиндр, называется такая призма, основания которой - равные многоугольники, вписанные в основания цилиндра. Ее боковые ребра являются образующими цилиндра. Призма называется описанной около цилиндра, если ее основания - равные многоугольники, описанные около оснований цилиндра. Плоскости ее граней касаются боковой поверхности цилиндра.

На рисунке 158 изображена призма вписанная в цилиндр. На рисунке 159 призма описана около цилиндра.

Пример. В цилиндр вписать правильную четырехугольную призму.

Решение. 1) Впишем в основание цилиндра квадрат ABCD (рис. 158).

2) Проведем образующие

3) Через соседние пары этих образующих проведем плоскости, которые пересекают верхнее основание по хордам

4) Призма искомая (по определениям правильной и вписанной призмы).

53. Конус.

Конусом (точнее, круговым конусом) называется тело, которое состоит из круга - основания конуса, точки, не лежащей в плоскости этого круга, - вершины конуса и всех отрезков, соединяющих вершину конуса с точками основания. Отрезки, соединяющие вершину конуса с точками окружности основания, называются образующими конуса. Поверхность конуса состоит из основания и боковой поверхности. На рисунке 160, а изображен круговой конус. S - вершина конуса, круг с центром в точке О - основание конуса, SA, SB и SC - образующие конуса.

Конус называется прямым, если прямая, соединяющая вершину конуса с центром основания, перпендикулярна плоскости основания. На рисунке 160, б изображен наклонный конус, а на рисунке 160, а - прямой. В дальнейшем мы будем рассматривать только прямой конус, называя его для краткости просто конусом. Прямой круговой конус можно рассматривать как тело, полученное при вращении прямоугольного треугольника вокруг его катета как оси (рис. 161).

Высотой конуса называется перпендикуляр, опущенный из его вершины на плоскость основания. У прямого конуса основание высоты совпадает с центром основания. Осью прямого конуса называется прямая, содержащая его высоту.

Сечение конуса плоскостью, проходящей через его ось, называется осевым сечением. Плоскость, проходящая через образующую конуса и перпендикулярная осевому сечению, проведенному через эту образующую, называется касательной плоскостью конуса.

На рисунке 162 изображено сечение конуса, проходящее через его ось - осевое сечение конуса.

Плоскость, перпендикулярная оси конуса, пересекает конус по кругу, а боковую поверхность - по окружности с центром на оси конуса.

Плоскость, перпендикулярная осн конуса, отсекает от него меньший конус. Оставшаяся часть называется усеченным конусом (рис. 163).

Пирамидой, вписанной в конус, называется такая пирамида, основание которой есть многоугольник, вписанный в окружность основания конуса, а вершиной является вершина конуса. Боковые ребра пирамиды, вписанной в конус, являются образующими конуса. Пирамида называется описанной около конуса, если ее основанием является многоугольник, описанный около основания конуса, а вершина совпадает с вершиной конуса. Плоскости боковых граней описанной пирамиды являются касательными плоскостями конуса.

На рисунке 164 изображена пирамида, вписанная в конус, а на рисунке 165 изображен конус, вписанный в пирамиду, т. е. пирамида, описанная около конуса.

54. Шар.

Шаром называется тело, которое состоит из всех точек пространства, находящихся на расстоянии, не большем

данного, от данной точки. Эта точка называется центром шара, а данное расстояние - радиусом шара. На рисунке 166 изображен шар с центром в точке радиусом В. Заметим, что точки принадлежат данному шару. Граница шара называется шаровой поверхностью или сферой. На рисунке 166 точки А, В и D принадлежат сфере, а, например, точка М ей не принадлежит. Таким образом, точками сфер» являются все точки шара, которые удалены от центра на расстояние, равное радиусу. Любой отрезок, соединяющий центр шара о точкой шаровой поверхности также называется радиусом. Отрезок, соединяющий две течки шаровой поверхности и проходящий через центр шара, называется диаметром. Концы любого диаметра называются диаметрально противоположными точками шара.

Шар, так же, как цилиндр и конус, является телом вращения. Он получается при вращении полукруга вокруг его два метра как оси (рис. 167).

Всякое сечение шара плоскостью есть круг. Центр этого круга есть основание перпендикуляра, опущенного из центра шара на секущую плоскость.

Если шар с центром О и радиусом R пересечен плоскостью то в сечении по Т. 3.5 получается круг радиуса . центром К. Радиус сечения шара плоскостью можно вычислить по формуле

Из формулы видно, что плоскости, равноудаленные от центра, пересекают шар равным кругам. Радкус сечения тем] больше, чем ближе секущая плоскость к центру шара, т. е.чем меньше расстояние ОК. Наибольший радиус имеет сечение плоскостью, проходящей через центр шара. Радиус этого» круга равен радиусу шара.

Плоскость, проходящая через центр шара, называется диаметральной плоскостью. Сечение шара диаметральной плоскостью называется большим кругом, а сечение сферы - большой окружностью. На рисунке 168 плоскость а является диаметральной плоскостью, круг радиуса К является большим кругом шара, а соответствующая окружность - большой окружностью.

Любая диаметральная плоскость шара является его плоскостью симметрии. Центр шара является его центром симметрии.

Плоскость, проходящая через точку А шаровой поверхности и перпендикулярная радиусу, проведенному в точку А, называется касательной плоскостью. Точка А называется точкой касания (рис. 169).

Касательная плоскость имеет с шаром только одну общую точку - точку касания.

Прямая, проходящая через точку А шаровой поверхности перпендикулярно к радиусу, проведенному в эту точку, называется касательной (рис. 169).

Через любую точку шаровой поверхности проходит бесконечно много касательных, причем все они лежат в касательной плоскости шара.

Шаровым сегментом называется часть шара, отсекаемая от него плоскостью. Шаровым слоем называется часть шара, расположенная

между двумя параллельными плоскостями, пересекающими шар (рис. 170).

Шаровой сектор получается из шарового сегмента и коиуса следующим образом. Если шаровой сегмент меньше полушара, то шаровой сегмент дополняется конусом, у которого вершина в центре шара, а основанием является основание сегмента. Если же сегмент больше полушара, то указанный конус из него удаляется (рис. 171).