Вычисление интеграла функции с помощью прямоугольников. Численное интегрирование

Учебно-воспитательные задачи:

  • Дидактическая цель. Познакомить учащихся с методами приближённого вычисления определённого интеграла.
  • Воспитательная цель. Тема данного занятия имеет большое практическое и воспитательное значение. Наиболее просто к идее численного интегрирования можно подойти, опираясь на определение определённого интеграла как предела интегральных сумм. Например, если взять какое-либо достаточно мелкое разбиение отрезка [a ; b ] и построить для него интегральную сумму, то её значение можно приближённо принять за значение соответствующего интеграла. При этом важно быстро и правильно производить вычисления с привлечением вычислительной техники.

Основные знания и умения. Иметь понятие о приближённых методах вычисления определённого интеграла по формулам прямоугольников и трапеций.

Обеспечение занятия

  • Раздаточный материал. Карточки-задания для самостоятельной работы.
  • ТСО. Мультипроектор, ПК, ноутбуки.
  • Оснащение ТСО. Презентации: “Геометрический смысл производной”, “Метод прямоугольников”, “Метод трапеций”. (Презентации можно взять у автора).
  • Вычислительные средства: ПК, микрокалькуляторы.
  • Методические рекомендации

Вид занятия. Интегрированное практическое.

Мотивация познавательной деятельности учащихся. Очень часто приходится вычислять определённые интегралы, для которых невозможно найти первообразную. В этом случае применяют приближённые методы вычисления определённых интегралов. Иногда приближённый метод применяют и для “берущихся” интегралов, если вычисление по формуле Ньютона-Лейбница не рационально. Идея приближённого вычисления интеграла заключается в том, что кривая заменяется новой, достаточно “близкой” к ней кривой. В зависимости от выбора новой кривой можно использовать ту или иную приближённую формулу интегрирования.

Последовательность занятия.

  1. Формула прямоугольников.
  2. Формула трапеций.
  3. Решение упражнений.

План занятия

  1. Повторение опорных знаний учащихся.

Повторить с учащимися: основные формулы интегрирования, сущность изученных методов интегрирования, геометрический смысл определённого интеграла.

  1. Выполнение практической работы.

Решение многих технических задач сводится к вычислению определённых интегралов, точное выражение которых сложно, требует длительных вычислений и не всегда оправдано практически. Здесь бывает вполне достаточно их приближённого значения.

Пусть, например, необходимо вычислить площадь, ограниченную линией, уравнение которой неизвестно. В этом случае можно заменить данную линию более простой, уравнение которой известно. Площадь полученной таким образом криволинейной трапеции принимается за приближённое значение искомого интеграла.

Простейшим приближённым методом является метод прямоугольников. Геометрически идея способа вычисления определённого интеграла по формуле прямоугольников состоит в том, что площадь криволинейной трапеции АВСD заменяется суммой площадей прямоугольников, одна сторона которых равна , а друга - .

Если суммировать площади прямоугольников, которые показывают площадь криволинейной трапеции с недостатком [Рисунок1], то получим формулу:

[Рисунок1]

то получим формулу:

Если с избытком

[Рисунок2],

то

Значения у 0 , у 1 ,..., у n находят из равенств , к = 0, 1..., n .Эти формулы называются формулами прямоугольников и дают приближённый результат. С увеличением n результат становится более точным.

Итак, чтобы найти приближённое значение интеграла , нужно:

Для того, чтобы найти погрешность вычислений, надо воспользоваться формулами:


Пример 1. Вычислить по формуле прямоугольников . Найти абсолютную и относительную погрешности вычислений.

Разобьём отрезок [a, b ] на несколько (например, на 6) равных частей. Тогда а = 0, b = 3 ,

х k = a + k х
х
0 = 2 + 0 = 2
х 1 = 2 + 1 = 2,5
х 2 = 2 + 2 =3
х 3 = 2 + 3 = 3
х 4 = 2 + 4 = 4
х 5 = 2 + 5 = 4,5

f (x 0) = 2 2 = 4
f (x 1) = 2 ,5 2 = 6,25
f (x 2) = 3 2 = 9
f (x 3) = 3,5 2 = 12,25
f (x 4) = 4 2 = 16
f (x 5) = 4,5 2 = 20,25.

х 2 2,5 3 3,5 4 4,5
у 4 6,25 9 12,25 16 20,25

По формуле (1):

Для того, чтобы вычислить относительную погрешность вычислений, надо найти точное значение интеграла:



Вычисления проходили долго и мы получили довольно-таки грубое округление. Чтобы вычислить этот интеграл с меньшим приближением, можно воспользоваться техническими возможностями компьютера.

Для нахождения определённого интеграла методом прямоугольников необходимо ввести значения подынтегральной функции f(x) в рабочую таблицу Excel в диапазоне х с заданным шагом х = 0,1.

  1. Составляем таблицу данных и f(x)). х f(x). Аргумент , а в ячейку В1 – слово Функция 2 2,1 ). Затем, выделив блок ячеек А2:А3, автозаполнением получаем все значения аргумента (за правый нижний угол блока протягиваем до ячейки А32, до значения х=5 ).
  2. Далее вводим значения подынтегральной функции. В ячейку В2 необходимо записать её уравнение. Для этого табличный курсор необходимо установить в ячейку В2 и с клавиатуры ввести формулу =А2^2 (при английской раскладке клавиатуры). Нажимаем клавишу Enter . В ячейке В2 появляется 4 . Теперь необходимо скопировать функцию из ячейки В2. Автозаполнением копируем эту формулу в диапазон В2:В32.
    В результате должна быть получена таблица данных для нахождения интеграла.
  3. Теперь в ячейке В33 может быть найдено приближённое значение интеграла. Для этого в ячейку В33 вводим формулу = 0,1*, затем вызываем Мастер функций (нажатием на панели инструментов кнопки Вставка функции (f(x)) . В появившемся диалоговом окне Мастер функции-шаг 1 из 2 слева в поле Категория выбираем Математические. Справа в поле Функция - функцию Сумм. Нажимаем кнопку ОК. Появляется диалоговое окно Сумм. В рабочее поле мышью вводим диапазон суммирования В2:В31. Нажимаем кнопку ОК. В ячейке В33 появляется приближённое значение искомого интеграла с недостатком (37,955 ) .

Сравнивая полученное приближённое значение с истинным значением интеграла (39 ), можно видеть, что ошибка приближения метода прямоугольников в данном случае равна

= |39 - 37 , 955| = 1 ,045

Пример 2. Используя метод прямоугольников, вычислить с заданным шагом х = 0,05.

Сравнивая полученное приближённое значение с истинным значением интеграла , можно видеть, что ошибка приближения метода прямоугольников в данном случае равна

Метод трапеций обычно даёт более точное значение интеграла, чем метод прямоугольников. Криволинейная трапеция заменяется на сумму нескольких трапеций и приближённое значение определённого интеграла находится как сумма площадей трапеций

[Рисунок3]

Пример 3. Методом трапеций найти с шагом х = 0,1.

  1. Открываем чистый рабочий лист.
  2. Составляем таблицу данных и f(x)). Пусть первый столбец будет значениями х , а второй соответствующими показателями f(x). Для этого в ячейку А1 вводим слово Аргумент , а в ячейку В1 – слово Функция . В ячейку А2 вводится первое значение аргумента – левая граница диапазона (0 ). В ячейку А3 вводится второе значение аргумента – левая граница диапазона плюс шаг построения (0,1 ). Затем, выделив блок ячеек А2:А3, автозаполнением получаем все значения аргумента (за правый нижний угол блока протягиваем до ячейки А33, до значения х=3,1 ).
  3. Далее вводим значения подынтегральной функции. В ячейку В2 необходимо записать её уравнение (в примере синуса). Для этого табличный курсор необходимо установить в ячейку В2. Здесь должно оказаться значение синуса, соответствующее значению аргумента в ячейке А2. Для получения значения синуса воспользуемся специальной функцией: нажимаем на панели инструментов кнопку Вставка функции f(x) . В появившемся диалоговом окне Мастер функции-шаг 1 из 2 слева в поле Категория выбираем Математические. Справа в поле Функция - функцию SIN . Нажимаем кнопку ОК. Появляется диалоговое окно SIN . Наведя указатель мыши на серое поле окна, при нажатой левой кнопке сдвигаем поле вправо, чтобы открыть столбец данных (А ). Указываем значение аргумента синуса щелчком мыши на ячейке А2. Нажимаем кнопку ОК. В ячейке В2 появляется 0. Теперь необходимо скопировать функцию из ячейки В2. Автозаполнением копируем эту формулу в диапазон В2:В33. В результате должна быть получена таблица данных для нахождения интеграла.
  4. Теперь в ячейке В34 может быть найдено приближённое значение интеграла по методу трапеций. Для этого в ячейку В34 вводим формулу = 0,1*((В2+В33)/2+, затем вызываем Мастер функций (нажатием на панели инструментов кнопки Вставка функции (f(x)) . В появившемся диалоговом окне Мастер функции-шаг 1 из 2 слева в поле Категория выбираем Математические. Справа в поле Функция - функцию Сумм. Нажимаем кнопку ОК. Появляется диалоговое окно Сумм. В рабочее поле мышью вводим диапазон суммирования В3:В32. Нажимаем кнопку ОК и ещё раз ОК. В ячейке В34 появляется приближённое значение искомого интеграла с недостатком (1,997 ) .

Сравнивая полученное приближённое значение с истинным значением интеграла можно видеть, что ошибка приближения метода прямоугольников в данном случае вполне приемлемая для практики.

  1. Решение упражнений.

Графическое изображение:


Вычислим приближенное значение интеграла. Для оценки точности используем просчет методом левых и правых прямоугольников.

Рассчитаем шаг при разбиении на 10 частей:

Точки разбиения отрезка определяются как.

Вычислим приближенное значение интеграла по формулам левых прямоугольников:

0.1(0.6288+0.6042+0.5828+0.5642+0.5479+0.5338+0.5214+0.5105+0.5008+0.4924)0.5486

Вычислим приближенное значение интеграла по формулам правых прямоугольников:

0.1(0.6042+0.5828+0.5642+0.5479+0.5338+0.5214+0.5105+0.5008+0.4924+0.4848)0.5342

Решение краевой задачи для обыкновенного дифференциального уравнения методом прогонки.

Для приближенного решения обыкновенного дифференциального уравнения можно использовать метод прогонки.

Рассмотрим линейное д.у.

y""+p(x)y"+q(x)y=f(x) (1)

c двухточечными линейными краевыми условиями

Введём обозначения:

Метод прогонки состоит из «прямого хода», в котором определяются коэффициенты:

После выполнения «прямого хода», переходят к выполнению «обратного хода», который заключается в определении значений искомой функции по формулам:

Используя метод прогонки, составить решение краевой задачи для обыкновенного дифференциального уравнения с точностью; Шаг h=0.05

2; A=1; =0; B=1.2;

Задача Дирихле для уравнения Лапласа методом сеток

Найти непрерывную функцию и (х, у), удовлетворяющую внутри прямоугольной области уравнению Лапласа

и принимающую на границе области заданные значения, т. е.

где f l , f 2 , f 3 , f 4 -- заданные функции.

Вводя обозначения, аппроксимируем частные производные и в каждом внутреннем узле сетки центральными разностными производными второго порядка

и заменим уравнение Лапласа конечно-разностным уравнением

Погрешность замены дифференциального уравнения разностным составляет величину.

Уравнения (1) вместе со значениями в граничных узлах образуют систему линейных алгебраических уравнений относительно приближенных значений функции и (х, у) в узлах сетки. Наиболее простой вид имеет эта система при:

При получении сеточных уравнений (2) была использована схема узлов, изображенная на рис. 1. Набор узлов, используемых для аппроксимации уравнения в точке, называется шаблоном.

Рисунок 1

Численное решение задачи Дирихле для уравнения Лапласа в прямоугольнике состоит в нахождении приближенных значений искомой функции и(х, у) во внутренних узлах сетки. Для определения величин требуется решить систему линейных алгебраических уравнений (2).

В данной работе она решается методом Гаусса--Зейделя, который состоит в построении последовательности итераций вида

(верхним индексом s обозначен номер итерации). При последовательность сходится к точному решению системы (2). В качестве условия окончания итерационного процесса можно принять

Таким образом, погрешность приближенного решения, полученного методом сеток, складывается из двух погрешностей: погрешности аппроксимации дифференциального уравнения разностными; погрешности, возникающей в результате приближенного решения системы разностных уравнений (2).

Известно, что описанная здесь разностная схема обладает свойством устойчивости и сходимости. Устойчивость схемы означает, что малые изменения в начальных данных приводят к малым изменениям решения разностной задачи. Только такие схемы имеет смысл применять в реальных вычислениях. Сходимость схемы означает, что при стремлении шага сетки к нулю () решение разностной задачи стремится в некотором смысле к решению исходной задачи. Таким образом, выбрав достаточно малый шаг h, можно как угодно точно решить исходную задачу.

Используя метод сеток, составить приближенное решение задачи Дирихле, для уравнения Лапласа в квадрате ABCD c вершинами A(0;0) B(0;1) C(1;1) D(1;0); шаг h=0.02. При решении задачи использовать итерационный процесс усреднения Либмана до получения ответа с точностью до 0,01.

1) Вычислим значения функции на сторонах:

  • 1. На стороне AB: по формуле. u(0;0)=0 u(0;0.2)=9.6 u(0;0.4)=16.8 u(0;0.6)=19.2 u(0;0.8)=14.4 u(0;1)=0
  • 2. На стороне ВС=0
  • 3. На стороне CD=0
  • 4. На стороне AD: по формуле u(0;0)=0 u(0.2;0)=29,376 u(0.4;0)=47,542 u(0.6;0)=47,567 u(0.8;0)=29,44 u(1;0)=0
  • 2) Для определения значений функции во внутренних точках области методом сеток заданное уравнение Лапласа в каждой точке заменим конечно-разностным уравнением по формуле

Используя эту формулу, составим уравнение для каждой внутренней точки. В результате получаем систему уравнений.

Решение этой системы выполним итерационным способом типа Либмана. Для каждого значения составим последовательность которую строим до сходимости в сотых долях. Запишем соотношения, с помощью которых будем находить элементы всех последовательностей:

Для вычислений по этим формулам нужно определить начальные значения которые могут быть найдены каким-либо способом.

3) Чтобы получить начальное приближенное решение задачи, будем считать, что функция u(x,y) по горизонталям области распределена равномерно.

Сначала рассмотрим горизонталь с граничными точками (0;0.2) и (1;0.2).

Обозначим искомые значения функции во внутренних точках через.

Так как отрезок разбит на 5 частей, то шаг измерения функции

Тогда получим:

Аналогично найдём значения функции во внутренних точках других горизонталей. Для горизонтали, с граничными точками (0;0.4) и (1;0.4) имеем

Для горизонтали с граничными точками (0;0.6) и (1;0.6) имеем

Наконец, найдем значения для горизонтали с граничными точками (0;0.8) и(1;0.8).

Все полученные значения представим в следующей таблице, которая называется нулевым шаблоном:

Не всегда имеется возможность вычисления интегралов по формуле Ньютона-Лейбница. Не все подынтегральные функции имеют первообразные элементарных функций, поэтому нахождение точного числа становится нереальным. При решении таких задач не всегда необходимо получать на выходе точные ответы. Существует понятие приближенного значения интеграла, которое задается методом числового интегрирования типа метода прямоугольников, трапеций, Симпсона и другие.

Данная статья посвящена именно этому разделу с получением приближенных значений.

Будет определена суть метода Симпсона, получим формулу прямоугольников и оценки абсолютной погрешности, метод правых и левых треугольников. На заключительном этапе закрепим знания при помощи решения задач с подробным объяснением.

Yandex.RTB R-A-339285-1

Суть метода прямоугольников

Если функция y = f (x) имеет непрерывность на отрезке [ a ; b ] и необходимо вычислить значение интеграла ∫ a b f (x) d x .

Необходимо воспользоваться понятием неопределенного интеграла. Тогда следует разбить отрезок [ a ; b ] на количество n частей x i - 1 ; x i , i = 1 , 2 , . . . . , n , где a = x 0 < x 1 < x 2 < . . . < x n - 1 < x n = b . В промежутке отрезка x i - 1 ; x i , i = 1 , 2 , . . . , n выберем точку со значением ζ i . Из определения имеем, что существует определенный тип интегральных сумм при бесконечном уменьшении длины элементарного отрезка, который уже разбили. Это выражается формулой λ = m a x i = 1 , 2 , . . . , n (x i - x i - 1) → 0 , тогда получаем, что любая из таких интегральных сумм – приближенное значение интеграла ∫ a b f (x) d x ≈ ∑ i = 1 n f (ζ i) · (x i - x i - 1) .

Суть метода прямоугольниковвыражается в том, что приближенное значение считается интегральной суммой.

Если разбить интегрируемый отрезок [ a ; b ] на одинаковые части точкой h , то получим a = x 0 , x 1 = x 0 + h , x 2 = x 0 + 2 h , . . . , x - 1 = x 0 + (n - 1) h , x n = x 0 + n h = b , то есть h = x i - x i - 1 = b - a n , i = 1 , 2 , . . . , n . Серединами точек ζ i выбираются элементарные отрезки x i - 1 ; x i , i = 1 , 2 , . . . , n , значит ζ i = x i - 1 + h 2 , i = 1 , 2 , . . . , n .

Определение 1

Тогда приближенное значение ∫ a b f (x) d x ≈ ∑ i = 1 n f (ζ i) · (x i - x i - 1) записывается таким образом ∫ a b f (x) d x ≈ h · ∑ i = 1 n f (ζ i) x i - 1 + h 2 . Данная формула называется формулой метода прямоугольников.

Такое название метод получает из-за характера выбора точек ζ i , где гаг разбиения отрезка берется за h = b - a n .

Рассмотрим на приведенном ниже рисунке данный метод.

Чертеж явно показывает, что приближение к кусочной ступенчатой функции

y = f x 0 + h 2 , x ∈ [ x 0 ; x 1) f x 1 + h 2 , x ∈ [ x 1 ; x 2) . . . f x n - 1 + h 2 , x ∈ [ x n - 1 ; x n ] происходит на всем пределе интегрирования.

С геометрической стороны мы имеем, что неотрицательная функция y = f (x) на имеющемся отрезке [ a ; b ] имеет точное значение определенного интеграла и выглядит как криволинейная трапеция, площадь которой необходимо найти. Рассмотрим на рисунке, приведенном ниже.

Оценка абсолютной погрешности метода средних прямоугольников

Для оценки абсолютной погрешности необходимо выполнить ее оценку на заданном интервале. То есть следует найти сумму абсолютных погрешностей каждого интервала. Каждый отрезок x i - 1 ; x i , i = 1 , 2 , . . . , n имеет приближенное равенство ∫ x i - 1 x i f (x) d x ≈ f x i - 1 + h 2 · h = f x i - 1 + h 2 · (x i - x i - 1) . Абсолютная погрешность данного метода треугольников δ i , принадлежащей отрезку i , вычисляется как разность точного и приближенного определения интеграла. Имеем, что δ i = ∫ x i - 1 x i f (x) d x - f x i - 1 + h 2 · x i - x i - 1 . Получаем, что f x i - 1 + h 2 является некоторым числом, а x i - x i - 1 = ∫ x i - 1 x i d x , тогда выражение f x i - 1 + h 2 · x i - x i - 1 по 4 свойству определения интегралов записывается в форме f x i - 1 + h 2 · x i - x i - 1 = ∫ x - 1 x f x i - 1 + h 2 d x . Отсюда получаем, что отрезок i имеет абсолютную погрешность вида

δ i = ∫ x i - 1 x i f (x) d x - f x i - 1 + h 2 · x i - x i - 1 = = ∫ x i - 1 x i f (x) d x - ∫ x i - 1 x i x i - 1 + h 2 d x = ∫ x i - 1 x i f (x) = - f x i - 1 + h 2 d x

Если взять, что функция y = f (x) имеет производные второго порядка в точке x i - 1 + h 2 и ее окрестностях, тогда y = f (x) раскладывается в ряд Тейлора по степеням x - x i - 1 + h 2 с остаточным членом в форме разложения по Лагранжу. Получаем, что

f (x) = f x i - 1 + h 2 + f " x i - 1 + h 2 · x - x i - 1 + h 2 + + f "" (ε i) x - x i - 1 + h 2 2 2 ⇔ ⇔ f (x) = f (x i - 1 + h 2) = f " x i - 1 + h 2 · x - x i - 1 + h 2 + + f "" (ε i) x - x i - 1 + h 2 2 2

Исходя из свойства определенного интеграла, равенство может интегрироваться почленно. Тогда получим, что

∫ x i - 1 x i f (x) - f x i - 1 + h 2 d x = ∫ x i - 1 x i f " x i - 1 + h 2 · x - x i - 1 + h 2 d x + + ∫ x i - 1 x i f "" ε i · x - x i - 1 + h 2 2 2 d x = = f " x i - 1 + h 2 · x - x i - 1 + h 2 2 2 x i - 1 x i + f "" ε i · x - x i - 1 + h 2 3 6 x i - 1 x i = = f " x i - 1 + h 2 · x i - h 2 2 2 - x i - 1 - x i - 1 + h 2 2 2 + + f "" ε i · x i - h 2 3 6 - x i - 1 - x i - 1 + h 2 3 6 = = f " x i - 1 + h 2 · h 2 8 - h 2 8 + f "" (ε i) · h 3 48 + h 3 48 = f "" ε i · h 3 24

где имеем ε i ∈ x i - 1 ; x i .

Отсюда получаем, что δ i = ∫ x i - 1 x i f (x) - f x i - 1 + h 2 d x = f "" ε i · h 3 24 .

Абсолютная погрешность формулы прямоугольников отрезка [ a ; b ] равняется сумме погрешностей каждого элементарного интервала. Имеем, что

δ n = ∑ i = 1 n ∫ x i - 1 x i f (x) - f x i - 1 + h 2 d x и δ n ≤ m a x x ∈ [ a ; b ] f "" (x) · n · h 3 24 = m a x x ∈ [ a ; b ] f "" (x) = b - a 3 24 n 2 .

Неравенство является оценкой абсолютной погрешности метода прямоугольников.

Для модификации метода рассмотрим формулы.

Определение 2

∫ a b f (x) d x ≈ h · ∑ i = 0 n - 1 f (x i) является формулой левых треугольников.

∫ a b f (x) d x ≈ h · ∑ i = 1 n f (x i) является формулой правых треугольников.

Рассмотрим на примере рисунка, приведенного ниже.

Отличием метода средних прямоугольников считается выбор точек не по центру, а на левой и правой границах данных элементарных отрезков.

Такая абсолютная погрешность методов левых и правых треугольников можно записать в виде

δ n ≤ m a x x ∈ [ a ; b ] f " (x) · h 2 · n 2 = m a x x ∈ [ a ; b ] f " (x) · (b - a) 2 2 n

Необходимо рассмотреть решение примеров, где нужно вычислять примерное значение имеющегося определенного интеграла при помощи метода прямоугольников. Рассматривают два типа решения заданий. Суть первого случая – задание количества интервалов для разбивания отрезка интегрирования. Суть второго заключается в наличии допустимой абсолютной погрешности.

Формулировки задач выглядят следующим образом:

  • произвести приближенное вычисление определенного интеграла при помощи метода прямоугольников, разбивая на nколичество отрезков интегрирования;
  • найти приближенное значение определенного интеграла методом прямоугольников с точностью до одной сотой.

Рассмотрим решения в обоих случаях.

В качестве примера выбрали задания, которые поддаются преобразованию для нахождения их первообразных. Тогда появляется возможность вычисления точного значения определенного интеграла и сравнения с приближенным значением при помощи метода прямоугольников.

Пример 1

Произвести вычисление определенного интеграла ∫ 4 9 x 2 sin x 10 d x при помощи метода прямоугольников, разбивая отрезок интегрирования на 10 частей.

Решение

Из условия имеем, что a = 4 , b = 9 , n = 10 , f (x) = x 2 sin x 10 . Для применения ∫ a b f (x) d x ≈ h · ∑ i = 1 n f x i - 1 + h 2 необходимо вычислить размерность шага h и значение функции f (x) = x 2 sin x 10 в точках x i - 1 + h 2 , i = 1 , 2 , . . . , 10 .

Вычисляем значение шага и получаем, что

h = b - a n = 9 - 4 10 = 0 . 5 .

Потому как x i - 1 = a + (i - 1) · h , i = 1 , . . . , 10 , тогда x i - 1 + h 2 = a + (i - 1) · h + h 2 = a + i - 0 . 5 · h , i = 1 , . . . , 10 .

Так как i = 1 , то получаем x i - 1 + h 2 = x 0 + h 2 = a + (i - 0 . 5) · h = 4 + (1 - 0 . 5) · 0 . 5 = 4 . 25 .

После чего необходимо найти значение функции

f x i - 1 + h 2 = f x 0 + h 2 = f (4 . 25) = 4 . 25 2 sin (4 . 25) 10 ≈ - 1 . 616574

При i = 2 получаем x i - 1 + h 2 = x 1 + h 2 = a + i - 0 . 5 · h = 4 + (2 - 0 . 5) · 0 . 5 = 4 . 75 .

Нахождение соответствующего значения функции получает вид

f x i - 1 + h 2 = f x 1 + h 2 = f (4 . 75) = 4 . 75 2 sin (4 . 75) 10 ≈ - 2 . 254654

Представим эти данные в таблице, приведенной ниже.

i 1 2 3 4 5
x i - 1 + h 2 4 . 25 4 . 75 5 . 25 5 . 75 6 . 25
f x i - 1 + h 2 - 1 . 616574 - 2 . 254654 - 2 . 367438 - 1 . 680497 - 0 . 129606
i 6 7 8 9 10
x i - 1 + h 2 6 . 75 7 . 25 7 . 75 8 . 25 8 . 75
f x i - 1 + h 2 2 . 050513 4 . 326318 5 . 973808 6 . 279474 4 . 783042

Значения функции необходимо подставить в формулу прямоугольников. Тогда получаем, что

∫ 4 9 x 2 sin x 10 d x ≈ h · ∑ i = 1 n f x i - 1 + h 2 = = 0 . 5 · - 1 . 616574 - 2 . 25654 - 2 . 367438 - 1 . 680497 - 0 . 129606 + + 2 . 050513 + 4 . 326318 + 5 . 973808 + 6 . 279474 + 4 . 783042 = = 7 . 682193

Исходный интеграл можно вычислить при помощи формулы Ньютона-Лейбница. Получаем, что

∫ 4 9 x 2 · sin x 10 d x = - 1 10 x 2 · cos x + 1 5 x · sin x + 1 5 cos x 4 9 = = 7 5 cos 4 - 4 5 sin 4 - 79 10 cos 9 + 9 5 sin 9 ≈ 7 . 630083

Находим первообразную выражения - 1 10 x 2 · cos x + 1 5 x · sin x + 1 5 cos x соответствующую функции f (x) = x 2 sin x 10 . Нахождение производится методом интегрирования по частям.

Отсюда видно, что определенный интеграл отличается от значения, полученном при решении методом прямоугольников, где n = 10 , на 6 долей единицы. Рассмотрим на рисунке, приведенном ниже.

Пример 2

Вычислить приближенного значение определенного интеграла ∫ 1 2 (- 0 . 03 x 3 + 0 . 26 x - 0 . 26) d x при помощи метода левых и правых прямоугольников с точностью до одной сотой.

Решение

Из условия мы имеем, что a = 1 , b = 2 и f (x) = - 0 . 03 x 3 + 0 . 26 x - 0 . 26 .

Для применения формулы правых и левых прямоугольников нужно знать размерность шага h , а для его вычисления разбиваем отрезок интегрирования на n отрезков. По условию имеем, что точность должна быть до 0 , 01 , тогда нахождение n возможно при помощи оценки абсолютной погрешности методов левых и правых прямоугольников.

Известно, что δ n ≤ m a x x ∈ [ a ; b ] f " (x) · (b - a) 2 2 n . Для достижения необходимой степени точности необходимо найти такое значение n , для которого неравенство m a x x ∈ [ a ; b ] f " (x) · (b - a) 2 2 n ≤ 0 . 01 будет выполнено.

Найдем наибольшее значение модуля первой производной, то есть значение m a x x ∈ [ a ; b ] f " (x) подынтегральной функции f (x) = - 0 . 03 x 3 + 0 . 26 x - 0 . 26 , определенной на отрезке [ 1 ; 2 ] . В нашем случае необходимо выполнить вычисления:

f " (x) = - 0 . 03 x 3 + 0 . 26 x - 0 . 26 " = - 0 . 09 x 2 + 0 . 26

Парабола является графиком подынтегральной функции с ветвями, направленными вниз, определенная на отрезке [ 1 ; 2 ] , причем с монотонно убывающим графиком. Необходимо произвести вычисление модулей значений производных на концах отрезков, а из них выбрать наибольшее значение. Получаем, что

f " (1) = - 0 . 09 · 1 2 + 0 . 26 = 0 . 17 f " (2) = - 0 . 09 · 2 2 + 0 . 26 = 0 . 1 → m a x x ∈ [ 1 ; 2 ] f " (x) = 0 . 17

Решение сложных подынтегральных функций подразумевает обращение к разделу наибольше и наименьшее значение функции.

Тогда получаем, что наибольшее значение функции имеет вид:

m a x x ∈ [ a ; b ] f " (x) · (b - a) 2 2 n ≤ 0 . 01 ⇔ ⇔ 0 . 17 · (2 - 1) 2 2 n ≤ 0 . 01 ⇔ 0 . 085 n ≤ 0 . 01 ⇔ n ≥ 8 . 5

Дробность числа n исключается, так как n является натуральным числом. Чтобы прийти к точности 0 . 01 , используя метод правых и левых прямоугольников, не обходимо выбирать любое значение n . Для четкости расчетов возьмем n = 10 .

Тогда формула левых прямоугольников примет вид ∫ a b f (x) d x ≈ h · ∑ i = 0 n - 1 f (x i) , а правых - ∫ a b f (x) d x ≈ h · ∑ i = 1 n f (x i) . Для применения их на практике необходимо найти значение размерности шага h и f (x i) , i = 0 , 1 , . . . , n , где n = 10 .

Получим, что

h = b - a n = 2 - 1 10 = 0 . 1

Определение точек отрезка [ a ; b ] производится с помощью x i = a + i · h , i = 0 , 1 , . . . , n .

При i = 0 , получаем x i = x 0 = a + i · h = 1 + 0 · 0 . 1 = 1 и f (x i) = f (x 0) = f (1) = - 0 . 03 · 1 3 + 0 . 26 · 1 - 0 . 26 = - 0 . 03 .

При i = 1 , получаем x i = x 1 = a + i · h = 1 + 1 · 0 . 1 = 1 . 1 и f (x i) = f (x 1) = f (1 . 1) = - 0 . 03 · (1 . 1) 3 + 0 . 26 · (1 . 1) - 0 . 26 = - 0 . 01393 .

Вычисления производятся до i = 10 .

Вычисления необходимо представить в таблице, приведенной ниже.

i 0 1 2 3 4 5
x i 1 1 . 1 1 . 2 1 . 3 1 . 4 1 . 5
f (x i) - 0 . 03 - 0 . 01393 0 . 00016 0 . 01209 0 . 02168 0 . 02875
i 6 7 8 9 10
x i 1 . 6 1 . 7 1 . 8 1 . 9 2
f (x i) 0 . 03312 0 . 03461 0 . 03304 0 . 02823 0 . 02

Подставим формулу левых треугольников

∫ 1 2 (- 0 . 03 x 3 + 0 . 26 x - 0 . 26) d x ≈ h · ∑ i = 0 n - 1 f (x i) = = 0 . 1 · - 0 . 03 - 0 . 01393 + 0 . 00016 + 0 . 01209 + 0 . 02168 + + 0 . 02875 + 0 . 03312 + 0 . 03461 + 0 . 03304 + 0 . 02823 = = 0 . 014775

Подставляем в формулу правых треугольников

∫ 1 2 (- 0 . 03 x 3 + 0 . 26 x - 0 . 26) d x ≈ h · ∑ i = 1 n f (x i) = = 0 . 1 · - 0 . 01393 + 0 . 00016 + 0 . 01209 + 0 . 02168 + 0 . 02875 + + 0 . 03312 + 0 . 03461 + 0 . 03304 + 0 . 02823 + 0 . 02 = 0 . 019775

Произведем вычисление по формуле Ньютона-Лейбница:

∫ 1 2 (- 0 . 03 x 3 + 0 . 26 x - 0 . 26) d x = = - 0 . 03 x 4 4 + 0 . 13 x 2 - 0 . 26 x 1 2 = 0 . 0175

Рассмотрим рисунок, приведенный ниже.

Замечание

Нахождение наибольшего значения модуля первой производной является трудоемкой работой, поэтому можно исключить использование неравенства для оценивания абсолютной погрешности и методов численного интегрирования. Разрешено применять схему.

Берем значение n = 5 для вычисления приближенного значения интеграла. Необходимо удвоить количество отрезков интегрирования, тогда n = 10 , после чего производится вычисление примерного значения. необходимо найти разность этих значений при n = 5 и n = 10 . Когда разность не соответствует требуемой точности, то приближенным значением считается n = 10 с округлением до десятка.

Когда погрешность превышает необходимую точность, то производится удваивание n и сравнивание приближенных значений. Вычисления производятся до тех пор, пока необходимая точность не будет достигнута.

Для средних прямоугольников выполняются аналогичные действия, но вычисления на каждом шаге требуют разности полученных приближенных значений интеграла для n и 2 n . Такой способ вычисления называется правилом Рунге.

Произведем вычисление интегралов с точностью до одной тысячной при помощи метода левых прямоугольников.

При n = 5 получаем, что ∫ 1 2 (- 0 . 03 x 3 + 0 . 26 x - 0 . 26) d x ≈ 0 . 0116 , а при n = 10 - ∫ 1 2 (- 0 . 03 x 3 + 0 . 26 x - 0 . 26) d x ≈ 0 . 014775 . Так как имеем, что 0 . 0116 - 0 . 014775 = 0 . 003175 > 0 . 001 , возьмем n = 20 . Получаем, что ∫ 1 2 (- 0 . 03 x 3 + 0 . 26 x - 0 . 26) d x ≈ 0 . 01619375 . Имеем 0 . 014775 - 0 . 01619375 = 0 . 00141875 > 0 . 001 , возьмем значение n = 40 , тогда получим ∫ 1 2 (- 0 . 03 x 3 + 0 . 26 x - 0 . 26) d x ≈ 0 . 01686093 . Имеем, что 0 . 1619375 - 0 . 01686093 = 0 . 00066718 < 0 . 001 , тогда после округления значения проверим, что ∫ 1 2 (- 0 . 03 x 3 + 0 . 26 x - 0 . 26) d x равняется значению 0 , 017 с погрешностью 0 , 001 . Из оценок абсолютных погрешностей видно, что данный метод дает максимальную точность в отличие от метода левых и правых координат для заданного n . Отдается предпочтение методу средних прямоугольников.

Непрерывные подынтегральные функции при бесконечном разделении на отрезки данное приближенно число стремится к точному. Чаще всего такой метод выполняется при помощи специальных программ на компьютере. Поэтому чем больше значение n , тем больше вычислительная погрешность.

Для наиболее точного вычисления необходимо выполнять точные промежуточные действия, желательно с точностью до 0 , 0001 .

Итоги

Для вычисления неопределенного интеграла методом прямоугольников следует применять формулу такого вида ∫ a b f (x) d x ≈ h · ∑ i = 1 n f (ζ i) x i - 1 + h 2 и оценивается абсолютная погрешность с помощью δ n ≤ m a x x ∈ [ a ; b ] f " " (x) · n · h 3 24 = m a x x ∈ [ a ; b ] f " " (x) · b - a 3 24 n 2 .

Для решения с помощью методов правых и левых прямоугольников применяют формулы, имеющие вид, ∫ a b f (x) d x ≈ h · ∑ i = 0 n - 1 f (x i) и ∫ a b f (x) d x ≈ h · ∑ i = 1 n f (x i) . Абсолютная погрешность оценивается при помощи формулы вида δ n ≤ m a x x ∈ [ a ; b ] f " (x) · h 2 · n 2 = m a x x ∈ [ a ; b ] f " (x) · b - a 2 2 n .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

И парадокс состоит в том, что по этой причине (видимо) он довольно редко встречается на практике. Неудивительно, что данная статья появилась на свет через несколько лет после того, как я рассказал о более распространённых методах трапеции и Симпсона , где упомянул о прямоугольниках лишь вскользь. Однако на сегодняшний день раздел об интегралах практически завершён и поэтому настало время закрыть этот маленький пробел. Читаем, вникаем и смотрим видео! ….о чём? Об интегралах, конечно =)

Постановка задачи уже была озвучена на указанном выше уроке, и сейчас мы быстренько актуализируем материал:

Рассмотрим интеграл . Он неберущийся. Но с другой стороны, подынтегральная функция непрерывна на отрезке , а значит, конечная площадь существует. Как её вычислить? Приближённо. И сегодня, как вы догадываетесь – методом прямоугольников.

Разбиваем промежуток интегрирования на 5, 10, 20 или бОльшее количество равных (хотя это не обязательно) отрезков, чем больше – тем точнее будет приближение. На каждом отрезке строим прямоугольник, одна из сторон которого лежит на оси , а противоположная – пересекает график подынтегральной функции. Вычисляем площадь полученной ступенчатой фигуры, которая и будет приближённой оценкой площади криволинейной трапеции (заштрихована на 1-м рисунке) .

Очевидно, что прямоугольники можно построить многими способами, но стандартно рассматривают 3 модификации:

1) метод левых прямоугольников;
2) метод правых прямоугольников;
3) метод средних прямоугольников.

Оформим дальнейшие выкладки в рамках «полноценного» задания:

Пример 1

Вычислить определённый интеграл приближённо:
а) методом левых прямоугольников;
б) методом правых прямоугольников.

Промежуток интегрирования разделить на равных отрезков, результаты вычислений округлять до 0,001

Решение : признАюсь сразу, я специально выбрал такое малое значение – из тех соображений, чтобы всё было видно на чертеже – за что пришлось поплатиться точностью приближений.

Вычислим шаг разбиения (длину каждого промежуточного отрезка) :

Метод левых прямоугольников получил своё называние из-за того,

что высОты прямоугольников на промежуточных отрезках равны значениям функции в левых концах данных отрезков:

Ни в коем случае не забываем, что округление следует проводить до трёх знаков после запятой – это существенное требование условия , и «самодеятельность» здесь чревата пометкой «оформите задачу, как следует».

Вычислим площадь ступенчатой фигуры, которая равна сумме площадей прямоугольников:


Таким образом, площадь криволинейной трапеции : . Да, приближение чудовищно грубое (завышение хорошо видно на чертеже) , но и пример, повторюсь, демонстрационный. Совершенно понятно, что, рассмотрев бОльшее количество промежуточных отрезков (измельчив разбиение), ступенчатая фигура будет гораздо больше похожа на криволинейную трапецию, и мы получим лучший результат.

При использовании «правого» метода высОты прямоугольников равны значениям функции в правых концах промежуточных отрезков:

Вычислим недостающее значение и площадь ступенчатой фигуры:


– тут, что и следовало ожидать, приближение сильно занижено:

Запишем формулы в общем виде. Если функция непрерывна на отрезке , и он разбит на равных частей: , то определённый интеграл можно вычислить приближенно по формулам:
– левых прямоугольников;
– правых прямоугольников;
(формула в следующей задаче) – средних прямоугольников,
где – шаг разбиения.

В чём их формальное различие? В первой формуле нет слагаемого , а во второй -

На практике рассчитываемые значения удобно заносить в таблицу:


а сами вычисления проводить в Экселе. И быстро, и без ошибок:

Ответ :

Наверное, вы уже поняли, в чём состоит метод средних прямоугольников:

Пример 2

Вычислить приближенно определенный интеграл методом прямоугольников с точностью до 0,01. Разбиение промежутка интегрирования начать с отрезков.

Решение : во-первых, обращаем внимание, что интеграл нужно вычислить с точностью до 0,01 . Что подразумевает такая формулировка?

Если в предыдущей задаче требовалось прОсто округлить результаты до 3 знаков после запятой (а уж насколько они будут правдивы – не важно) , то здесь найденное приближённое значение площади должно отличаться от истины не более чем на .

И во-вторых, в условии задачи не сказано, какую модификацию метода прямоугольников использовать для решения. И действительно, какую?

По умолчанию всегда используйте метод средних прямоугольников

Почему? А он при прочих равных условиях (том же самом разбиении) даёт гораздо более точное приближение. Это строго обосновано в теории, и это очень хорошо видно на чертеже:

В качестве высот прямоугольников здесь принимаются значения функции , вычисленные в серединах промежуточных отрезков, и в общем виде формула приближённых вычислений запишется следующим образом:
, где – шаг стандартного «равноотрезочного» разбиения .

Следует отметить, что формулу средних прямоугольников можно записать несколькими способами, но чтобы не разводить путаницу, я остановлюсь на единственном варианте, который вы видите выше.

Вычисления, как и в предыдущем примере, удобно свести в таблицу. Длина промежуточных отрезков, понятно, та же самая: – и очевидно, что расстояние между серединами отрезков равно этому же числу. Поскольку требуемая точность вычислений составляет , то значения нужно округлять «с запасом» – 4-5 знаками после запятой:


Вычислим площадь ступенчатой фигуры:

Давайте посмотрим, как автоматизировать этот процесс:

Таким образом, по формуле средних прямоугольников:

Как оценить точность приближения? Иными словами, насколько далёк результат от истины (площади криволинейно трапеции) ? Для оценки погрешности существует специальная формула, однако, на практике её применение зачастую затруднено, и поэтому мы будем использовать «прикладной» способ:

Вычислим более точное приближение – с удвоенным количеством отрезков разбиения: . Алгоритм решения точно такой же: .

Найдём середину первого промежуточного отрезка и далее приплюсовываем к полученному значению по 0,3. Таблицу можно оформить «эконом-классом», но комментарий о том, что изменяется от 0 до 10 – всё же лучше не пропускать:


В Экселе вычисления проводятся «в один ряд» (кстати, потренируйтесь) , а вот в тетради таблицу, скорее всего, придётся сделать двухэтажной (если у вас, конечно, не сверхмелкий почерк).

Вычислим суммарную площадь десяти прямоугольников:

Таким образом, более точное приближение:

Которые я и предлагаю вам изучить!

Пример 3: Решение : вычислим шаг разбиения:
Заполним расчётную таблицу:


Вычислим интеграл приближённо методом:
1) левых прямоугольников:
;
2) правых прямоугольников:
;
3) средних прямоугольников:
.

Вычислим интеграл более точно по формуле Ньютона-Лейбница:

и соответствующие абсолютные погрешности вычислений:

Ответ :


Вычисление определенных интегралов по формуле Ньютона-Лейбница не всегда возможно. Многие подынтегральные функции не имеют первообразных в виде элементарных функций, поэтому мы во многих случаях не можем найти точное значение определенного интеграла по формуле Ньютона-Лейбница. С другой стороны, точное значение не всегда и нужно. На практике нам часто достаточно знать приближенное значение определенного интеграла с некоторой заданной степенью точности (например, с точностью до одной тысячной). В этих случаях нам на помощь приходят методы численного интегрирования, такие как метод прямоугольников, метод трапеций , метод Симпсона (парабол) и т.п.

В этой статье подробно разберем для приближенного вычисления определенного интеграла.

Сначала остановимся на сути этого метода численного интегрирования, выведем формулу прямоугольников и получим формулу для оценки абсолютной погрешности метода. Далее по такой же схеме рассмотрим модификации метода прямоугольников, такие как метод правых прямоугольников и метод левых прямоугольников. В заключении рассмотрим подробное решение характерных примеров и задач с необходимыми пояснениями.

Навигация по странице.

Суть метода прямоугольников.

Пусть функция y = f(x) непрерывна на отрезке . Нам требуется вычислить определенный интеграл .

Как видите, точное значение определенного интеграла отличается от значения, полученного по методу прямоугольников для n = 10 , менее чем на шесть сотых долей единицы.

Графическая иллюстрация.

Пример.

Вычислите приближенное значение определенного интеграла методами левых и правых прямоугольников с точностью до одной сотой.

Решение.

По условию имеем a = 1, b = 2 , .

Чтобы применить формулы правых и левых прямоугольников нам необходимо знать шаг h , а чтобы вычислить шаг h необходимо знать на какое число отрезков n разбивать отрезок интегрирования. Так как в условии задачи нам указана точность вычисления 0.01 , то число n мы можем найти из оценки абсолютной погрешности методов левых и правых прямоугольников.

Нам известно, что . Следовательно, если найти n , для которого будет выполняться неравенство , то будет достигнута требуемая степень точности.

Найдем - наибольшее значение модуля первой производной подынтегральной функции на отрезке . В нашем примере это сделать достаточно просто.

Графиком функции производной подынтегральной функции является парабола, ветви которой направлены вниз, на отрезке ее график монотонно убывает. Поэтому достаточно вычислить модули значения производной на концах отрезка и выбрать наибольшее:

В примерах со сложными подынтегральными функциями Вам может потребоваться теория раздела .

Таким образом:

Число n не может быть дробным (так как n – натуральное число – количество отрезков разбиения интервала интегрирования). Поэтому, для достижения точности 0.01 по методу правых или левых прямоугольников, мы можем брать любое n = 9, 10, 11, … Для удобства расчетов возьмем n = 10 .

Формула левых прямоугольников имеет вид , а правых прямоугольников . Для их применения нам требуется найти h и для n = 10 .

Итак,

Точки разбиения отрезка определяются как .

Для i = 0 имеем и .

Для i = 1 имеем и .

Полученные результаты удобно представлять в виде таблицы:

Подставляем в формулу левых прямоугольников:

Подставляем в формулу правых прямоугольников:

Вычислим точное значение определенного интеграла по формуле Ньютона-Лейбница:

Очевидно, точность в одну сотую соблюдена.

Графическая иллюстрация.


Замечание.

Во многих случаях нахождение наибольшего значения модуля первой производной (или второй производной для метода средних прямоугольников) подынтегральной функции на отрезке интегрирования является очень трудоемкой процедурой.

Поэтому можно действовать без использования неравенства для оценки абсолютной погрешности методов численного интегрирования. Хотя оценки предпочтительнее.

Для методов правых и левых прямоугольников можно использовать следующую схему.

Берем произвольное n (например, n = 5 ) и вычисляем приближенное значение интеграла. Далее удваиваем количество отрезков разбиения интервала интегрирования, то есть, берем n = 10 , и вновь вычисляем приближенное значение определенного интеграла. Находим разность полученных приближенных значений для n = 5 и n = 10 . Если абсолютная величина этой разности не превышает требуемой точности, то в качестве приближенного значения определенного интеграла берем значение при n = 10 , предварительно округлив его до порядка точности. Если же абсолютная величина разности превышает требуемую точность, то вновь удваиваем n и сравниваем приближенные значения интегралов для n = 10 и n = 20 . И так продолжаем до достижения требуемой точности.

Для метода средних прямоугольников действуем аналогично, но на каждом шаге вычисляем треть модуля разности полученных приближенных значений интеграла для n и 2n . Этот способ называют правилом Рунге.

Вычислим определенный интеграл из предыдущего примера с точностью до одной тысячной по методу левых прямоугольников.

Не будем подробно останавливаться на вычислениях.

Для n = 5 имеем , для n = 10 имеем .

Так как , тогда берем n = 20 . В этом случае .

Так как , тогда берем n = 40 . В этом случае .

Так как , то, округлив 0.01686093 до тысячных, утверждаем, что значение определенного интеграла равно 0.017 с абсолютной погрешностью 0.001 .

В заключении остановимся на погрешности методов левых, правых и средних прямоугольников более детально.

Из оценок абсолютных погрешностей видно, что метод средних прямоугольников даст большую точность, чем методы левых и правых прямоугольников для заданного n . В то же время, объем вычислений одинаков, так что использование метода средних прямоугольников предпочтительнее.

Если говорить о непрерывных подынтегральных функциях, то при бесконечном увеличении числа точек разбиения отрезка интегрирования приближенное значение определенного интеграла теоретически стремиться к точному. Использование методов численного интегрирования подразумевает использование вычислительной техники. Поэтому следует иметь в виду, что при больших n начинает накапливаться вычислительная погрешность.

Еще заметим, если Вам требуется вычислить определенный интеграл с некоторой точностью, то промежуточные вычисления проводите с более высокой точностью. Например, Вам требуется вычислить определенный интеграл с точностью до одной сотой, тогда промежуточные вычисления проводите с точностью как минимум до 0.0001 .

Подведем итог.

При вычислении определенного интеграла методом прямоугольников (методом средних прямоугольников) пользуемся формулой и оцениваем абсолютную погрешность как .

Для метода левых и правых прямоугольников пользуемся формулами и соответственно. Абсолютную погрешность оцениваем как .