2х 1 0 решение. Способы решения квадратных уравнений

В наших каталогах вы найдете провод ПТПЖ 2х1,2 по доступным ценам. Мы гарантируем высокое качество всей предлагаемой продукции. Торговый Дом «Кабель Ресурс» дает возможность приобрести провод ПТПЖ 2х1,2 как оптом, так и минимальными партиями. Оперативная отмотка на складе в Москве. Вы сможете купить весь ассортимент электротехники, светотехники и кабельно-проводниковой продукции в одном месте.

Назначение провода ПТПЖ 2х1,2

Провод ПТПЖ 2х1,2, который реализуется со склада ТД «Кабель-Ресурс», имеет двойное назначение:

  • он может использоваться при развертывании проводных сетей радиовещания. В этом случае провод должен эксплуатироваться при температуре окружающего воздуха не ниже -40°С и не выше +60°С;
  • его можно применять на стройплощадках для прогрева бетона. При выполнении этой операции учитываются условия прогрева, принимается во внимание температура окружающей среды. По специальным таблицам подбирается строго определенная длина провода ПТПЖ 2х1,2, после чего последний закрепляется на арматурном каркасе. Важно помнить, что при прогреве бетона воздух не должен иметь температуру ниже -30°С.

Конструкция провода ПТПЖ 2х1,2

Провод, о котором идет речь в этом обзоре, состоит из:

  • двух (см. число 2 в маркировке) токопроводящих жил, изготовленных из стали. Имеют однопроволочное исполнение, круглую форму, диаметр, равный 1,2 мм (см. соответствующее число в маркировке), и сопротивление, не превышающее 140 Ом на 1 км длины;
  • изоляционных оболочек жил, изготовленных из ПВД (полиэтилена высокого давления). Основным преимуществом этих компонент является их чрезвычайно высокое электрическое сопротивление (оно равняется как минимум 5000 МОм на 1 км длины). Благодаря этому качеству электрический контакт – не только между жилами провода ПТПЖ 2х1,2, но и между этими элементами и внешними предметами (в том числе людьми) полностью исключен.

Изолированные проводящие жилы расположены параллельно друг другу, вследствие чего провод ПТПЖ 2х1,2 имеет плоскую форму. Изоляционные оболочки соединены разделительным основанием, материалом которого является тот же ПВД.

Вне зависимости от того, для каких целей используется провод ПТПЖ 2х1,2, при его прокладке необходимо соблюдать правило: радиус каждого монтажного изгиба, формируемого на изделии, должен быть больше 10 его внешних диаметров.

Для того, чтобы научиться решать уравнения с модулем, надо вспомнить и выучить определение модуля.

Из определения видно, что модуль любого числа неотрицателен. Кроме того, определение показывает как можно избавляться от знака модуля в уравнении.

На практике это делается так:

1) Находят значения переменной, при которых выражения стоящие под знаком модуля обращаются в нуль.

2) Отмечают все нули на числовой прямой. Они разобьют эту прямую на лучи и промежутки, на которых все подмодульные выражения имеют постоянный знак.

3) Определяем знаки подмодульных выражений на каждом промежутке и раскрываем все модули (заменяя их подмодульными выражениями со знаком плюс или со знаком минус в зависимости от знака подмодульного выражения).

4) Решаем получившиеся уравнения на каждом промежутке (сколько промежутков, столько и уравнений).Обратите внимание, что обязательно выбираем только те решения, которые находятся в данном промежуток (полученные решения могут и не принадлежать промежутку).

Хватит уже теории, пора на примерах посмотреть как решаются уравнения с модулем. Начнем с более простого.

Решение уравнений с модулями

Пример 1. Решить уравнение .

Решение. Так как , то . Если , то , и уравнение принимает вид .

Отсюда получаем .

Пример 2. Решить уравнение .

Решение. Из уравнения следует, что .

Поэтому , , , и уравнение принимает вид или .

Так как , то исходное уравнение корней не имеет.

Ответ: корней нет.

Пример 3. Решить уравнение .

Решение. Перепишем уравнение в равносильном виде .

Полученное уравнение относится к уравнениям типа .

Известно, что уравнение такого типа равносильно неравенству . Следовательно, здесь имеем или .

Ответ: .

Думаю, как решать такого вида уравнения с модулем вы уже разобрались. Попробуем разобраться с более сложным уравнением .

Пример 4 . Решить уравнение: |x 2 + 2x| |2 – x| = |x 2 – x|

Находим нули подмодульных выражений:

х 2 + 2х = 0, х(х + 2) = 0, х = 0 или х = ‒ 2. При этом парабола у = х 2 + 2х положительна на промежутках (–∞; –2) и (0; +∞), а на промежутке (–2; 0) она отрицательна (см. рисунок).

х 2 ‒ х = 0, х(х – 1) =0, х = 0 или х = 1. Эта парабола у = х 2 ‒ х положительна на промежутках (–∞; 0) и (1; +∞), а на промежутке (0; 1) она отрицательна (см. рисунок).

2 – х = 0, х = 2, модуль положителен на промежутке (–∞; 0) и принимает отрицательные значения на промежутке (2; +∞) (см. рисунок).

Теперь решаем уравнения на промежутках:

1) х ≤ ‒2: х = 1/2

2) –2 ≤ x <0: ‒(х 2 + 2х) – (2 – х) = х 2 ‒ х, ‒х 2 ‒ 2х – 2 + х = х 2 ‒ х, ‒2 х 2 = 2, х 2 = ‒1 , решений нет.

3) 0 ≤ x <1: х 2 + 2х ‒ (2 – х) = ‒ (х 2 ‒ х), х 2 + 2х ‒ 2 + х = ‒х 2 + х, 2х 2 + 2х – 2 = 0, х 2 + х – 1 = 0, √D = √5,
х 1 = (‒1 ‒ √5)/2 и х 2 = (‒1 + √5)/2.

Так как первый корень отрицательный, то он не принадлежит нашему промежутку, а второй корень больше нуля и меньше единицы это и есть наше решение на данном промежутке.

4) 1 ≤ x <2: х 2 + 2х – (2 – х) = х 2 ‒ х, х 2 + 2х – 2 + х = х 2 ‒ х, 4х = 2, х= 1/2 (не входит в рассматриваемый промежуток)

5) х ≥ 2: х 2 + 2х –(‒(2 – х)) = х 2 ‒ х, х 2 + 2х + 2 ‒ х = х 2 ‒ х, 2х = ‒ 2, х = ‒1 (не входит в рассматриваемый промежуток).

Ответ: (‒1 + √5)/2 .

Вы заметили, что решается это уравнение также как и предыдущие, отличие в количестве промежутков. Так как под модулем стоят квадратные выражения то корней получилось больше, а соответственно и больше промежутков.

А как же решать уравнение в котором модуль стоит под модулем? Давайте посмотрим на примере.

Пример 5 . Решите уравнение |3 – |x – 2|| = 1

Подмодульное выражение может принимать значение либо 1 либо – 1. Получаем два уравнения:

3 ‒ |х ‒ 2|= ‒1 или 3 ‒ |х ‒ 2|= 1

Решаем каждое уравнение отдельно.

1) 3 ‒ |х ‒ 2|= ‒1, ‒|х ‒ 2|= ‒1 – 3, ‒|х ‒ 2|= ‒4, |х ‒ 2|= 4,
х ‒ 2= 4 или х ‒ 2= ‒ 4, откуда получаем х 1 = 6, х 2 = ‒2 .

2) 3 ‒ |х ‒ 2|= 1, ‒|х ‒ 2|= 1 ‒ 3, ‒|х – 2|= ‒2, |х – 2|= 2,
х – 2 = 2 или х – 2 = ‒2,
х 3 = 4 , х 4 = 0.

Надеюсь, после изучения данной статьи вы будете успешно решать уравнения с модулем. Если остались вопросы, записывайтесь ко мне на уроки. Репетитор Валентина Галиневская .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Квадратные уравнения.

Квадратное уравнение - алгебраическое уравнение общего вида

где x - свободная переменная,

a, b, c, - коэффициенты, причём

Выражение называют квадратным трёхчленом.

Способы решения квадратных уравнений.

1. СПОСОБ : Разложение левой части уравнения на множители.

Решим уравнение х 2 + 10х - 24 = 0 . Разложим левую часть на множители:

х 2 + 10х - 24 = х 2 + 12х - 2х - 24 = х(х + 12) - 2(х + 12) = (х + 12)(х - 2).

Следовательно, уравнение можно переписать так:

(х + 12)(х - 2) = 0

Так как произведение равно нулю, то, по крайней мере, один из его множителей равен нулю. Поэтому левая часть уравнения обращается нуль при х = 2 , а также при х = - 12 . Это означает, что число 2 и - 12 являются корнями уравнения х 2 + 10х - 24 = 0 .

2. СПОСОБ : Метод выделения полного квадрата.

Решим уравнение х 2 + 6х - 7 = 0 . Выделим в левой части полный квадрат.

Для этого запишем выражение х 2 + 6х в следующем виде:

х 2 + 6х = х 2 + 2 х 3.

В полученном выражении первое слагаемое - квадрат числа х, а второе - удвоенное произведение х на 3. По этому чтобы получить полный квадрат, нужно прибавить 3 2 , так как

х 2 + 2 х 3 + 3 2 = (х + 3) 2 .

Преобразуем теперь левую часть уравнения

х 2 + 6х - 7 = 0 ,

прибавляя к ней и вычитая 3 2 . Имеем:

х 2 + 6х - 7 = х 2 + 2 х 3 + 3 2 - 3 2 - 7 = (х + 3) 2 - 9 - 7 = (х + 3) 2 - 16.

Таким образом, данное уравнение можно записать так:

(х + 3) 2 - 16 =0, (х + 3) 2 = 16.

Следовательно, х + 3 - 4 = 0, х 1 = 1, или х + 3 = -4, х 2 = -7.

3. СПОСОБ : Решение квадратных уравнений по формуле.

Умножим обе части уравнения

ах 2 + bх + с = 0, а ≠ 0

на 4а и последовательно имеем:

4а 2 х 2 + 4аbх + 4ас = 0,

((2ах) 2 + 2ах b + b 2) - b 2 + 4ac = 0,

(2ax + b) 2 = b 2 - 4ac,

2ax + b = ± √ b 2 - 4ac,

2ax = - b ± √ b 2 - 4ac,

Примеры .

а) Решим уравнение: 4х 2 + 7х + 3 = 0.

а = 4, b = 7, с = 3, D = b 2 - 4ac = 7 2 - 4 4 3 = 49 - 48 = 1,

D > 0, два разных корня;

Таким образом, в случае положительного дискриминанта, т.е. при

b 2 - 4ac >0 , уравнение ах 2 + bх + с = 0 имеет два различных корня.

б) Решим уравнение: 4х 2 - 4х + 1 = 0,

а = 4, b = - 4, с = 1, D = b 2 - 4ac = (-4) 2 - 4 4 1= 16 - 16 = 0,

D = 0, один корень;

Итак, если дискриминант равен нулю, т.е. b 2 - 4ac = 0 , то уравнение

ах 2 + bх + с = 0 имеет единственный корень,

в) Решим уравнение: 2х 2 + 3х + 4 = 0,

а = 2, b = 3, с = 4, D = b 2 - 4ac = 3 2 - 4 2 4 = 9 - 32 = - 13 , D < 0.

Данное уравнение корней не имеет.


Итак, если дискриминант отрицателен, т.е. b 2 - 4ac < 0 , уравнение

ах 2 + bх + с = 0 не имеет корней.

Формула (1) корней квадратного уравнения ах 2 + bх + с = 0 позволяет найти корни любого квадратного уравнения (если они есть), в том числе приведенного и неполного. Словесно формула (1) выражается так: корни квадратного уравнения равны дроби, числитель которой равен второму коэффициенту, взятому с противоположным знаком, плюс минус корень квадратный из квадрата этого коэффициента без учетверенного произведения первого коэффициента на свободный член, а знаменатель есть удвоенный первый коэффициент.

4. СПОСОБ: Решение уравнений с использованием теоремы Виета.

Как известно, приведенное квадратное уравнение имеет вид

х 2 + px + c = 0. (1)

Его корни удовлетворяют теореме Виета, которая при а =1 имеет вид

x 1 x 2 = q,

x 1 + x 2 = - p

Отсюда можно сделать следующие выводы (по коэффициентам p и q можно предсказать знаки корней).

а) Если сводный член q приведенного уравнения (1) положителен (q > 0 ), то уравнение имеет два одинаковых по знаку корня и это зависти от второго коэффициента p . Если р < 0 , то оба корня отрицательны, если р < 0 , то оба корня положительны.

Например,

x 2 – 3x + 2 = 0; x 1 = 2 и x 2 = 1, так как q = 2 > 0 и p = - 3 < 0;

x 2 + 8x + 7 = 0; x 1 = - 7 и x 2 = - 1, так как q = 7 > 0 и p= 8 > 0.

б) Если свободный член q приведенного уравнения (1) отрицателен (q < 0 ), то уравнение имеет два различных по знаку корня, причем больший по модулю корень будет положителен, если p < 0 , или отрицателен, если p > 0 .

Например,

x 2 + 4x – 5 = 0; x 1 = - 5 и x 2 = 1, так как q= - 5 < 0 и p = 4 > 0;

x 2 – 8x – 9 = 0; x 1 = 9 и x 2 = - 1, так как q = - 9 < 0 и p = - 8 < 0.

Примеры.

1) Решим уравнение 345х 2 – 137х – 208 = 0.

Решение. Так как а + b + с = 0 (345 – 137 – 208 = 0), то

х 1 = 1, х 2 = c/a = -208/345.

Ответ: 1; -208/345.

2)Решим уравнение 132х 2 – 247х + 115 = 0.

Решение. Так как а + b + с = 0 (132 – 247 + 115 = 0), то

х 1 = 1, х 2 = c/a = 115/132.

Ответ: 1; 115/132.

Б. Если второй коэффициент b = 2k четное число, то формулу корней

Пример.

Решим уравнение 3х2 - 14х + 16 = 0 .

Решение . Имеем: а = 3, b = - 14, с = 16, k = - 7 ;

D = k 2 – ac = (- 7) 2 – 3 16 = 49 – 48 = 1, D > 0, два различных корня;

Ответ: 2; 8/3

В. Приведенное уравнение

х 2 + рх + q= 0

совпадает с уравнением общего вида, в котором а = 1 , b = р и с = q . Поэтому для приведенного квадратного уравнения формула корней

Принимает вид:

Формулу (3) особенно удобно использовать, когда р - четное число.

Пример. Решим уравнение х 2 – 14х – 15 = 0.

Решение. Имеем: х 1,2 =7±

Ответ: х 1 = 15; х 2 = -1.

5. СПОСОБ: Решение уравнений графически.

Пример. Решить уравнение х2 - 2х - 3 = 0.

Построим график функции у = х2 - 2х - 3

1) Имеем: а = 1, b = -2, х0 = = 1, у0 = f(1)= 12 - 2 - 3= -4. Значит, вершиной параболы служит точка (1; -4), а осью параболы - прямая х = 1.

2) Возьмем на оси х две точки, симметричные относительно оси параболы, например точки х = -1 и х = 3.

Имеем f(-1) = f(3) = 0. Построим на координатной плоскости точки (-1; 0) и (3; 0).

3) Через точки (-1; 0), (1; -4), (3; 0) проводим параболу (рис. 68).

Корнями уравнения х2 - 2х - 3 = 0 являются абсциссы точек пересечения параболы с осью х; значит, корни уравнения таковы: х1 = - 1, х2 - 3.

Алгоритм решения уравнения ах 3 +bx 2 +cx+d=0:

1.Найти подбором корень уравнения (среди делителей свободного члена);

2.Разделить многочлен ах 3 + bx 2 + cx + d на х-х 1 , где х 1 - корень уравнения ах 3 + bx 2 + cx + d =0;

3.Частное приравнять к нулю и решить получившееся уравнение;

4.Записать ответ.

Решить уравнение-6х 3 -х 2 +5х+2=0

1. Находим делители свободного члена: ±1,±2,±3,±6.

2. х=1 является корнем уравнения.

3. Многочлен -6х 3 -х 2 +5х+2 делим на двучлен

х-1 (по следствию 1 из теоремы Безу).

3.Решим уравнение: -6х 2 -7х-2=0,

6х 2 -7х-2+0, х 1 = -, х 2 = -.

4. Ответ. х=1, х = -, х = -.

Этот способ решения уравнений – универсальный. Его можно применить для решения уравнений четвёртой, пятой и т.д. степеней, постепенно понижая их степени до второй.

Пример1.

Решить уравнение х 4 +3х 3 -13х 2 -9х+30=0.

1.Среди делителей свободного члена находим корни уравнения. Это 2 и -5.

2. По следствию 1 из теоремы Безу многочлен х 4 +3х 3 -13х 2 -9х+30 делится на х-2 и на х+5, а значит делится на (х-2)(х+5)=х 2 +3х-10.

3. Выполним деление многочленов: х 4 +3х 3 -13х 2 -9х+30 на х 2 +3х-10.

4.Решим уравнение х 2 -3=0, х 1,2 =
.

Ответ. х =
, х =-, х=-5,х=2.

Решить уравнение 3х 5 +х 4 -15х 3 -5х 2 +12х+4=0.

1.Среди делителей свободного члена находим корни уравнения. Это 1, -1, 2 и -2

2. По следствию 1 из теоремы Безу многочлен 3х 5 +х 4 -15х 3 -5х 2 +12х+4 делится на х-1,х+1, х-2 и на х+2, а значит делится на (х-1)(х+1)(х-2)(х+2)=

(х 2 -1)(х 2 -4)=х 4 -5х 2 +4.

3. Выполним деление многочленов: 3х 5 +х 4 -15х 3 -5х 2 +12х+4 на х 4 -5х 2 +4.

4. Решим уравнение 3х+1 =0, х=-.

5. Ответ. х=-2,х=-1,х=-, х=1,х=2.

Решить уравнение

(2х 2 -1) 2 +х(2х-1) 2 =(х+1) 2 +16х 2 -6

Перенесём все члены в левую часть, раскроем скобки и приведём подобные члены.

4х 4 -4х 2 +1+4х 3 -4х 2 +х-х 2 -2х-1-16х 2 +6+0, 4х 4 +4х 3 -25х 2 –х+6=0.(1)

Делители свободного члена: ±1;±2;±3;±6. Если уравнение имеет целые корни, то это один из делителей. Подстановка показала, что это 2. По теореме Безу многочлен 4х 4 +4х 3 -25х 2 –х+6 делится на х-2 без остатка. В частном получим: 4х 3 +12х 2 –х – 3.

Уравнение (1) перепишем в виде: (х-2)(4х 3 +12х 2 –х – 3)=0.

Решим уравнение 4х 3 +12х 2 –х – 3=0. -3 является корнем этого уравнения, так как при подстановке его вместо х уравнение обращается в верное числовое равенство. Разделим многочлен 4х 3 +12х 2 –х – 3 на х+3, получим 4х 2 -1. Квадратное уравнение 4х 2 -1=0 имеет корни х= ±.

Ответ. х = 2, х = -3, х = ± .

Если среди делителей свободного члена нет корней уравнения, то используй зависимость между коэффициентами и корнями уравнения.

Если корень уравнения а 0 х n + a 1 x n -1 + a 2 x n -2 ...+ a n -1 x + a n =0 , то m – делитель свободного члена, а с-делитель старшего коэффициента.


Алгоритм решения таких уравнений:

1.Найди делители свободного члена и старшего коэффициента;

2.Составь различные дроби ,где m –делители свободного члена, а с-делители старшего коэффициента;

3. С помощью подстановки, определи, какая из дробей является корнем уравнения;

4. Выполни деление многочлена на многочлен;

5.Реши уравнение, приравняв частное к нулю;

6. Запиши ответ.

Решить уравнение 6х 3 -3х 2 -5х - 1=0.

1.Делители свободного члена: ±1. Эти числа не являются корнями уравнения. Находим делители старшего коэффициента: ±1, ±2,±3,±6.

2. Составим различные дроби:

3. - является корнем уравнения.

2. По следствию 1 из теоремы Безу многочлен 6х 3 -3х 2 -5х – 1 делится на х+.

3. Выполним деление многочленов:

4. Решим уравнение 6х 2 -6х-2=0, 3х 2 -3х-1=0, D = 21, х 1,2 =
,

5. Ответ. х 1,2 =, х= -.

Деление многочлена на многочлен
можно выполнять другим способом.

Пусть =
∙(х- а)+ R . Пусть

Чтобы найти коэффициенты многочлена и число , раскроем скобки в правой части равенств: и приравняем коэффициенты при одинаковых степенях слева и справа. Получим при
. Отсюда следует, что при
.[
4]


Вычисление коэффициентов многочлена и остатка производится с помощью следующей таблицы:

Эта таблица называется схемой Горнера .

Пример1.

Выполнить деление 2х 3 -3х+5 на х-4.

воспользуемся схемой Горнера для вычисления коэффициентов частного и остатка.

Следовательно,

Схема Горнера дает общий метод разложения на множители любого многочлена.

3.2 Для уравнений с целыми коэффициентами, не имеющих рациональных корней, эффективен метод неопределённых коэффициентов.

3.3 Метод неопределённых коэффициентов.

Многочлен левой части уравнения представляется в виде произведения двух многочленов с неизвестными коэффициентами:


1.Для кубического уравнения: х 3 +bx 2 +cx+d=0, а≠0 , х 3 +bx 2 +cx+d=(х 2 +рх+g)(x+t)=х 3 +х 2 t+px 2 +ptx+gx+gt=x 3 +(t+p)x 2 +(pt+g)x+gt.

Так как многочлены равны, то и коэффициенты при одинаковых степенях равны. Получим систему уравнений:

2.Для уравнения четвёртой степени: х 4 +ax 3 +bx 2 +cх+d=0, а≠0

х 4 +ax 3 +bx 2 +cх+d =(x 2 +mx+n)(x 2 +kx+t)=x 4 +(k+m)x 3 +(m+mk+n)x 2 +(mt+nk)x+nt.

Так как многочлены равны, то и коэффициенты при одинаковых степенях равны. Получим систему уравнений:
Решая систему, находим неизвестные коэффициенты.

Решить уравнение х 4 -2x 2 - 8х - 3=0.

представим многочлен х 4 -2x 2 - 8х -3 в виде произведения двух трёхчленов с неизвестными коэффициентами: х 4 -2x 2 - 8х -3=

(x 2 +mx+n)(x 2 +kx+t)=x 4 +(k+m)x 3 +(n+mk+t)x 2 +(mt+nk)x+nt.

Получим систему уравнений:
Из уравнения nt=-3 следует, что надо рассмотреть случаи: 1 .n=3,t=-1; 2. n=-3,t=1; 3. n=1,t=-3; 4 . n=-1,t=3.

Подстановкой этих пар в остальные уравнения системы получим, что при n=3,t=-1 х 4 -2x 2 - 8х -3= (x 2 +2x+3)(x 2 -2x-1)=0. Решим уравнения x 2 +2x+3=0 и x 2 -2x-1=0. Дискриминант первого уравнения отрицательный, значит, оно не имеет действительных корней. Дискриминант второго уравнения равен 8, х 1,2 =1±
.

Ответ. х 1,2 =1±.

3.4. Для решения биквадратных уравнений и уравнений, сводящихся к квадратным часто используется метод введения новых переменных. Можно его использовать и для уравнений высших степеней.

Решить уравнение х 4 +2х 3 – 22х 2 +2х+1=0.

Так как х=0 не является корнем уравнения, то обе части уравнения можно разделить на х 2 без потери корней. Получим уравнение

х 2 +2х-22++=0, сгруппируем слагаемые

(х 2 +)+2(х+ )-22=0.

Сделаем замену х +=t, тогда (х +) 2 =t 2 . х 2 +2+= t 2 , х 2 += t 2 -2.Исходное уравнение сводится к уравнению t 2 -2 +2t-22= 0, t 2 +2t -24= 0,t 1 =-6, t 2 =4 Вернёмся к исходной переменной: 1). х +=-6, 2). х +=4.

Решим каждое уравнение. 1). х +=-6, х 2 +6х+1=0, D=32, x 1,2 =
, x 1 =-3+2, x 2 = -3-2.

Ответ. x 1 = -3+2, x 2 = -3-2.

Уравнение вида:

(х + а)(х + b)(x + c)(x + d) = E;

Пример1.

Решить уравнение(х+1)(х+2)(х+4)(х+5)=40.

Сгруппируем множители ((х+1)(х+5))∙((х+4)(х+2))=40, выполним умножение в скобках (х 2 +6х+5)(х 2 +6х+8)=40, Применим замену: х 2 +6х=t, тогда (t 2 +5)(t 2 +8)=40, t 4 +13t 2 +40=40, t 4 +13t 2 =0, t 2 (t 2 +13)=0, t=0, t 2 +13=0 не имеет действительных корней.

Вернёмся к исходной переменной х 2 +6х=0, х(х+6)=0, х=0, х= -6.

Ответ. х=0, х= -6.

Пример1.

Решить уравнение

(х 2 -3х+ 1)(х 2 +3х+2)(х 2 -9х+20)=-30.

разложим второй и третий трёхчлены на множители, для этого найдём корни многочленов, решив три уравнения:

    х 2 +3х+2=0, х 1 = -1, х 2 = -2.

    х 2 -9х+20=0, х 1 = 4, х 2 = 5. Получим уравнение

(х 2 -3х+ 1)(х+1)(х+2)(х-4)(х-5)=-30,

(х 2 -3х+ 1)((х+1)∙(х-4))((х+2)∙(х -_5))=-30,

(х 2 -3х+ 1)(х 2 -3х-4)(х 2 -3х-10)=-30, Введём новую переменную. Пусть

х 2 -3х+ 1=t, тогда t(t-5)(t-11)=-30, t=6 является корнем этого уравнения. Раскроем скобки и получим t 3 -16t 2 +55t+30=0,

Разделим многочлен t 3 -16t 2 +55t+30 на t-6, в частном получим t 2 -10t-5.

Решим уравнение t 2 -10t-5=0, t 1 =5+
, t 2 =5-.

Вернёмся к исходно переменной, для этого решим три уравнения:


Ответ. х 1,2 =, х 3,4 =
, х 5,6 =
.

Уравнение вида (х + а)(х + b)(x + c)(x + d) = Eх 2 ;

Решить уравнение:

(х – 4)(х 2 + 15 + 50)(х – 2) = 18х 2

разложим на множители х 2 + 15 + 50.

х 2 + 15 + 50 = 0, х 1 = -5, х 2 = -10, тогда х 2 + 15х + 50 = (х + 5)(х + 10). Уравнение примет вид:

(х – 4)(х + 5)(х + 10)(х – 2) = 18х 2 ,

(х 2 + х – 20)(х 2 + 8х – 20) = 18х 2 . Так как х=0 не является корнем уравнения, то разделив обе части уравнения на х 2 , получим

(х+1-)(х+8-)=18.

Введём новую переменную. Пусть t= x-, тогда (t+1)(t+8)=18,

t 2 +9t-10=0,t 1 =10, t 2 =-1.Вернёмся к исходной переменной:

Ответ. x=-5, x = 4, x= -5 -3
, x= -5 +3.

Уравнение вида ах 4 +bх 3 +cх 2 +bх+a=0, ax 6 +bx 5 +cx 4 +dx 3 +cx 2 +bx+a=0 и т.д. Такие уравнения называют возвратными .Они обладают своеобразной «симметрией»: коэффициент при х 6 равен свободному члену, коэффициент при х 5 и х, при х 4 и х 2 равны. Возвратные уравнения решаются с помощью замены х +=t.


Уравнение х 4 +2х 3 – 22х 2 +2х+1=0 не имеет целых корней (делители свободного члена ±1 не являются корнями уравнения).

Так как х=0 не является корнем уравнения, то разделив обе части уравнения на х 2 , получим (х 2 +) -2(х+)-22=0.

Введём новую переменную. Пусть t= x+, тогда х 2 +2+ =t 2 , получим уравнение t 2 -2-2t-22=0, t 2 -2t-24=0 t 1 =6, t 2 =-4. Вернёмся к исходной переменной:

Ответ. x 1,2 = 3 ±2, x 3,4 = -2 ±.

3.5.. Для решения квадратных уравнений применяется способ выделения полного квадрата. Для решения уравнений третьей и четвёртой степени также можно применять формулы двучлена.

Знакомые вам формулы сокращённого умножения:

(х±а) 2 =х 2 ±2х+а 2 ;

(х±а) 3 =х 3 ±3х 2 а+3ха 2 ±а 3 ;

(х+а)(х-а)=х 2 -а 2 ;

(х+а)(х 2 -х+а 2)= х 3 +а 3 ;

(х-а)(х 2 +х+а 2)= х 3 -а 3 ;

(x+y+z) 2 =x 2 +y 2 +z 2 +2xy+2xz+2yz/

Формулу (х+а) 4 можно получить следующим образом: (х+а) 4 =(х+а) 3 (х+3)= (х 3 +3х 2 а+3ха 2 +а 3) (х+а)= х 4 +4х 3 а+6х 2 а 2 +4ха 3 +а 4 .

Коэффициенты разложения можно находить, используя треугольник Паскаля

(по имени французского математика Блеза Паскаля):

В каждой строке этого треугольника коэффициенты степени, кроме первого и последнего, получаются по парным сложением ближайших коэффициентов предыдущей строки.

Пример.1.

Для (х+а) 7: показатель степени равен числу 7, значит, его коэффициенты находятся в восьмой строке, это 1,7,21,35,35,21,7,1, которые получаются из предыдущей строки так:

7=1+6, 21=6+15, 35=15+20, 35= 20+15, 21=15+20, 7=6+1.

Получим:(х+а) 7 =х 7 +7х 6 а+21х 5 а 2 +35х 4 а 3 +35х 3 а 4 +21х 2 а 5 +7ха 6 +а 7 .

При написании формул сокращённого умножения старших степеней существуют следующие закономерности:

Число членов получаемого многочлена на единицу больше показателя степени;

Показатель степени х у каждого следующего слагаемого на единицу меньше, а показатель степени a − на единицу больше;

Сумма показателей степеней х и а постоянна и равна показателю степени многочлена;

Коэффициенты многочлена, равноотстоящие от начала и конца, равны.


Решить уравнение х 3 +6х 2 +12х-16=0.

Решение: используем формулу (х+а) 3 = 1∙х 3 +3х 2 а+3ха 2 +1∙а 3 .

х 3 +6х 2 +12х+16=0, (х 3 +3∙2х 2 +3∙2 2 х+2 3) +8=0, (х+2) 3 +2 3 =0, (х+2+2)((х+2) 2 -2 (х+2)+4)=0, 1. х=-4, 2. (х+2) 2 -2 (х+2)+ 4=0,

х 2 +2х +4=0, D=-12, действительных корней нет.

Ответ. х = -4.

Решить уравнение х 4 -12х 3 +54х 2 -108х+48=0, х 4 -12х 3 +54х 2 -108х+48= (х 4 -4х 3 ∙3+6х 2 3 2 -4х3 3 + 4 4)-4 4 +48= (х-3) 4 -64+48=0, (х-3) 4 - 16=0. Применим разность квадратов (х-3-4)(х-3+4)=0, (х-7)(х+1)=0, х=7,х=-1.

Ответ: х=-1, х=7.

3.6. Применение теоремы Виета.

1.Теорема Виета для кубического уравнения :

если х 1 , х 2 , х 3 ─ корни уравнения х 3 +bx 2 +cx+d=0, а≠0 , то

х 1 + х 2 + х 3 =- b ,

x 1 х 2 + x 2 х 3 + x 1 x 3 = c ,

х 1 х 2 х 3 = - d .

2. Теорема Виета для уравнения четвёртой степени :

если х 1 , х 2 , х 3, х 4 ─ корни уравнения х 4 + b х 3 +cx 2 +x+dх+е=0, то

х 1 + х 2 + х 3 4 =- b ,

x 1 х 2 + x 1 х 3 + x 1 х 4 + x 2 х 3 + x 2 x 4 3 х 4 = c ,

х 1 х 2 х 3 х 4 = е,

x 1 х 2 х 3 + x 1 х 2 х 4 + x 1 х 3 х 4 + x 2 х 3 x 4 = - d .


Решить уравнение х 3 -4 x 2 +x+6=0.

пусть х 1 , х 2 , х 3, х 4 ─ корни уравнения, тогда х 1 + х 2 + х 3 =4, x 1 х 2 +x 2 х 3 +x 1 x 3 =1, х 1 х 2 х 3 = -6. Проверим, какие из чисел ±1, ±2, ±3,±6 удовлетворяют условиям: х 1 + х 2 + х 3 =4, x 1 х 2 +x 2 х 3 +x 1 x 3 =1, х 1 х 2 х 3 = -6. Это х=-1, х=2 и х=3.

Применение формул сокращённого умножения.

Литература

1. Выгодский М.Я. Справочник по элементарной математике. – М. государственное издательство физико-математической литературы, 1970.

2. Галицкий М.Л., Гольдман М., Звавич Л.И. Сборник задач по алгебре для 8-9 классов: учебное пособие для учащихся школ и классов с углубленным изучением математики:4-е изд.-М.: Просвещение, 1997.

3. Ю.М. Колягин. Алгебра и начала анализа: учебник(профильного и базового уровня) для 10 класса общеобразовательных учреждений-М.: Мнемозина 2006.

4. Макарычев Ю.Н., Миндюк Н.Г. Дополнительные главы к школьному учебнику. 8 класс М., Просвещение, 1996.

5. К.С. Муравин. Алгебра 8: учебник для общеобразовательных учреждений-М:Дрофа, 2008

6. Энциклопедический словарь юного математика. – М.: Педагогика, 2007.

7. /spr/algebra/ferrary.htm

КОНТАКТЫ:

347611,Ростовская область, Сальский район, х. Маяк, ул. Центральная,4

С одним неизвестным, то есть уравнений вида (*) Pn(х)= ...

  • Календарно-тематический план проведения занятий > Методическая разработка «Решение целых уравнений» календарно тематический план «Школа будущего абитуриента» 10 класс

    Календарно-тематический план

    Для уравнений высших степеней . Цель: Повторить формулы для квадратного уравнения , ввести формулы для уравнений высших степеней и показать... - многочлен стандартного вида, называют целым алгебраическим уравнением . С отдельными способами решения вы уже...

  • Решение уравнений и неравенств с модулем часто вызывает затруднения. Однако, если хорошо понимать, что такое модуль числа , и как правильно раскрывать выражения, содержащие знак модуля , то наличие в уравнении выражения, стоящего под знаком модуля , перестает быть препятствием для его решения.

    Немного теории. Каждое число имеет две характеристики: абсолютное значение числа, и его знак.

    Например, число +5, или просто 5 имеет знак "+" и абсолютное значение 5.

    Число -5 имеет знак "-" и абсолютное значение 5.

    Абсолютные значения чисел 5 и -5 равны 5.

    Абсолютное значение числа х называется модулем числа и обозначается |x|.

    Как мы видим, модуль числа равен самому числу, если это число больше или равно нуля, и этому числу с противоположным знаком, если это число отрицательно.

    Это же касается любых выражений, которые стоят под знаком модуля.

    Правило раскрытия модуля выглядит так:

    |f(x)|= f(x), если f(x) ≥ 0, и

    |f(x)|= - f(x), если f(x) < 0

    Например |x-3|=x-3, если x-3≥0 и |x-3|=-(x-3)=3-x, если x-3<0.

    Чтобы решить уравнение, содержащее выражение, стоящее под знаком модуля, нужно сначала раскрыть модуль по правилу раскрытия модуля .

    Тогда наше уравнение или неравенство преобразуется в два различных уравнения, существующих на двух различных числовых промежутках.

    Одно уравнение существует на числовом промежутке, на котором выражение, стоящее под знаком модуля неотрицательно.

    А второе уравнение существует на промежутке, на котором выражение, стоящее под знаком модуля отрицательно.

    Рассмотрим простой пример.

    Решим уравнение:

    |x-3|=-x 2 +4x-3

    1. Раскроем модуль.

    |x-3|=x-3, если x-3≥0, т.е. если х≥3

    |x-3|=-(x-3)=3-x, если x-3<0, т.е. если х<3

    2. Мы получили два числовых промежутка: х≥3 и х<3.

    Рассмотрим, в какие уравнения преобразуется исходное уравнение на каждом промежутке:

    А) При х≥3 |x-3|=x-3, и наше уранение имеет вид:

    Внимание! Это уравнение существует только на промежутке х≥3!

    Раскроем скобки, приведем подобные члены:

    и решим это уравнение.

    Это уравнение имеет корни:

    х 1 =0, х 2 =3

    Внимание! поскольку уравнение x-3=-x 2 +4x-3 существует только на промежутке х≥3, нас интересуют только те корни, которые принадлежат этому промежутку. Этому условию удовлетворяет только х 2 =3.

    Б) При x<0 |x-3|=-(x-3) = 3-x, и наше уравнение приобретает вид:

    Внимание! Это уравнение существует только на промежутке х<3!

    Раскроем скобки, приведем подобные члены. Получим уравнение:

    х 1 =2, х 2 =3

    Внимание! поскольку уравнение 3-х=-x 2 +4x-3 существует только на промежутке x<3, нас интересуют только те корни, которые принадлежат этому промежутку. Этому условию удовлетворяет только х 1 =2.

    Итак: из первого промежутка мы берем только корень х=3, из второго - корень х=2.