Определение корня натуральной степени из числа свойства. Квадратный корень. Исчерпывающий гид (2019). Корни и их свойства. коротко о главном

II
признак подобия треугольников. Если две стороны одного
треугольника пропорциональны двум сторонам другого
треугольника и углы, заключенные между этими сторонами,
равны, то такие треугольники подобны.

АВ
АС
Дано: ABC, А1В1С1, А А1 ,
А1 В1 А1С1
Доказать: ABC
А1В1С1
Идея доказательства: Рассмотрим два треугольника ABC и А1В1С1 .
Докажем, что они подобны. Для этого построим треугольник ABC2 и
докажем, что он подобен треугольнику А1В1С1 . Рассмотрим треугольники
ABC и ABC2 и докажем, что они равны. Сделаем вывод о подобии
треугольников ABC и А1В1С1.

Доказательство: докажем, что В В1 и применим 1
признак подобия треугольников
С1
А1
С
В1
А
В

С
С1
В1
А1
В
А
1
2

1= А1,
2= В1.
ABC2
А1В1С1
по двум углам
АВ
АС2
Тогда
А1 В1 А1С1
АВ
АС
по условию
А1 В1 А1С1
С2
АС = АС2

С
С1
В1
А1
В
А
1
2
2).
ABC = АВС2
В = 2,
=
по двум сторонам и углу
между ними
2= В1
С2

III
признак подобия треугольников. Если три стороны одного
треугольника пропорциональны трем сторонам другого, то
такие треугольники подобны.

Дано:
АВ
ВС
АС
А1 В1 В1С1 А1С1
ABC, А1В1С1,
Доказать:
ABC
А1В1С1
Доказательство: (аналогично)
Что нужно рассмотреть, чтобы доказать, что
ABC
А1В1С1 ?
Каким признаком подобия мы воспользуемся?
Какой вспомогательный треугольник мы должны рассмотреть?
Какому треугольнику он будет подобен? По какому признаку?
Если треугольники подобны, то какое отношение мы можем составить?
С каким отношением мы должны его сравнить? Что будет следовать?

Доказательство:
докажем, что А А1 и применим
2 признак подобия треугольников
С
С1
А1
В1 А
В

10.

С
С1
В1
А1
В
А
1
2
1). Рассмотрим ABC2, у которого
1= А1,
2= В1.
ABC2
А1В1С1
Тогда
по двум углам
АВ ВС 2 АС2
А1 В1 В1С1 А1С1
АВ
ВС
АС
по условию
А1 В1 В1С1 А1С1
АС = АС2
С2
ВС = ВС2

11.

С
С1
В1
А1
В
А
1
2
2).
ABC = АВС2
А = 1,
=
по трем сторонам
1= АА11
С2

12. Решение задач

13.

№1
По данным рисунка
Найти: x
Доказать: BC||AD
Решение:
1) Рассмотрим два треугольника с общей вершиной AOD
и COB
:
BOC DOA, так как они вертикальные.
Рассмотрим отношение прилегающие стороны:
DO AO
DO 4
AO 6
2
2
BO
CO
AO 2
CO 3
Согласно II признаку подобия AOD
~ COB
. Коэффициент подобия k=2.
С помощью него определим длину x=AD:
x
2 | x 2 * BC 2 * 4 8
BC
2) Так как AOD ~ COB, то все углы у них равны. OBC ODA - эти углы являются
накрест лежащими при пересечении прямых BC и AD секущей BD. Таким образом,
BC||AD.
Ответ: 8

Теорема 1. Два треугольника подобны, если два угла одного треугольника соответственно равны двум углам другого.

Пусть в треугольниках ABC и А’В’С ∠A = ∠А’ ∠В = ∠B’ (в подобных треугольниках вершины соответственно равных углов часто обозначают одинаковыми буквами).

Доказать, что \(\Delta\)ABС \(\sim\) \(\Delta\)А’В’С (рис. 367).

Прежде всего отметим, что из равенства двух углов данных треугольников следует, что и третьи углы их равны, т. е. ∠C = ∠С’.

Отложим от вершины В, например, на стороне AB треугольника ABC отрезок ВМ, равный отрезку А’В’. Из точки М проведём прямую MN || АС. Мы получили \(\Delta\)MBN, который подобен \(\Delta\)ABC. Но \(\Delta\)MBN = \(\Delta\)А’В’С’, так как ∠В = ∠В’ по условию теоремы; сторона MB = A’B’ по построению; ∠BMN = ∠A’ (∠BMN и ∠А’ порознь равны одному и тому же ∠А).

Если \(\Delta\)MBN \(\sim\) \(\Delta\)AВС, то \(\Delta\)А’В’С’ \(\sim\) \(\Delta\)ABC. Эта теорема выражает 1-й признак подобия треугольников.

Следствия. 1. Равносторонние треугольники подобны .

2. Равнобедренные треугольники подобны, если они имеют по равному углу при вершине или при основании.

3. Два прямоугольных треугольника подобны, если она имеют по равному острому углу.

4. Равнобедренные прямоугольные треугольники подобны.

Теорема 2 . Два треугольника подобны, если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, лежащие между ними, равны.

Пусть в треугольниках ABC и А’В’С’ \(\frac{AB}{A’B’} = \frac{BC}{B’C’}\) и ∠В = ∠В’

Требуется доказать, что \(\Delta\)ABC \(\sim\) \(\Delta\)А’В’С’ (рис. 368).

Для доказательства отложим, например, на стороне AB треугольника ABC от вершины В отрезок ВМ, равный отрезку А’В’. Через точку М проведём прямую MN || АС. Полученный треугольник MBN подобен треугольнику ABC.

Докажем, что \(\Delta\)MBN = \(\Delta\)А’В’С’. В этих треугольниках ∠В = ∠В’ по условию теоремы, MB = А’В’ по построению. Чтобы убедиться в равенстве сторон BN и В’С, составим пропорцию AB / MB = BC / BN (она вытекает из параллельности АС и MN) и сравним её с пропорцией, которая дана в условии теоремы: \(\frac{AB}{A’B’} = \frac{BC}{B’C’}\). В этих двух пропорциях имеется по три равных члена, следовательно, равны и четвёртые их члены,

т. е. В’С’ = BN. Отсюда следует равенство треугольников MBN и А’В’С’.

Так как \(\Delta\)MBN \(\sim\) \(\Delta\)А’В’С’, то, следовательно, и \(\Delta\)А’В’С’ \(\sim\) \(\Delta\)ABС.

Эта теорема выражает 2-й признак подобия треугольников.

Следствие. Прямоугольные треугольники подобны, если катеты одного из них пропорциональны катетам другого.


Теорема 3. Два треугольника подобны, если три стороны одного треугольника пропорциональны трём сторонам другого треугольника.

Пусть в треугольниках ABC и А’В’С’ \(\frac{AB}{A’B’} = \frac{BC}{B’C’} = \frac{AC}{A’C’}\) (рис. 369).

Требуется доказать, что \(\Delta\)ABC \(\sim\) \(\Delta\)А’В’С’

Для доказательства отложим на стороне AB треугольника ABC от вершины В отрезок BM = А’В’. Из точки M проведём прямую MN || АС. Полученный треугольник MBN подобен треугольнику ABC. Следовательно, \(\frac{AB}{MB} = \frac{BC}{BN} = \frac{AC}{MN}\).

Докажем, что \(\Delta\)MBN = \(\Delta\)А’В’С’. Для доказательства сравним две пропорции

\(\frac{AB}{MB} = \frac{BC}{NB}\) и \(\frac{AB}{A’B’} = \frac{BC}{B’C’}\).
В этих пропорциях имеется по три равных члена, следовательно, равны и четвёртые их члены, т.е. BN = В’С’.

Сравним ещё две пропорции: \(\frac{AB}{MB} = \frac{AC}{MN}\) и \(\frac{AB}{A’B’} = \frac{AC}{A’C’}\) . В этих пропорциях также имеется по три равных члена, следовательно, равны и четвёртые члены их, т. е. MN =А’С’.

Оказалось, что три стороны \(\Delta\)BMN равны трём сторонам \(\Delta\)А’В’С’, а именно:

MB = А’В’, BN = В’С’ и MN = А’С’.

Следовательно, \(\Delta\)MBN = \(\Delta\)А’В’С’, а \(\Delta\)ABC \(\sim\) \(\Delta\)А’В’С’.

Эта теорема выражает 3-й признак подобия треугольников.

Теорема 1. Первый признак подобия треугольников. Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

Доказательство. Пусть ABC и $А_1В_1С_1$ - треугольники, у которых $\angle A = \angle A_1 ; \angle B = \angle B_1$ , и, следовательно, $\angle C = \angle C_1$ . Докажем, что $\triangle ABC \sim \triangle A_1B_1C_1$ (рис.1).

Отложим на ВА от точки В отрезок $ВА_2$, равный отрезку $A_1B_1$ , и через точку $А_2$ проведем прямую, параллельную прямой АС. Эта прямая пересечет ВС в некоторой точке $С_2$ . Треугольники $А_1В_1С_1\text{ и }А_2ВС_2$ равны: $А_1В_1 = А_2В$ по построению, $\angle В = \angle В_1$ по условию и $\angle А_1 = \angle А_2$ , так как $\angle А_1 = \angle А$ по условию и $\angle А = \angle А_2$ как соответственные углы. По лемме 1 о подобных треугольниках имеем: $\triangle A_2BC_2 \sim \triangle ABC$ , и значит, $\triangle ABC \sim \triangle A_1B_1C_1$ . Теорема доказана.

По аналогичной схеме устанавливаются теоремы 2 и 3.

Теорема 2. Второй признак подобия треугольников. Если две стороны одного треугольника соответственно пропорциональны двум сторонам другого треугольника и углы между этими сторонами равны, то треугольники подобны.

Теорема 3. Третий признак подобия треугольников. Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.

Из теоремы 1 вытекает следующее.

Следствие 1. В подобных треугольниках сходственные стороны пропорциональны сходственным высотам, т. е. тем высотам, которые опущены на сходственные стороны.

Пример 1. Подобны ли два равносторонних треугольника?

Решение. Так как в равностороннем треугольнике каждый внутренний угол равен 60° (следствие 3), то два равносторонних треугольника подобны по первому признаку.

Пример 2. В треугольниках ABC и $А_1В_1С_1$ известно, что $\angle A = \angle A_1 ; \angle B = \angle B_1 ; АВ = 5 м, ВС = 7 м, А_1В_1 = 10 м, А_1С_1 = 8 м.$ Найти неизвестные стороны треугольников.

Решение. Треугольники, определенные условием задачи, подобны по первому признаку подобия. Из подобия треугольников следует: $$ \frac{AB}{A_1B_1} = \frac{BC}{B_1C_1} = \frac{AC}{A_1C_1} \,\,\, (1) $$ Подставив в равенство (1) данные из условия задачи, получим: $$ \frac{5}{10} = \frac{7}{B_1C_1} = \frac{AC}{8} \,\,\, (2) $$ Из равенства (2) составим две пропорции $$ \frac{5}{10} = \frac{7}{B_1C_1} \\ \frac{5}{10} = \frac{AC}{8} \\ \text{ откуда }В_1С_1 = 14 (м), АС = 4 (м). $$

Пример 3. Углы В и $В_1$ треугольников ABC и $А_1В_1С_1$ равны. Стороны АВ и ВС треугольника ABC в 2,5 раза больше сторон $A_1B_1$ и $B_1C_1$ треугольника $A_1B_1C_1$. Найти АС и $A_1C_1$ , если их сумма равна 4,2 м.

Решение. Пусть условию задачи отвечает рисунок 2.

Из условия задачи: $$ 1) \angle B = \angle B_1 ; \\ 2) \frac{AB}{A_1B_1} = \frac{BC}{B_1C_1} = 2,5 \\ 3) AC + A_1C_1 = 4,2 м. $$ Следовательно, $\triangle ABC \sim \triangle А_1В_1С_1$. Из подобия этих треугольников следует $$ \frac{AC}{A_1C_1} = 2,5\text{ , или }АС = 2,5\bullet А_1С_1 $$ Так как АС = 2,5 А 1 С 1 , то АС + А 1 C 1 = 2,5 А 1 С 1 + A 1 C 1 = 4,2, откуда A 1 C 1 = 1,2 (м), АС = 3 (м).

Пример 4. Подобны ли треугольники ABC и А 1 В 1 С 1 , если АВ = 3 см, ВС = 5 см, АС = 7 см, А 1 В 1 = 4,5 см, B 1 C 1 = 7,5 см, A 1 C 1 = 10,5 см?

Решение. Имеем: $$ \frac{AB}{A_1B_1} = \frac{3}{4,5} = \frac{1}{1,5} \\ \frac{BC}{B_1C_1} = \frac{5}{7,5} = \frac{1}{1,5} \\ \frac{AC}{A_1C_1} = \frac{7}{10,5} = \frac{1}{1,5} $$ Следовательно, треугольники подобны по третьему признаку.

Пример 5. Доказать, что медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2:1, считая от вершины.

Решение. Рассмотрим произвольный треугольник ABC. Обозначим буквой О точку пересечения его медиан $АА_1\text{ и }ВВ_1$ и проведем среднюю линию $A_1B_1$ этого треугольника (рис.3).

Отрезок $A_1B_1$ параллелен стороне АВ, поэтому $\angle 1 = \angle2 \text{ и } \angle 3 = \angle 4 $. Следовательно, треугольники АОВ и $A_1OB_1$ подобны по двум углам, и, значит, их стороны пропорциональны: $$ \frac{AO}{A_1O} = \frac{BO}{B_1O} = \frac{AB}{A_1B_1} $$

Но $AB = 2A_1B_1$ , поэтому $AO = 2A_1O$ и $BO = 2B_1O$ .

Аналогично доказывается, что точка пересечения медиан $BB_1\text{ и }CC_1} делит каждую из них в отношении 2:1, считая от вершины, и, следовательно, совпадает с точкой О.

Итак, все три медианы треугольника ABC пересекаются в точке О и делятся ею в отношении 2:1, считая от вершины.

Замечание. Ранее отмечалось, что биссектрисы треугольника пересекаются в одной точке, серединные перпендикуляры к сторонам треугольника пересекаются в одной точке. На основе последнего утверждения устанавливается, что и высоты треугольника (или их продолжения) пересекаются в одной точке. Эти три точки и точка пересечения медиан называются замечательными точками треугольника.

Пример 6. Проектор полностью освещает экран А высотой 90 см, расположенный на расстоянии 240 см. На каком наименьшем расстоянии в см. от проектора нужно расположить экран Б, высотой 150 см, так, что бы он был полностью освещён, если настройки проектора остаются неизменными.

Видео-решение.

Если две стороны одного треугольника пропорциональны двум сторонам другого и углы между этими сторонами равны, тогда эти треугольники подобны.

Комментарий . Вспоминаем первый признак равенства треугольников по двум сторонам и углу между ними. В данном случае, если углы равны, а стороны пропорциональны - то треугольники подобны .

Третий признак подобия треугольников

Если три стороны одного треугольника пропорциональны трём сходственным сторонам другого, то треугольники подобны

Свойства подобных треугольников

Площади подобных треугольников соотносятся как квадрат соотношений их подобных сторон.

Простейшие задачи на подобие треугольников

Задача .
Даны подобные треугольники:
1)АВС и KLM
АС = 17 см, АВ = 9 см, ВС = 10 см, ML = 7,5 см, LK = 6,75 см, MK = 12,75 см
2)АВС и МКС
АВ = 4 см, АС = 6см, ВС = 5см, МС = 3 см, СК = 2,5 см, МК = 2 см
Составьте отношение их сходственных сторон.Определите коэффициент подобия.

Решение .
Поскольку треугольники по условию задачи подобны, то для нахождения сходственных сторон выстроим их по возрастанию, так как у подобного треугольника стороны также будут иметь соответствующие размеры, умноженные на коэффициент подобия

1) АВ=9 см; ВС=10 см; АС=17 см; и LK=6,75 см; ML=7,5 см; MK=12,75 см
2) АВ = 4 см; ВС = 5см; АС = 6см; и МК = 2 см; СК = 2,5 см; МС = 3 см

Теперь вычислим соотношение двух наименьших сторон, оно будет точно таким же, как двух наибольших или средних по величине сторон. Это и есть коэффициент подобия данных треугольников.

1) AB / LK = 9 / 6,75 = 1 1/3 Внимание! Переведите десятичные дроби в простые, чтобы получить верный коэффициент подобия. AB/ LK = BC / ML = AC / MK = 1 1/3
2) AB / MK = 4 / 2 = 2, AB / MK = BC / CK = AC / MC = 2

Подобие треугольников. Первый признак подобия

Примечание . Это урок с задачами по геометрии о подобии треугольников. Здесь размещены задачи, которые вызывают трудности при решении. Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме .

Задача

В треугольнике ABC угол A вдвое больше угла B, а длины противолежащих этим углам сторон соответственно равны 12 и 8. Найти третью сторону.

Решение .
Для угла А построим биссектрису на противоположную сторону BC. Пусть она пересечет противоположную сторону в точке К.

Исходя из того, что AK - биссектриса, углы ABC и KAC - равны. Поскольку угол С у них общий, то и третий угол этих треугольников является одинаковым. Таким образом, треугольники являются подобными по трем углам.

Исходя из того, что треугольники ABC и AKC подобны:
AC: BC = KC: AC = AK: AB

AC: BC = KC: AC
8 / 12 = KC / 8
KC = 64 / 12 = 16 / 3

Поскольку угол AKB = ABK (BK - биссектрисса, следовательно - треугольник AKB равнобедренный)
Откуда AK = BK

Учтем, что BK = AC - KC, тогда
AK = BK = 12 - 16 / 3

Теперь вернемся к свойствам подобных треугольников
KC: AC = AK: AB
и подставим известные значения
(16 / 3) / 8 = (12 - 16 / 3) / AB
AB = (AK * AC) / KC = 10

Ответ : 10 см

Подобие треугольников. Третий признак подобия

В этом уроке, вы найдете решение задач по геометрии, которые используют правила подобия треугольников и являются интересными для решения. Я их размещаю здесь если они вызывают некоторые трудности при решении у школьников.

Задача

Треугольники ABC и A 1 B 1 C 1 подобны. Соотношение сторон теругольников 3:4 . Площадь одного из них больше площади другого на 14 см 2 . Найдите площади треугольников.

Решение

Для решения данной задачи будем руководствоваться основным свойством подобия треугольников - все размеры одного теругольника подобны размерам другого. Сначала опустим на сторону а каждого треугольника высоту h. Таким образом площадь первого треугольника будет выражаться формулой S 1 =1/2ah, а площадь второго треугольника формулой S 2 =1/2*3/4a*3/4h. Таким образом, можно определить соотношение площадей треугольников:

S 1 /S 2 = 1/2 ah / (1/2 * 9/16 ah)

S 1 /S 2 = ah / (9/16 ah)

Выше перечисленные преобразования мы могли бы не проводить, если нам известна теорема:

Выразим площадь одного треугольника через площадь другого:

По условию задачи S 1 -S 2 =14, таким образом

16S 2 /9-S 2 =14

S 2 =18, следовательно S 1 = 14+18=32

Ответ: 18 и 32

Задача

Стороны AB и DC трапеции ABCD продлили так, что прямые AB и DC пересеклись в точке E. Таким образом, продолжения сторон трапеции образовали треугольник площадью 98 квадратных сантиметров. Найти площадь трапеции, если ее основания относятся друг к другу как 5 к 7.

Решение

Начало решения .

Из условия задачи видно, что у нас получились треугольники EAD и EBC. Поскольку оба треугольника имеют общий угол E, а основания трапеции, являющиеся параллельными, согласно теореме Фалеса, отсекают на сторонах AE и DE пропорциональные отрезки отрезки, то треугольники EAD и EBC являются подобными.

Способ 1 .

Опустим из вершины E высоту на основание AD. Она же будет высотой для основания BC, поскольку основания трапеции параллельны. Обозначим высоту для треугольника EAD как h 1 , а для треугольника EBC как h 2 .

Таким образом:
Площадь треугольника EAD будет равна S EAD =1/2*AD*h 1 .
Площадь треугольника EBC будет равна S EBC =1/2*BC*h 2 .

Поскольку треугольники подобны, то все стороны относятся друг к другу с одним и тем же коэффициентом подобия. Поскольку основания трапеции относятся дрцг к другу как 5:7, то и все остальные стороны относятся друг к другу с тем же соотношением. Из этого следует:
BC / AD = 5 / 7
BC = 5AD / 7

аналогично:
h 2 / h 1 = 5 / 7
h 2 = 5h 1 / 7

Таким образом:
S EBC =1/2*BC*h 2 .
Подставим значения сторон меньшего подобного треугольника через значения сторон большего подобного треугольника:
S EBC =1/2*(5AD / 7)*(5h 1 / 7)
S EBC =1/2*AD*h 1 *25 / 49

Заметим, что по условию задачи площадь получившегося треугольника EAD равна 98 сантиметрам, одновременно S EAD =1/2*AD*h 1 .
Подставим вместо указанного выражения его значение:
S EBC = 98*25/49
S EBC = 50 см 2

Способ 2 .

Если нам известна теорема: "площади подобных треугольников относятся как квадрат соотношения их сторон" , то площади подобных треугольников AED и BEC будут соотноситься как 5 2: 7 2 . То есть:
S EBC / S EAD = 5 2 / 7 2
S EBC / S EAD = 25 / 49
S EBC = S EAD * 25 / 49

Поскольку площадь треугольника EAD известна нам по условию и составляет 98 см 2 , то
S EBC = 98 * 25 / 49
S EBC = 50 см 2

В этой статье мы введем понятие корня из числа . Будем действовать последовательно: начнем с квадратного корня, от него перейдем к описанию кубического корня, после этого обобщим понятие корня, определив корень n-ой степени. При этом будем вводить определения, обозначения, приводить примеры корней и давать необходимые пояснения и комментарии.

Квадратный корень, арифметический квадратный корень

Чтобы понять определение корня из числа, и квадратного корня в частности, нужно иметь . В этом пункте мы часто будем сталкиваться со второй степенью числа - квадратом числа.

Начнем с определения квадратного корня .

Определение

Квадратный корень из числа a - это число, квадрат которого равен a .

Чтобы привести примеры квадратных корней , возьмем несколько чисел, например, 5 , −0,3 , 0,3 , 0 , и возведем их в квадрат, получим соответственно числа 25 , 0,09 , 0,09 и 0 (5 2 =5·5=25 , (−0,3) 2 =(−0,3)·(−0,3)=0,09 , (0,3) 2 =0,3·0,3=0,09 и 0 2 =0·0=0 ). Тогда по данному выше определению число 5 является квадратным корнем из числа 25 , числа −0,3 и 0,3 есть квадратные корни из 0,09 , а 0 – это квадратный корень из нуля.

Следует отметить, что не для любого числа a существует , квадрат которого равен a . А именно, для любого отрицательного числа a не существует ни одного действительного числа b , квадрат которого равнялся бы a . В самом деле, равенство a=b 2 невозможно для любого отрицательного a , так как b 2 – неотрицательное число при любом b . Таким образом, на множестве действительных чисел не существует квадратного корня из отрицательного числа . Иными словами, на множестве действительных чисел квадратный корень из отрицательного числа не определяется и не имеет смысла.

Отсюда вытекает логичный вопрос: «А для любого ли неотрицательного a существует квадратный корень из a »? Ответ – да. Обоснованием этого факта можно считать конструктивный способ, используемый для нахождения значения квадратного корня .

Тогда встает следующий логичный вопрос: «Каково число всех квадратных корней из данного неотрицательного числа a – один, два, три, или еще больше»? Вот ответ на него: если a равно нулю, то единственным квадратным корнем из нуля является нуль; если же a – некоторое положительное число, то количество квадратных корней из числа a равно двум, причем корни являются . Обоснуем это.

Начнем со случая a=0 . Сначала покажем, что нуль действительно является квадратным корнем из нуля. Это следует из очевидного равенства 0 2 =0·0=0 и определения квадратного корня.

Теперь докажем, что 0 – единственный квадратный корень из нуля. Воспользуемся методом от противного. Предположим, что существует некоторое число b , отличное от нуля, которое является квадратным корнем из нуля. Тогда должно выполняться условие b 2 =0 , что невозможно, так как при любом отличном от нуля b значение выражения b 2 является положительным. Мы пришли к противоречию. Это доказывает, что 0 – единственный квадратный корень из нуля.

Переходим к случаям, когда a – положительное число. Выше мы сказали, что всегда существует квадратный корень из любого неотрицательного числа, пусть квадратным корнем из a является число b . Допустим, что существует число c , которое тоже является квадратным корнем из a . Тогда по определению квадратного корня справедливы равенства b 2 =a и c 2 =a , из них следует, что b 2 −c 2 =a−a=0 , но так как b 2 −c 2 =(b−c)·(b+c) , то (b−c)·(b+c)=0 . Полученное равенство в силу свойств действий с действительными числами возможно лишь тогда, когда b−c=0 или b+c=0 . Таким образом, числа b и c равны или противоположны.

Если же предположить, что существует число d , являющееся еще одним квадратным корнем из числа a , то рассуждениями, аналогичными уже приведенным, доказывается, что d равно числу b или числу c . Итак, число квадратных корней из положительного числа равно двум, причем квадратные корни являются противоположными числами.

Для удобства работы с квадратными корнями отрицательный корень «отделяется» от положительного. С этой целью вводится определение арифметического квадратного корня .

Определение

Арифметический квадратный корень из неотрицательного числа a – это неотрицательное число, квадрат которого равен a .

Для арифметического квадратного корня из числа a принято обозначение . Знак называется знаком арифметического квадратного корня. Его также называют знаком радикала. Поэтому можно часть слышать как «корень», так и «радикал», что означает один и тот же объект.

Число под знаком арифметического квадратного корня называют подкоренным числом , а выражение под знаком корня – подкоренным выражением , при этом термин «подкоренное число» часто заменяют на «подкоренное выражение». Например, в записи число 151 – это подкоренное число, а в записи выражение a является подкоренным выражением.

При чтении слово «арифметический» часто опускается, например, запись читают как «квадратный корень из семи целых двадцати девяти сотых». Слово «арифметический» произносят лишь тогда, когда хотят особо подчеркнуть, что речь идет именно о положительном квадратном корне из числа.

В свете введенного обозначения из определения арифметического квадратного корня следует, что и для любого неотрицательного числа a .

Квадратные корни из положительного числа a с помощью знака арифметического квадратного корня записываются как и . Например, квадратные корни из числа 13 есть и . Арифметический квадратный корень из нуля равен нулю, то есть, . Для отрицательных чисел a записи мы не будем придавать смысла вплоть до изучения комплексных чисел . Например, лишены смысла выражения и .

На базе определения квадратного корня доказываются свойства квадратных корней , которые часто применяются на практике.

В заключение этого пункта заметим, что квадратные корни из числа a являются решениями вида x 2 =a относительно переменной x .

Кубический корень из числа

Определение кубического корня из числа a дается аналогично определению квадратного корня. Только оно базируется на понятии куба числа, а не квадрата.

Определение

Кубическим корнем из числа a называется число, куб которого равен a .

Приведем примеры кубических корней . Для этого возьмем несколько чисел, например, 7 , 0 , −2/3 , и возведем их в куб: 7 3 =7·7·7=343 , 0 3 =0·0·0=0 , . Тогда, основываясь на определении кубического корня, можно утверждать, что число 7 – это кубический корень из 343 , 0 есть кубический корень из нуля, а −2/3 является кубическим корнем из −8/27 .

Можно показать, что кубический корень из числа a , в отличие от квадратного корня, всегда существует, причем не только для неотрицательных a , но и для любого действительного числа a . Для этого можно использовать тот же способ, о котором мы упоминали при изучении квадратного корня.

Более того, существует только единственный кубический корень из данного числа a . Докажем последнее утверждение. Для этого отдельно рассмотрим три случая: a – положительное число, a=0 и a – отрицательное число.

Легко показать, что при положительном a кубический корень из a не может быть ни отрицательным числом, ни нулем. Действительно, пусть b является кубическим корнем из a , тогда по определению мы можем записать равенство b 3 =a . Понятно, что это равенство не может быть верным при отрицательных b и при b=0 , так как в этих случаях b 3 =b·b·b будет отрицательным числом либо нулем соответственно. Итак, кубический корень из положительного числа a является положительным числом.

Теперь предположим, что помимо числа b существует еще один кубический корень из числа a , обозначим его c . Тогда c 3 =a . Следовательно, b 3 −c 3 =a−a=0 , но b 3 −c 3 =(b−c)·(b 2 +b·c+c 2) (это формула сокращенного умножения разность кубов ), откуда (b−c)·(b 2 +b·c+c 2)=0 . Полученное равенство возможно только когда b−c=0 или b 2 +b·c+c 2 =0 . Из первого равенства имеем b=c , а второе равенство не имеет решений, так как левая его часть является положительным числом для любых положительных чисел b и c как сумма трех положительных слагаемых b 2 , b·c и c 2 . Этим доказана единственность кубического корня из положительного числа a .

При a=0 кубическим корнем из числа a является только число нуль. Действительно, если предположить, что существует число b , которое является отличным от нуля кубическим корнем из нуля, то должно выполняться равенство b 3 =0 , которое возможно лишь при b=0 .

Для отрицательных a можно привести рассуждения, аналогичные случаю для положительных a . Во-первых, показываем, что кубический корень из отрицательного числа не может быть равен ни положительному числу, ни нулю. Во-вторых, предполагаем, что существует второй кубический корень из отрицательного числа и показываем, что он обязательно будет совпадать с первым.

Итак, всегда существует кубический корень из любого данного действительного числа a , причем единственный.

Дадим определение арифметического кубического корня .

Определение

Арифметическим кубическим корнем из неотрицательного числа a называется неотрицательное число, куб которого равен a .

Арифметический кубический корень из неотрицательного числа a обозначается как , знак называется знаком арифметического кубического корня, число 3 в этой записи называется показателем корня . Число под знаком корня – это подкоренное число , выражение под знаком корня – это подкоренное выражение .

Хотя арифметический кубический корень определяется лишь для неотрицательных чисел a , но удобно также использовать записи, в которых под знаком арифметического кубического корня находятся отрицательные числа. Понимать их будем так: , где a – положительное число. Например, .

О свойствах кубических корней мы поговорим в общей статье свойства корней .

Вычисление значения кубического корня называется извлечением кубического корня, это действие разобрано в статье извлечение корней: способы, примеры, решения .

В заключение этого пункта скажем, что кубический корень из числа a является решением вида x 3 =a .

Корень n-ой степени, арифметический корень степени n

Обобщим понятие корня из числа – введем определение корня n-ой степени для n .

Определение

Корень n -ой степени из числа a – это число, n -я степень которого равна a .

Из данного определения понятно, что корень первой степени из числа a есть само число a , так как при изучении степени с натуральным показателем мы приняли a 1 =a .

Выше мы рассмотрели частные случаи корня n -ой степени при n=2 и n=3 – квадратный корень и кубический корень. То есть, квадратный корень – это корень второй степени, а кубический корень – корень третьей степени. Для изучения корней n -ой степени при n=4, 5, 6, … их удобно разделить на две группы: первая группа – корни четных степеней (то есть, при n=4, 6, 8, … ), вторая группа – корни нечетных степеней (то есть, при n=5, 7, 9, … ). Это связано с тем, что корни четных степеней аналогичны квадратному корню, а корни нечетных степеней – кубическому. Разберемся с ними по очереди.

Начнем с корней, степенями которых являются четные числа 4, 6, 8, … Как мы уже сказали, они аналогичны квадратному корню из числа a . То есть, корень любой четной степени из числа a существует лишь для неотрицательного a . Причем, если a=0 , то корень из a единственный и равен нулю, а если a>0 , то существует два корня четной степени из числа a , причем они являются противоположными числами.

Обоснуем последнее утверждение. Пусть b – корень четной степени (обозначим ее как 2·m , где m – некоторое натуральное число) из числа a . Предположим, что существует число c – еще один корень степени 2·m из числа a . Тогда b 2·m −c 2·m =a−a=0 . Но мы знаем вида b 2·m −c 2·m = (b−c)·(b+c)· (b 2·m−2 +b 2·m−4 ·c 2 +b 2·m−6 ·c 4 +…+c 2·m−2) , тогда (b−c)·(b+c)· (b 2·m−2 +b 2·m−4 ·c 2 +b 2·m−6 ·c 4 +…+c 2·m−2)=0 . Из этого равенства следует, что b−c=0 , или b+c=0 , или b 2·m−2 +b 2·m−4 ·c 2 +b 2·m−6 ·c 4 +…+c 2·m−2 =0 . Первые два равенства означают, что числа b и c равны или b и c – противоположны. А последнее равенство справедливо лишь при b=c=0 , так как в его левой части находится выражение, которое неотрицательно при любых b и c как сумма неотрицательных чисел.

Что касается корней n -ой степени при нечетных n , то они аналогичны кубическому корню. То есть, корень любой нечетной степени из числа a существует для любого действительного числа a , причем для данного числа a он является единственным.

Единственность корня нечетной степени 2·m+1 из числа a доказывается по аналогии с доказательством единственности кубического корня из a . Только здесь вместо равенства a 3 −b 3 =(a−b)·(a 2 +a·b+c 2) используется равенство вида b 2·m+1 −c 2·m+1 = (b−c)·(b 2·m +b 2·m−1 ·c+b 2·m−2 ·c 2 +… +c 2·m) . Выражение в последней скобке можно переписать как b 2·m +c 2·m +b·c·(b 2·m−2 +c 2·m−2 + b·c·(b 2·m−4 +c 2·m−4 +b·c·(…+(b 2 +c 2 +b·c)))) . Например, при m=2 имеем b 5 −c 5 =(b−c)·(b 4 +b 3 ·c+b 2 ·c 2 +b·c 3 +c 4)= (b−c)·(b 4 +c 4 +b·c·(b 2 +c 2 +b·c)) . Когда a и b оба положительны или оба отрицательны их произведение является положительным числом, тогда выражение b 2 +c 2 +b·c , находящееся в скобках самой высокой степени вложенности, является положительным как сумма положительных чисел. Теперь, продвигаясь последовательно к выражениям в скобках предыдущих степеней вложенности, убеждаемся, что они также положительны как суммы положительных чисел. В итоге получаем, что равенство b 2·m+1 −c 2·m+1 = (b−c)·(b 2·m +b 2·m−1 ·c+b 2·m−2 ·c 2 +… +c 2·m)=0 возможно только тогда, когда b−c=0 , то есть, когда число b равно числу c .

Пришло время разобраться с обозначениями корней n -ой степени. Для этого дается определение арифметического корня n -ой степени .

Определение

Арифметическим корнем n -ой степени из неотрицательного числа a называется неотрицательное число, n -я степень которого равна a .