Стандартный вид многочлена с двумя переменными. Многочлены. Что значит привести многочлен к стандартному виду

§ 1 Что такое многочлен?

В этом уроке узнаем, что математики называют многочленом и какой многочлен является многочленом стандартного вида.

Очень часто при решении реальных задач мы сталкиваемся с такими алгебраическими выражениями, в которых содержится сумма неподобных одночленов. Складывать такие одночлены нельзя, но ситуация не такая уж безнадёжная. Для работы с такими суммами математики ввели новый термин «многочлен». Дадим определение.

Многочлен - это сумма нескольких одночленов.

Например, выражения

Одночлены, входящие в многочлен, называют членами многочлена. Количество членов многочлена может быть любым.

Для некоторых многочленов часто используют специфические названия двучлен и трёхчлен.Это значит, что многочлен состоит из двух или трёх одночленов.

Например:

В математике многочлены ещё называют полиномами. Это слово произошло от греческих слов poly, что значит «много» и слова nomos, что значит «часть». А первую букву слова poly используют для обозначения многочленов.

Для этого записывают букву р и рядом в скобках через точку с запятой перечисляют те переменные, которые входят в состав многочлена.

Запись р(х) читают как «пэ от икс», запись р(х;у) читают как «пэ от икс, игрек» и т.д. Затем ставят знак равно и пишут сам многочлен.

Например:

Такая форма записи удобна при нахождении значения многочлена. Значение многочлена - это значение алгебраического выражения при заданном значении букв.

Например, дан многочлен:

Надо найти:

Данное задание следует понимать так: надо найти значение выражения 2х-3 при х=5.

Подставим вместо х число 5, получим

Или такой пример:

Это задание следует понимать так:

Подставляем данные значения и получаем:

§ 2 Многочлен стандартного вида

Это, безусловно, многочлен, только входящие в него одночлены записаны в нестандартном виде. Приведём все одночлены к стандартному виду.

Но и это ещё не все. Мы видим, что первый и второй одночлены подобны. Поэтому можно привести подобные члены.

Больше ничего сделать нельзя. Мы получили многочлен, равный исходному, но все его одночлены записаны в стандартном виде, и приведены подобные члены.

Такой многочлен называют многочленом стандартного вида.

Привести к стандартному виду можно любой многочлен, и эта процедура должна быть выполнена в первую очередь, прежде чем выполнять какие-либо действия с многочленами.

Давайте рассмотрим ещё один пример.

Этот многочлен состоит из пяти одночленов, и не все они записаны в стандартном виде.

Для приведения их к стандартному виду:

Но этого мало. Надо ещё привести подобные одночлены.

В этом многочлене все одночлены записаны в стандартном виде, и приведены все подобные члены, значит это - многочлен стандартного вида.

Таким образом, сегодня мы познакомились с новым математическим понятием многочлен, научились записывать его в стандартном виде и находить значение многочлена.

Список использованной литературы:

  1. Мордкович А.Г, Алгебра 7 класс в 2 частях, Часть 1, Учебник для общеобразовательных учреждений/ А.Г. Мордкович. – 10 – е изд., переработанное – Москва, «Мнемозина», 2007
  2. Мордкович А.Г., Алгебра 7 класс в 2 частях, Часть 2, Задачник для общеобразовательных учреждений/ [А.Г. Мордкович и др.]; под редакцией А.Г. Мордковича – 10-е издание, переработанное – Москва, «Мнемозина», 2007
  3. Е.Е. Тульчинская, Алгебра 7 класс. Блиц опрос: пособие для учащихся общеобразовательных учреждений, 4-е издание, исправленное и дополненное, Москва, «Мнемозина», 2008
  4. Александрова Л.А., Алгебра 7 класс. Тематические проверочные работы в новой форме для учащихся общеобразовательных учреждений, под редакцией А.Г. Мордковича, Москва, «Мнемозина», 2011
  5. Александрова Л.А. Алгебра 7 класс. Самостоятельные работы для учащихся общеобразовательных учреждений, под редакцией А.Г. Мордковича – 6-е издание, стереотипное, Москва, «Мнемозина», 2010

- многочленами . В этой статье мы изложим все начальные и необходимые сведения о многочленах. К ним, во-первых, относится определение многочлена с сопутствующими определениями членов многочлена, в частности, свободного члена и подобных членов. Во-вторых, остановимся на многочленах стандартного вида, дадим соответствующее определение и приведем их примеры. Наконец, введем определение степени многочлена, разберемся, как ее найти, и скажем про коэффициенты членов многочлена.

Навигация по странице.

Многочлен и его члены – определения и примеры

В 7 классе многочлены изучаются сразу после одночленов, это и понятно, так как определение многочлена дается через одночлены. Дадим это определение, объясняющее что такое многочлен.

Определение.

Многочлен – это сумма одночленов; одночлен считается частным случаем многочлена.

Записанное определение позволяет привести сколько угодно примеров многочленов. Любой из одночленов 5 , 0 , −1 , x , 5·a·b 3 , x 2 ·0,6·x·(−2)·y 12 , и т.п. является многочленом. Также по определению 1+x , a 2 +b 2 и - это многочлены.

Для удобства описания многочленов вводится определение члена многочлена.

Определение.

Члены многочлена – это составляющие многочлен одночлены.

Например, многочлен 3·x 4 −2·x·y+3−y 3 состоит из четырех членов: 3·x 4 , −2·x·y , 3 и −y 3 . Одночлен считается многочленом, состоящим из одного члена.

Определение.

Многочлены, которые состоят из двух и трех членов, имеют специальные названия – двучлен и трехчлен соответственно.

Так x+y – это двучлен, а 2·x 3 ·q−q·x·x+7·b – трехчлен.

В школе наиболее часто приходится работать с линейным двучленом a·x+b , где a и b – некоторые числа, а x – переменная, а также с квадратным трехчленом a·x 2 +b·x+c , где a , b и c – некоторые числа, а x – переменная. Вот примеры линейных двучленов: x+1 , x·7,2−4 , а вот примеры квадратных трехчленов: x 2 +3·x−5 и .

Многочлены в своей записи могут иметь подобные слагаемые . Например, в многочлене 1+5·x−3+y+2·x подобными слагаемыми являются 1 и −3 , а также 5·x и 2·x . Они имеют свое особое название – подобные члены многочлена.

Определение.

Подобными членами многочлена называются подобные слагаемые в многочлене.

В предыдущем примере 1 и −3 , как и пара 5·x и 2·x , являются подобными членами многочлена. В многочленах, имеющих подобные члены, можно для упрощения их вида выполнять приведение подобных членов .

Многочлен стандартного вида

Для многочленов, как и для одночленов, существует так называемый стандартный вид. Озвучим соответствующее определение.

Исходя из данного определения, можно привести примеры многочленов стандартного вида. Так многочлены 3·x 2 −x·y+1 и записаны в стандартном виде. А выражения 5+3·x 2 −x 2 +2·x·z и x+x·y 3 ·x·z 2 +3·z не являются многочленами стандартного вида, так как в первом из них содержатся подобные члены 3·x 2 и −x 2 , а во втором – одночлен x·y 3 ·x·z 2 , вид которого отличен от стандартного.

Заметим, что при необходимости всегда можно привести многочлен к стандартному виду .

К многочленам стандартного вида относится еще одно понятие – понятие свободного члена многочлена.

Определение.

Свободным членом многочлена называют член многочлена стандартного вида без буквенной части.

Иными словами, если в записи многочлена стандартного вида есть число, то его называют свободным членом. Например, 5 – это свободный член многочлена x 2 ·z+5 , а многочлен 7·a+4·a·b+b 3 не имеет свободного члена.

Степень многочлена – как ее найти?

Еще одним важным сопутствующим определением является определение степени многочлена. Сначала определим степень многочлена стандартного вида, это определение базируется на степенях одночленов , находящихся в его составе.

Определение.

Степень многочлена стандартного вида – это наибольшая из степеней входящих в его запись одночленов.

Приведем примеры. Степень многочлена 5·x 3 −4 равна 3 , так как входящие в его состав одночлены 5·x 3 и −4 имеют степени 3 и 0 соответственно, наибольшее из этих чисел есть 3 , оно и является степенью многочлена по определению. А степень многочлена 4·x 2 ·y 3 −5·x 4 ·y+6·x равна наибольшему из чисел 2+3=5 , 4+1=5 и 1 , то есть, 5 .

Теперь выясним, как найти степень многочлена произвольного вида.

Определение.

Степенью многочлена произвольного вида называют степень соответствующего ему многочлена стандартного вида.

Итак, если многочлен записан не в стандартном виде, и требуется найти его степень, то нужно привести исходный многочлен к стандартному виду, и найти степень полученного многочлена – она и будет искомой. Рассмотрим решение примера.

Пример.

Найдите степень многочлена 3·a 12 −2·a·b·c·a·c·b+y 2 ·z 2 −2·a 12 −a 12 .

Решение.

Сначала нужно представить многочлен в стандартном виде:
3·a 12 −2·a·b·c·a·c·b+y 2 ·z 2 −2·a 12 −a 12 = =(3·a 12 −2·a 12 −a 12)− 2·(a·a)·(b·b)·(c·c)+y 2 ·z 2 = =−2·a 2 ·b 2 ·c 2 +y 2 ·z 2 .

В полученный многочлен стандартного вида входят два одночлена −2·a 2 ·b 2 ·c 2 и y 2 ·z 2 . Найдем их степени: 2+2+2=6 и 2+2=4 . Очевидно, наибольшая из этих степеней равна 6 , она по определению является степенью многочлена стандартного вида −2·a 2 ·b 2 ·c 2 +y 2 ·z 2 , а значит, и степенью исходного многочлена. , 3·x и 7 многочлена 2·x−0,5·x·y+3·x+7 .

Список литературы.

  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 17-е изд., доп. - М.: Мнемозина, 2013. - 175 с.: ил. ISBN 978-5-346-02432-3.
  • Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. - 3-е изд. - М.: Просвещение, 2010.- 368 с. : ил. - ISBN 978-5-09-022771-1.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Урок на тему: "Понятие и определение многочлена. Стандартный вид многочлена"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 7 класса
Электронное учебное пособие по учебнику Ю.Н. Макарычева
Электронное учебное пособие по учебнику Ш.А. Алимова

Ребята, вы уже изучали одночлены в теме: Стандартный вид одночлена. Определения. Примеры. Давайте повторим основные определения.

Одночлен – выражение, состоящие из произведения чисел и переменных. Переменные могут быть возведены в натуральную степень. Одночлен не содержит ни каких других действий, кроме умножения.

Стандартный вид одночлена – такой вид, когда на первом месте стоит коэффициент (числовой множитель), а за ним степени различных переменных.

Подобные одночлены – это либо одинаковые одночлены, либо одночлены, которые отличаются друг от друга на коэффициент.

Понятие многочлена

Многочлен, как и одночлен, - это обобщенное название математических выражений определенного вида. Мы уже сталкивались с такими обобщениями ранее. Например, "сумма", "произведение", "возведение в степень". Когда мы слышим "разность чисел", нам и в голову не придет мысль об умножении или делении. Также и многочлен - это выражение строго определенного вида.

Определение многочлена

Многочлен - это сумма одночленов.

Одночлены, входящие в состав многочлена, называются членами многочлена . Если слагаемых два, то мы имеем дело с двучленом, еcли три, то с трехчленом. Если слагаемых больше говорят - многочлен.

Примеры многочленов.

1) 2аb + 4сd (двучлен);

2) 4аb + 3сd + 4x (трехчлен);

3) 4а 2 b 4 + 4с 8 d 9 + 2xу 3 ;

3с 7 d 8 - 2b 6 c 2 d + 7xу - 5xy 2 .


Посмотрим внимательно на последние выражение. По определению, многочлен это - сумма одночленов, но в последнем примере мы не только складываем, но и вычитаем одночлены.
Чтобы внести ясность рассмотрим небольшой пример.

Запишем выражение а + b - с (договоримся, что а ≥ 0, b ≥ 0 и с ≥0 ) и ответим на вопрос: это сумма или разность? Сложно сказать.
Действительно, если переписать выражение, как а + b + (-с) , мы получим сумму двух положительных и одного отрицательного слагаемых.
Если посмотреть на наш пример, то мы имеем дело именно с суммой одночленов с коэффициентами: 3, - 2, 7, -5. В математике есть термин "алгебраическая сумма". Таким образом, в определении многочлена имеется в виду "алгебраическая сумма".

А вот запись вида 3а: b + 7с многочленом не является потому, что 3а: b не является одночленом.
Не является многочленом и запись вида 3b + 2а * (с 2 + d), так как 2а * (с 2 + d) - не одночлен. Если раскрыть скобки, то полученное выражение будет являться многочленом.
3b + 2а * (с 2 + d) = 3b + 2ас 2 + 2аd.

Степенью многочлена является наивысшая степень его членов.
Многочлен а 3 b 2 +а 4 имеет пятую степень, так как степень одночлена а 3 b 2 равна 2 + 3= 5, а степень одночлена а 4 равна 4.

Стандартный вид многочлена

Многочлен, не имеющий подобных членов и записанный в порядке убывания степеней членов многочлена, является многочленом стандартного вида.

Многочлен приводят к стандартному виду, что бы убрать излишнюю громоздкость написания и упростить дальнейшие действия с ним.

Действительно, зачем к примеру писать длинное выражение 2b 2 + 3b 2 + 4b 2 + 2а 2 + а 2 + 4 + 4, когда его можно записать короче 9b 2 + 3а 2 + 8 .

Чтобы привести многочлен к стандартному виду, надо:
1. привести все его члены к стандартному виду,
2. сложить подобные (одинаковые или с разным числовым коэффициентом) члены. Данная процедура часто называется приведением подобных .

Пример.
Привести многочлен аba + 2у 2 х 4 х + у 2 х 3 х 2 + 4 + 10а 2 b + 10 к стандартному виду.

Решение.

а 2 b + 2 х 5 у 2 + х 5 у 2 + 10а 2 b + 14= 11а 2 b + 3 х 5 у 2 + 14.

Определим степени одночленов, входящих в состав выражения, и расставим их в порядке убывания.
11а 2 b имеет третью степень, 3 х 5 у 2 имеет седьмую степень, 14 – нулевую степень.
Значит, на первое место мы поставим 3 х 5 у 2 (7 степень), на второе - 12а 2 b (3 степень) и на третье - 14 (нулевая степень).
В итоге получим многочлен стандартного вида 3х 5 у 2 + 11а 2 b + 14.

Примеры для самостоятельного решения

Привести к стандартному виду многочлены.

1) 4b 3 аa - 5х 2 у + 6ас - 2b 3 а 2 - 56 + ас + х 2 у + 50 * (2 а 2 b 3 - 4х 2 у + 7ас - 6);

2) 6а 5 b + 3х 2 у + 45 + х 2 у + аb - 40 * (6а 5 b + 4ху + аb + 5);

3) 4ах 2 + 5bс - 6а - 24bс + хаx 4 x (5ах 6 - 19bс - 6а);

4) 7аbс 2 + 5асbс + 7аb 2 - 6bаb + 2саbс (14аbс 2 + аb 2).

Мы сказали, что имеют место как многочлены стандартного вида, так и не стандартного. Там же мы отметили, что можно любой многочлен привести к стандартному виду . В этой статье мы для начала выясним, какой смысл несет в себе эта фраза. Дальше перечислим шаги, позволяющие преобразовать любой многочлен в стандартный вид. Наконец, рассмотрим решения характерных примеров. Решения будем описывать очень подробно, чтобы разобраться со всеми нюансами, возникающими при приведении многочленов к стандартному виду.

Навигация по странице.

Что значит привести многочлен к стандартному виду?

Сначала нужно четко понимать, что понимают под приведением многочлена к стандартному виду. Разберемся с этим.

Многочлены, как и любые другие выражения, можно подвергать тождественным преобразованиям . В результате выполнения таких преобразований, получаются выражения, тождественно равные исходному выражению. Так выполнение определенных преобразований с многочленами не стандартного вида позволяют перейти к тождественно равным им многочленам, но записанным уже в стандартном виде. Такой переход и называют приведением многочлена к стандартному виду.

Итак, привести многочлен к стандартному виду – это значит заменить исходный многочлен тождественно равным ему многочленом стандартного вида, полученным из исходного путем проведения тождественных преобразований.

Как привести многочлен к стандартному виду?

Давайте поразмыслим, какие преобразования нам помогут привести многочлен к стандартному виду. Будем отталкиваться от определения многочлена стандартного вида.

По определению каждый член многочлена стандартного вида является одночленом стандартного вида , и многочлен стандартного вида не содержит подобных членов. В свою очередь многочлены, записанные в виде, отличном от стандартного, могут состоять из одночленов в не стандартном виде и могут содержать подобные члены. Отсюда логически вытекает следующее правило, объясняющее как привести многочлен к стандартному виду :

  • сначала нужно привести к стандартному виду одночлены, из которых состоит исходный многочлен,
  • после чего выполнить приведение подобных членов.

В итоге будет получен многочлен стандартного вида, так как все его члены будут записаны в стандартном виде, и он не будет содержать подобных членов.

Примеры, решения

Рассмотрим примеры приведения многочленов к стандартному виду. При решении будем выполнять шаги, продиктованные правилом из предыдущего пункта.

Здесь заметим, что иногда все члены многочлена сразу записаны в стандартном виде, в этом случае достаточно лишь привести подобные члены. Иногда после приведения членов многочлена к стандартному виду не оказывается подобных членов, следовательно, этап приведения подобных членов в этом случае опускается. В общем случае приходится делать и то и другое.

Пример.

Представьте многочлены в стандартном виде: 5·x 2 ·y+2·y 3 −x·y+1 , 0,8+2·a 3 ·0,6−b·a·b 4 ·b 5 и .

Решение.

Все члены многочлена 5·x 2 ·y+2·y 3 −x·y+1 записаны в стандартном виде, подобных членов он не имеет, следовательно, этот многочлен уже представлен в стандартном виде.

Переходим к следующему многочлену 0,8+2·a 3 ·0,6−b·a·b 4 ·b 5 . Его вид не является стандартным, о чем свидетельствуют члены 2·a 3 ·0,6 и −b·a·b 4 ·b 5 не стандартного вида. Представим его в стандартном виде.

На первом этапе приведения исходного многочлена к стандартному виду нам нужно представить в стандартном виде все его члены. Поэтому, приводим к стандартному виду одночлен 2·a 3 ·0,6 , имеем 2·a 3 ·0,6=1,2·a 3 , после чего – одночлен −b·a·b 4 ·b 5 , имеем −b·a·b 4 ·b 5 =−a·b 1+4+5 =−a·b 10 . Таким образом, . В полученном многочлене все члены записаны в стандартном виде, более того очевидно, что в нем нет подобных членов. Следовательно, на этом завершено приведение исходного многочлена к стандартному виду.

Осталось представить в стандартном виде последний из заданных многочленов . После приведения всех его членов к стандартному виду он запишется как . В нем есть подобные члены, поэтому нужно провести приведение подобных членов :

Так исходный многочлен принял стандартный вид −x·y+1 .

Ответ:

5·x 2 ·y+2·y 3 −x·y+1 – уже в стандартном виде, 0,8+2·a 3 ·0,6−b·a·b 4 ·b 5 =0,8+1,2·a 3 −a·b 10 , .

Зачастую приведение многочлена к стандартному виду является лишь промежуточным этапом при ответе на поставленный вопрос задачи. Например, нахождение степени многочлена предполагает его предварительное представление в стандартном виде.

Пример.

Приведите многочлен к стандартному виду, укажите его степень и расположите члены по убывающим степеням переменной.

Решение.

Сначала приводим все члены многочлена к стандартному виду: .

Теперь приводим подобные члены:

Так мы привели исходный многочлен к стандартному виду, это нам позволяет определить степень многочлена , которая равна наибольшей степени входящих в него одночленов. Очевидно, она равна 5.

Осталось расположить члены многочлена по убывающим степеням переменных. Для этого нужно лишь переставить местами члены в полученном многочлене стандартного вида, учитывая требование. Наибольшую степень имеет член z 5 , степени членов , −0,5·z 2 и 11 равны соответственно 3 , 2 и 0 . Поэтому многочлен с расположенными по убывающим степеням переменной членами будет иметь вид .

Ответ:

Степень многочлена равна 5 , а после расположения его членов по убывающим степеням переменной он принимает вид .

Список литературы.

  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 17-е изд., доп. - М.: Мнемозина, 2013. - 175 с.: ил. ISBN 978-5-346-02432-3.
  • Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. - 3-е изд. - М.: Просвещение, 2010.- 368 с. : ил. - ISBN 978-5-09-022771-1.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

На данном уроке мы вспомним основные определения данной темы и рассмотрим некоторые типовые задачи, а именно приведение многочлена к стандартному виду и вычисление численного значения при заданных значениях переменных. Мы решим несколько примеров, в которых будет применяться приведение к стандартному виду для решения разного рода задач.

Тема: Многочлены. Арифметические операции над одночленами

Урок: Приведение многочлена к стандартному виду. Типовые задачи

Напомним основное определение: многочлен - это сумма одночленов. Каждый одночлен, входящий в состав многочлена как слагаемое называется его членом. Например:

Двучлен;

Многочлен;

Двучлен;

Поскольку многочлен состоит из одночленов, то первое действие с многочленом следует отсюда - нужно привести все одночлены к стандартному виду. Напомним, что для этого нужно перемножить все численные множители - получить численный коэффициент, и перемножить соответствующие степени - получить буквенную часть. Кроме того, обратим внимание на теорему о произведении степеней: при умножении степеней показатели их складываются.

Рассмотрим важную операцию - приведение многочлена к стандартному виду. Пример:

Комментарий: чтобы привести многочлен к стандартному виду, нужно привести к стандартному виду все одночлены, входящие в его состав, после этого, если есть подобные одночлены - а это одночлены с одинаковой буквенной частью - выполнить действия с ними.

Итак, мы рассмотрели первую типовую задачу - приведение многочлена к стандартному виду.

Следующая типовая задача - вычисление конкретного значения многочлена при заданных численных значениях входящих в него переменных. Продолжим рассматривать предыдущий пример и зададим значения переменных:

Комментарий: напомним, что единица в любой натуральной степени равна единице, а ноль в любой натуральной степени равен нулю, кроме того, напомним, что при умножении любого числа на ноль получаем ноль.

Рассмотрим ряд примеров на типовые операции приведения многочлена к стандартному виду и вычисление его значения:

Пример 1 - привести к стандартному виду:

Комментарий: первое действие - приводим одночлены к стандартному виду, нужно привести первый, второй и шестой; второе действие - приводим подобные члены, то есть выполняем над ними заданные арифметические действия: первый складываем с пятым, второй с третьим, остальные переписываем без изменений, так как у них нет подобных.

Пример 2 - вычислить значение многочлена из примера 1 при заданных значениях переменных:

Комментарий: при вычислении следует вспомнить, что единица в любой натуральной степени это единица, при затруднении вычислений степеней двойки можно воспользоваться таблицей степеней.

Пример 3 - вместо звездочки поставить такой одночлен, чтобы результат не содержал переменной :

Комментарий: независимо от поставленной задачи, первое действие всегда одинаково - привести многочлен к стандартному виду. В нашем примере это действие сводится к приведению подобных членов. После этого следует еще раз внимательно прочитать условие и подумать, каким образом мы можем избавиться от одночлена . очевидно, что для этого нужно к нему прибавить такой же одночлен, но с противоположным знаком - . далее заменяем звездочку этим одночленом и убеждаемся в правильности нашего решения.