Ученик измеряет силу кисти своей руки. Компактный помощник для красоты рук - эспандер

Пусть даны два неравенства f 1(x ) > g 1(x ) и f 2(x ) > g 2(x ). Система неравенств представляет собой конъюнкцию этих неравенств . Записывают систему так:


Решением этой системы х , которое обращает каждое из неравенств в истинное числовое неравенство. Множество решений системы неравенств есть пересечение множеств решений неравенств, образующих данную систему.


Неравенство |x | < a , где а > 0, равносильно системе или двойному неравенству --а < x < a .


Совокупность неравенств f 1(x ) > g 1(x ) и f 2(x ) > g 2(x ) представляет собой дизъюнкцию этих неравенств .


Записывают совокупность так:


Решением этой совокупности является всякое значение переменной х , которое обращает в истинное числовое неравенство хотя бы одно из неравенств совокупности. Множество решений совокупности есть объединение множеств решений неравенств, образующих совокупность.


Неравенство |x | > а , где а > 0, равносильно совокупности


Задача. Найти множество решений системы неравенств:


Решение. Найдем множества решений каждого из неравенств системы, а затем - их пересечение. Преобразуем каждое из неравенств к виду x > a или x < a .


Û Û


Û Û Û


х > -7 есть числовой промежуток (-7; ¥), а множество решений неравенства х < 7 - промежуток (-¥; 7). Найдем их пересечение: (-7; ¥) Ç (-¥; 7) = (-7; 7). Таким образом, множеством решений данной системы является промежуток (-7; 7).


Задача. Решить неравенство |x + 3| £ 4.


Решение. Данное неравенство равносильно двойному неравенству -4 £ x + 3 £ 4. Решая его, находим, что -7 £ x £ 1, т.е х Î [-7; 1].


Задача. Найти множество решений совокупности


Решение. Найдем сначала множества решений каждого из неравенств совокупности, а затем их объединение.


Преобразуем каждое из неравенств совокупности, заменяя его равносильным: Û Û Û


Множество решений неравенства х > 2 есть числовой промежуток (2; ¥), а множество решений неравенства х > 1 - промежуток (1; ¥). Найдем их объединение: (2; ¥) È (1; ¥) = (1; ¥). Следовательно, множество решений совокупности есть числовой промежуток (1; ¥).


Задача. Решить неравенство |x + 3| > 5.


Решение. Данное неравенство равносильно совокупности неравенств:



Таким образом, решением полученной совокупности является числовой промежуток (-¥; -8) È (2; ¥).


Упражнения для самостоятельной работы


1. Найдите множества истинности следующих конъюнкций неравенств и изобразите их на числовой прямой:


а) (х > 3) Ù (х > 5); г) (х ³ -7) Ù (х ³ -9);


б) (х < 3) Ù (х < 5); д) (х > 4) Ù (х £ -2);


в) (х ³ -4) Ù (х £ -2); е) (х ³ -6) Ù (х < 11).


2. Решите системы неравенств:


а) б)


в) г)


3. Найдите множества решений неравенств:


а) |x - 6| < 13; в) |3x - 6| £ 0;


б) |5 - 2x | £ 3; г) |3x - 8| < - 1.


4. Найдите множества истинности следующих дизъюнкций неравенств:


а) (х > -9) Ú (х > 1) Ú (х > 6); г) (х < 2) Ú (х > 8);

§1. Системы линейных уравнений.

Система вида

называется системой m линейных уравнений сn неизвестными.

Здесь
- неизвестные,- коэффициенты при неизвестных,
- свободные члены уравнений.

Если все свободные члены уравнений равны нулю, система называется однородной .Решением системы называется совокупность чисел
, при подстановке которых в систему вместо неизвестных все уравнения обращаются в тождества. Система называетсясовместной , если она имеет хотя бы одно решение. Совместная система, имеющая единственное решение, называетсяопределенной . Две системы называютсяэквивалентными , если множества их решений совпадают.

Система (1) может быть представлена в матричной форме с помощью уравнения

(2)

.

§2. Совместность систем линейных уравнений.

Назовем расширенной матрицей системы (1) матрицу

Теорема Кронекера - Капелли . Система (1) совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы:

.

§3. Решение систем n линейных уравнений с n неизвестными.

Рассмотрим неоднородную систему n линейных уравнений сn неизвестными:

(3)

Теорема Крамера .Если главный определитель системы (3)
, то система имеет единственное решение, определяемое по формулам:

т.е.
,

где - определитель, получаемый из определителязаменой-го столбца на столбец свободных членов.

Если
, а хотя бы один из≠0, то система решений не имеет.

Если
, то система имеет бесконечно много решений.

Систему (3) можно решить, используя ее матричную форму записи (2). Если ранг матрицы А равенn , т.е.
, то матрицаА имеет обратную
. Умножив матричное уравнение
на матрицу
слева, получим:

.

Последнее равенство выражает способ решения систем линейных уравнений с помощью обратной матрицы.

Пример. Решить систему уравнений с помощью обратной матрицы.

Решение. Матрица
невырожденная, так как
, значит, существует обратная матрица. Вычислим обратную матрицу:
.


,

Задание . Решить систему методом Крамера.

§4. Решение произвольных систем линейных уравнений.

Пусть дана неоднородная система линейных уравнений вида (1).

Предположим, что система совместна, т.е. выполнено условие теоремы Кронекера-Капелли:
. Если ранг матрицы
(числу неизвестных), то система имеет единственное решение. Если
, то система имеет бесконечно много решений. Поясним.

Пусть ранг матрицы r (A )= r < n . Поскольку
, то существует некоторый ненулевой минор порядкаr . Назовем его базисным минором. Неизвестные, коэффициенты которых образуют базисный минор, назовем базисными переменными. Остальные неизвестные назовем свободными переменными. Переставим уравнения и перенумеруем переменные так, чтобы этот минор располагался в левом верхнем углу матрицы системы:

.

Первые r строк линейно независимы, остальные выражаются через них. Следовательно, эти строки (уравнения) можно отбросить. Получим:

Дадим свободным переменным произвольные числовые значения: . Оставим в левой части только базисные переменные, свободные перенесем в правую часть.

Получили систему r линейных уравнений сr неизвестными, определитель которой отличен от 0. Она имеет единственное решение.

Эта система называется общим решением системы линейных уравнений (1). Иначе: выражение базисных переменных через свободные называется общим решением системы. Из него можно получить бесконечное множествочастных решений , придавая свободным переменным произвольные значения. Частное решение, полученное из общего при нулевых значениях свободных переменных называетсябазисным решением . Число различных базисных решений не превосходит
. Базисное решение с неотрицательными компонентами называетсяопорным решением системы.

Пример .

,r =2.

Переменные
- базисные,
- свободные.

Сложим уравнения; выразим
через
:

- общее решение.

- частное решение при
.

- базисное решение, опорное.

§5. Метод Гаусса.

Метод Гаусса - это универсальный метод исследования и решения произвольных систем линейных уравнений. Он состоит в приведении системы к диагональному (или треугольному) виду путем последовательного исключения неизвестных с помощью элементарных преобразований, не нарушающих эквивалентности систем. Переменная считается исключенной, если она содержится только в одном уравнении системы с коэффициентом 1.

Элементарными преобразованиями системы являются:

Умножение уравнения на число, отличное от нуля;

Сложение уравнения, умноженного на любое число, с другим уравнением;

Перестановка уравнений;

Отбрасывание уравнения 0 = 0.

Элементарные преобразования можно совершать не над уравнениями, а над расширенными матрицами получающихся эквивалентных систем.

Пример .

Решение. Выпишем расширенную матрицу системы:

.

Выполняя элементарные преобразования, приведем левую часть матрицы к единичному виду: на главной диагонали будем создавать единицы, а вне ее - нули.









Замечание . Если при выполнении элементарных преобразований получено уравнение вида 0= к (где к 0), то система несовместна.

Решение систем линейных уравнений методом последовательного исключения неизвестных можно оформлять в виде таблицы .

Левый столбец таблицы содержит информацию об исключенных (базисных) переменных. Остальные столбцы содержат коэффициенты при неизвестных и свободные члены уравнений.

В исходную таблицу записывают расширенную матрицу системы. Далее приступают к выполнению преобразований Жордана:

1. Выбирают переменную , которая станет базисной. Соответствующий столбец называют ключевым. Выбирают уравнение, в котором эта переменная останется, будучи исключенной из других уравнений. Соответствующую строку таблицы называют ключевой. Коэффициент, стоящий на пересечении ключевой строки и ключевого столбца, называют ключевым.

2. Элементы ключевой строки делят на ключевой элемент.

3. Ключевой столбец заполняют нулями.

4. Остальные элементы вычисляют по правилу прямоугольника. Составляют прямоугольник, в противоположных вершинах которого находятся ключевой элемент и пересчитываемый элемент; из произведения элементов, стоящих на диагонали прямоугольника с ключевым элементом, вычитают произведение элементов другой диагонали, полученную разность делят на ключевой элемент.

Пример . Найти общее решение и базисное решение системы уравнений:

Решение.

Общее решение системы:

Базисное решение:
.

Перейти от одного базиса системы к другому позволяет преобразование однократного замещения: вместо одной из основных переменных в базис вводят одну из свободных переменных. Для этого в столбце свободной переменной выбирают ключевой элемент и выполняют преобразования по указанному выше алгоритму.

§6. Нахождение опорных решений

Опорным решением системы линейных уравнений называется базисное решение, не содержащее отрицательных компонент.

Опорные решения системы находят методом Гаусса при выполнении следующих условий.

1. В исходной системе все свободные члены должны быть неотрицательны:
.

2. Ключевой элемент выбирают среди положительных коэффициентов.

3. Если при переменной, вводимой в базис, имеется несколько положительных коэффициентов, то в качестве ключевой строки берется та, в которой отношение свободного члена к положительному коэффициенту будет наименьшим.

Замечание 1 . Если в процессе исключения неизвестных появится уравнение, в котором все коэффициенты неположительны, а свободный член
, то система не имеет неотрицательных решений.

Замечание 2 . Если в столбцах коэффициентов при свободных переменных нет ни одного положительного элемента, то переход к другому опорному решению невозможен.

Пример.

Если в задаче меньше трех переменных, это не задача; если больше восьми – она неразрешима. Энон.

Задачи с параметрами встречаются во всех вариантах ЕГЭ, поскольку при их решении наиболее ярко выявляется, насколько глубоки и неформальны знания выпускника. Трудности, возникающие у учащихся при выполнении подобных заданий, вызваны не только относительной их сложностью, но и тем, что в учебных пособиях им уделяется недостаточно внимания. В вариантах КИМов по математике встречается два типа заданий с параметрами. Первый: «для каждого значения параметра решить уравнение, неравенство или систему». Второй: «найти все значения параметра, при каждом из которых решения неравенства, уравнения или системы удовлетворяют заданным условиям». Соответственно и ответы в задачах этих двух типов различаются по существу. В первом случае в ответе перечисляются все возможные значения параметра и для каждого из этих значений записываются решения уравнения. Во втором – перечисляются все значения параметра, при которых выполнены условия задачи. Запись ответа является существенным этапом решения, очень важно не забыть отразить все этапы решения в ответе. На это необходимо обращать внимание учащихся.
В приложении к уроку приведен дополнительный материал по теме «Решение систем линейных уравнений с параметрами», который поможет при подготовке учащихся к итоговой аттестации.

Цели урока:

Урок рассчитан на два учебных часа.

Ход урока

  1. Организационный момент

Сообщение темы, целей и задач урока.

  1. Актуализация опорных знаний учащихся

Проверка домашней работы. В качестве домашнего задания учащимся было предложено решить каждую из трех систем линейных уравнений

а) б) в)

графически и аналитически; сделать вывод о количестве полученных решений для каждого случая

Заслушиваются и анализируются выводы, сделанные учащимися. Результаты работы под руководством учителя в краткой форме оформляются в тетрадях.

В общем виде систему двух линейных уравнений с двумя неизвестными можно представить в виде: .

Решить данную систему уравнений графически – значит найти координаты точек пересечения графиков данных уравнений или доказать, что таковых нет. Графиком каждого уравнения этой системы на плоскости является некоторая прямая.

Возможны три случая взаимного расположения двух прямых на плоскости:

<Рисунок1>;

<Рисунок2>;

<Рисунок3>.

К каждому случаю полезно выполнить рисунок.

  1. Изучение нового материала

Сегодня на уроке мы научимся решать системы линейных уравнений, содержащие параметры. Параметром будем называть независимую переменную, значение которой в задаче считается заданным фиксированным или произвольным действительным числом, или числом, принадлежащим заранее оговоренному множеству. Решить систему уравнений с параметром – значит установить соответствие, позволяющее для любого значения параметра найти соответствующее множество решений системы.

Решение задачи с параметром зависит от вопроса, поставленного в ней. Если нужно просто решить систему уравнений при различных значениях параметра или исследовать ее, то необходимо дать обоснованный ответ для любого значения параметра или для значения параметра, принадлежащего заранее оговоренному в задаче множеству. Если же необходимо найти значения параметра, удовлетворяющие определенным условиям, то полного исследования не требуется, и решение системы ограничивается нахождением именно этих конкретных значений параметра.

Пример 1. Для каждого значения параметра решим систему уравнений

Решение.

  1. Система имеет единственное решение, если

В этом случае имеем

  1. Если а = 0, то система принимает вид

Система несовместна, т.е. решений не имеет.

  1. Если то система запишется в виде

Очевидно, что в этом случае система имеет бесконечно много решений вида x = t; где t-любое действительное число.

Ответ:

Пример 2.

  • имеет единственное решение;
  • имеет множество решений;
  • не имеет решений?

Решение.

Ответ:

Пример 3. Найдем сумму параметров a и b, при которых система

имеет бесчисленное множество решений.

Решение. Система имеет бесчисленное множество решений, если

То есть если a = 12, b = 36; a + b = 12 + 36 =48.

Ответ: 48.

  1. Закрепление изученного в ходе решения задач
  1. № 15.24(а) . Для каждого значения параметра решите систему уравнений

  1. № 15.25(а) Для каждого значения параметра решите систему уравнений

  1. При каких значениях параметра a система уравнений

а) не имеет решений; б) имеет бесконечно много решений.

Ответ: при а = 2 решений нет, при а = -2 бесконечное множество решений

  1. Практическая работа в группах

Класс разбивается на группы по 4-5 человек. В каждую группу входят учащиеся с разным уровнем математической подготовки. Каждая группа получает карточку с заданием. Можно предложить всем группам решить одну систему уравнений, а решение оформить. Группа, первой верно выполнившая задание, представляет свое решение; остальные сдают решение учителю.

Карточка. Решите систему линейных уравнений

при всех значениях параметра а.

Ответ: при система имеет единственное решение ; при нет решений; при а = -1бесконечно много решений вида, (t; 1- t) где t R

Если класс сильный, группам могут быть предложены разные системы уравнений, перечень которых находится в Приложении1 . Тогда каждая группа представляет классу свое решение.

Отчет группы, первой верно выполнившей задание

Участники озвучивают и поясняют свой вариант решения и отвечают на вопросы, возникшие у представителей остальных групп.

  1. Самостоятельная работа

Вариант 1

Вариант 2

  1. Итоги урока

Решение систем линейных уравнений с параметрами можно сравнить с исследованием, которое включает в себя три основных условия. Учитель предлагает учащимся их сформулировать.

При решении следует помнить:

  1. для того, чтобы система имела единственное решение, нужно, чтобы прямые, отвечающие уравнению системы, пересекались, т.е. необходимо выполнение условия;
  2. чтобы не имела решений, нужно, чтобы прямые были параллельны, т.е. выполнялось условие,
  3. и, наконец, чтобы система имела бесконечно много решений, прямые должны совпадать, т.е. выполнялось условие.

Учитель оценивает работу на уроке класса в целом и выставляет отметки за урок отдельным учащимся. После проверки самостоятельной работы оценку за урок получит каждый ученик.

  1. Домашнее задание

При каких значениях параметра b система уравнений

  • имеет бесконечно много решений;
  • не имеет решений?

Графики функций y = 4x + b и y = kx + 6 симметричны относительно оси ординат.

  • Найдите b и k,
  • найдите координаты точки пересечения этих графиков.

Решите систему уравнений при всех значениях m и n.

Решите систему линейных уравнений при всех значениях параметра а (любую на выбор).

Литература

  1. Алгебра и начала математического анализа: учеб. для 11 кл. общеобразоват. учреждений: базовый и профил. уровни / С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин – М. : Просвещение, 2008.
  2. Математика: 9 класс: Подготовка к государственной итоговой аттестации / М. Н. Корчагина, В. В. Корчагин – М. : Эксмо, 2008.
  3. Готовимся в вуз. Математика. Часть 2. Учебное пособие для подготовки к ЕГЭ, участию в централизованном тестировании и сдаче вступительных испытаний в КубГТУ / Кубан. гос. технол. ун-т; Ин-т совр. технол. и экон.; Сост.: С. Н. Горшкова, Л. М. Данович, Н.А. Наумова, А.В. Мартыненко, И.А. Пальщикова. – Краснодар, 2006.
  4. Сборник задач по математике для подготовительных курсов ТУСУР: Учебное пособие / З. М. Гольдштейн, Г. А. Корниевская, Г. А. Коротченко, С.Н. Кудинова. – Томск: Томск. Гос. ун-т систем управления и радиоэлектроники, 1998.
  5. Математика: интенсивный курс подготовки к экзамену/ О. Ю. Черкасов, А.Г.Якушев. – М.: Рольф, Айрис-пресс, 1998.

Решить систему уравнений – значит найти множество её решений. А решением системы двух уравнений с двумя переменными является пара значений переменных, обращающая каждое уравнение системы в верное числовое равенство. Системы уравнений с двумя переменными можно решать а) графически; б) способом подстановки; в) способом сложения. Выбор способа решения зависит от уравнений, входящих в систему. Графический способ применим к решению любой системы, но с помощью графиков уравнений можно приближенно находить решения системы. Лишь некоторые найденные решения системы могут оказаться точными. В этом можно убедиться, подставив их координаты в уравнения системы. Способ подстановки «хорош» при решении систем, когда одно из уравнений является уравнением первой степени. Способом сложения лучше пользоваться в случае, когда оба уравнения системы есть уравнения второй степени.


Пример1. С помощью графиков решим систему уравнений: (x – 3) 2 + (y – 4) 2 = 4, Решение. y – x 2 = 0. На геометрическом языке решить систему уравнений – значит найти все общие точки графиков уравнений, входящих в систему. Поэтому выясним, что является графиком каждого из уравнений данной системы. Итак, графиком уравнения (x – 3) 2 + (y – 4) 2 = 4 является окружность радиуса 2 с центром в точке с координатами (3; 4). Графиком уравнения y – x 2 = 0 является парабола y = x 2, ветви которой направлены вверх, а вершина расположена в точке с координатами (0;0). Изобразим графики уравнений в одной системе координат и найдём координаты точек пересечения, это и есть решения системы. Ответ: x 1 1,7, y 1 2,5; x 2 2,4, y 2 5,9.


Пример2. Решим систему уравнений способом подстановки: 0,5x 2 - y = 2, y - x = 2. Решение. 1) Выразим из второго уравнения системы y через x, получим уравнение: y = x) В первое уравнение системы вместо y подставим выражение (x + 2), получим уравнение: 0,5x 2 - (x + 2) = 2, решим его. 0,5x 2 - x - 2 = 2, 0,5x 2 - x = 0, 0,5x 2 - x - 4 = 0. Домножив обе части уравнения на 2, получим уравнение равносильное предыдущим: x x - 8= 0. Используя теорему, обратную Виета, находим корни квадратного уравнения – ими являются числа -2 и 4. 3) Если x = -2, то y = x + 2 = = 0. Если x = 4, то y = x + 2 = = 6. Ответ: { (-2; 0), (4; 6) }


Пример3. Решим систему уравнений способом сложения: x 2 - 2xy – 3 = 0, 2x 2 + 3xy – 27 = 0. Решение. 1) Первое уравнение системы умножим на 3, а второе – на 2. Получим систему, равносильную данной: 3x 2 - 6xy – 9 = 0, 4x 2 + 6xy – 54 = 0. 2) Сложив уравнения системы, получим уравнение с одной переменной: 7x 2 – 63 = 0, 7x 2 = 63, x 2 = 63: 7, x = ± 3. 3) Подставим найденные значения х в первое уравнение системы: если х = - 3, то (- 3) 2 – 2*(- 3)*y – 3 = 0, отсюда у = - 1; если х = 3, то 3 2 – 2*3*y – 3 = 0, отсюда у = 1. Ответ: { (- 3; - 1), (3; 1) }.


Решите графически системы уравнений: 1) ху + 3 = 0, 2) у =, у = x ху - 8 = 0. Ответ (по щелчку) (- 1; 3) (4; 2)




П о д с к а з к и Система 1). Если во втором уравнении системы слагаемое «- 2ху» перенести в левую часть, то там получим квадрат суммы (х + у) 2. В первом уравнении системы выразим х через у и подставим получившееся выражение во второе преобразованное уравнение; решив его, найдем значения у. Найдя значение у, найдем соответствующие значения х. Ответ: { (2; - 5), (5; - 2) }. Система 2). Если во втором уравнении системы раскроем скобки, слагаемое «ху» заменим значением «-8» и приведем подобные слагаемые, а затем разделим обе части уравнения на «2», то сможем выразить х через у. Подставив полученное выражение х через у в первое уравнение системы, получим квадратное уравнение относительно у; решив его, найдем значения у. Найдя значение у, найдем соответствующие значения х. Ответ: { (- 2; 4), (8; - 1) }. Система 3). Если из первого уравнения системы выразим х через у и подставим во второе уравнение, то получим дробно-рациональное уравнение относительно у; решив его, найдем значения у. Найдя значение у, найдем соответствующие значения х. Ответ: { (3; 1), (- 1; - 3) }. Далее ознакомьтесь с графическим способом решения систем