Треугольный конус. Как найти образующую конуса? Постановка и решение проблемы

На заданном интервале функция имеет 2 максимума и 2 минимума, итого 4 экстремума. Задание На рисунке изображен график производной функции, определенной на интервале. Решение На заданном отрезке производная функции положительна, поэтому функция на этом отрезке возрастает. Решение Если производная в некоторой точке равна нулю, а в ее окрестности меняет знак, то это точка экстремума.

Вычисление значения производной. Метод двух точек

1. По графику производной исследовать функцию. Функция y=f(x) убывает на промежутках (x1;x2) и (x3;x4). С помощью графика производной y=f ‘(x)также можно сравнивать значения функции y=f(x).

Обозначим эти точки A (x1; y1) и B (x2; y2). Правильно выписывайте координаты - это ключевой момент решения, и любая ошибка здесь приводит к неправильному ответу.

В физическом смысле производная — это скорость изменения любого процесса. Материальная точка движется прямолинейно по закону x(t) = t²-13t+23, где x - расстояние от точки отсчета в метрах, t - время в секундах, измеренное с начала движения.

Касательная к окружности, эллипсу, гиперболе, параболе.

Напомню, что звучит оно так: функция называется возрастающей/убывающей на промежутке, если большему аргументу функции соответствует большее/меньшее значение функции. Но посмотрите, пожалуйста, ваше решение к задаче 7089. Там при указании промежутков возрастания границы не включаются. Учтите, что задан график производной. Как обычно: выколотая точка не лежит на графике, значения в ней не существуют и не рассматриваются. Хорошо подготовленные дети различают понятия «производная» и «вторая производная». Вы путаете: если бы производная обращалась в 0, то в точке функция могла бы иметь минимум или максимум. Отрицательным значениям производной соответствуют интервалы, на которых функция f(x) убывает.

До этого момента мы занимались нахождением уравнений касательных к графикам однозначных функций вида y = f(x) в различных точках.

На рисунке ниже приведены три фактически разных секущих (точки А и В различны), но они совпадают и задаются одним уравнением. Но все же, если отталкиваться от определения, то прямая и ее секущая прямая совпадают. Приступим к нахождению координат точек касания. Просим обратить на него внимание, так как позже мы его используем при вычислении ординат точек касания. Гипербола с центром в точке и вершинами и задается равенством (рисунок ниже слева), а с вершинами и — равенством (рисунок ниже справа). Возникает логичный вопрос, как определить какой из функций принадлежит точка. Для ответа на него подставляем координаты в каждое уравнение и смотрим, какое из равенств обращается в тождество.

Иногда учащиеся спрашивают, что такое касательная к графику функции. Это прямая, имеющая на данном участке единственную общую точку с графиком, причем так, как показано на нашем рисунке. Похоже на касательную к окружности. Найдем. Мы помним, что тангенс острого угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему. На графике это соответствует резкому излому, когда касательную в данной точке провести невозможно. А как найти производную, если функция задана не графиком, а формулой?


Первая производная Если производная функция положительна (отрицательна) в некотором интервале, то функция в этом интервале монотонно возрастает (монотонно убывает). Если производная функция положительна (отрицательна) в некотором интервале, то функция в этом интервале монотонно возрастает (монотонно убывает). Далее








Определение Кривая называется выпуклой в точке, если в некоторой окрестности этой точки она расположена под своей касательной в точке Кривая называется выпуклой в точке, если в некоторой окрестности этой точки она расположена под своей касательной в точке Кривая называется вогнутой в точке,если в некоторой окрестности этой точке она расположена над своей касательной в точке Кривая называется вогнутой в точке,если в некоторой окрестности этой точке она расположена над своей касательной в точке Далее


Признак вогнутости и выпуклости Если вторая производная функции в данной промежутке положительна, то кривая вогнута в этом промежутке, а если отрицательна – выпукла в этом промежутке. Если вторая производная функции в данной промежутке положительна, то кривая вогнута в этом промежутке, а если отрицательна – выпукла в этом промежутке. Определение






План исследования функции и построения её графика 1. Находят область определения функции и определяют точки разрыва, если они имеются 1. Находят область определения функции и определяют точки разрыва, если они имеются 2. Выясняют, не является ли функция четной или нечетной; проверяют её периодичность 2. Выясняют, не является ли функция четной или нечетной; проверяют её периодичность 3. Определяют точки пересечения графика функции с координатными осями 3. Определяют точки пересечения графика функции с координатными осями 4. Находят критические точки 1-рода 4. Находят критические точки 1-рода 5. Определяют промежутки монотонности и экстремумы функции 5. Определяют промежутки монотонности и экстремумы функции 6. Определяют промежутки выпуклости и вогнутости и находят точки перегиба 6. Определяют промежутки выпуклости и вогнутости и находят точки перегиба 7. Используя результаты исследования, соединяют полученные точки плавной кривой 7. Используя результаты исследования, соединяют полученные точки плавной кривой Выход

В задаче B9 дается график функции или производной, по которому требуется определить одну из следующих величин:

  1. Значение производной в некоторой точке x 0 ,
  2. Точки максимума или минимума (точки экстремума),
  3. Интервалы возрастания и убывания функции (интервалы монотонности).

Функции и производные, представленные в этой задаче, всегда непрерывны, что значительно упрощает решение. Не смотря на то, что задача относится к разделу математического анализа, она вполне по силам даже самым слабым ученикам, поскольку никаких глубоких теоретических познаний здесь не требуется.

Для нахождения значения производной, точек экстремума и интервалов монотонности существуют простые и универсальные алгоритмы — все они будут рассмотрены ниже.

Внимательно читайте условие задачи B9, чтобы не допускать глупых ошибок: иногда попадаются довольно объемные тексты, но важных условий, которые влияют на ход решения, там немного.

Вычисление значения производной. Метод двух точек

Если в задаче дан график функции f(x), касательная к этому графику в некоторой точке x 0 , и требуется найти значение производной в этой точке, применяется следующий алгоритм:

  1. Найти на графике касательной две «адекватные» точки: их координаты должны быть целочисленными. Обозначим эти точки A (x 1 ; y 1) и B (x 2 ; y 2). Правильно выписывайте координаты — это ключевой момент решения, и любая ошибка здесь приводит к неправильному ответу.
  2. Зная координаты, легко вычислить приращение аргумента Δx = x 2 − x 1 и приращение функции Δy = y 2 − y 1 .
  3. Наконец, находим значение производной D = Δy/Δx. Иными словами, надо разделить приращение функции на приращение аргумента — и это будет ответ.

Еще раз отметим: точки A и B надо искать именно на касательной, а не на графике функции f(x), как это часто случается. Касательная обязательно будет содержать хотя бы две таких точки — иначе задача составлена некорректно.

Рассмотрим точки A (−3; 2) и B (−1; 6) и найдем приращения:
Δx = x 2 − x 1 = −1 − (−3) = 2; Δy = y 2 − y 1 = 6 − 2 = 4.

Найдем значение производной: D = Δy/Δx = 4/2 = 2.

Задача. На рисунке изображен график функции y = f(x) и касательная к нему в точке с абсциссой x 0 . Найдите значение производной функции f(x) в точке x 0 .

Рассмотрим точки A (0; 3) и B (3; 0), найдем приращения:
Δx = x 2 − x 1 = 3 − 0 = 3; Δy = y 2 − y 1 = 0 − 3 = −3.

Теперь находим значение производной: D = Δy/Δx = −3/3 = −1.

Задача. На рисунке изображен график функции y = f(x) и касательная к нему в точке с абсциссой x 0 . Найдите значение производной функции f(x) в точке x 0 .

Рассмотрим точки A (0; 2) и B (5; 2) и найдем приращения:
Δx = x 2 − x 1 = 5 − 0 = 5; Δy = y 2 − y 1 = 2 − 2 = 0.

Осталось найти значение производной: D = Δy/Δx = 0/5 = 0.

Из последнего примера можно сформулировать правило: если касательная параллельна оси OX, производная функции в точке касания равна нулю. В этом случае даже не надо ничего считать — достаточно взглянуть на график.

Вычисление точек максимума и минимума

Иногда вместо графика функции в задаче B9 дается график производной и требуется найти точку максимума или минимума функции. При таком раскладе метод двух точек бесполезен, но существует другой, еще более простой алгоритм. Для начала определимся с терминологией:

  1. Точка x 0 называется точкой максимума функции f(x), если в некоторой окрестности этой точки выполняется неравенство: f(x 0) ≥ f(x).
  2. Точка x 0 называется точкой минимума функции f(x), если в некоторой окрестности этой точки выполняется неравенство: f(x 0) ≤ f(x).

Для того чтобы найти точки максимума и минимума по графику производной, достаточно выполнить следующие шаги:

  1. Перечертить график производной, убрав всю лишнюю информацию. Как показывает практика, лишние данные только мешают решению. Поэтому отмечаем на координатной оси нули производной — и все.
  2. Выяснить знаки производной на промежутках между нулями. Если для некоторой точки x 0 известно, что f’(x 0) ≠ 0, то возможны лишь два варианта: f’(x 0) ≥ 0 или f’(x 0) ≤ 0. Знак производной легко определить по исходному чертежу: если график производной лежит выше оси OX, значит f’(x) ≥ 0. И наоборот, если график производной проходит под осью OX, то f’(x) ≤ 0.
  3. Снова проверяем нули и знаки производной. Там, где знак меняется с минуса на плюс, находится точка минимума. И наоборот, если знак производной меняется с плюса на минус, это точка максимума. Отсчет всегда ведется слева направо.

Эта схема работает только для непрерывных функций — других в задаче B9 не встречается.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−5; 5]. Найдите точку минимума функции f(x) на этом отрезке.

Избавимся от лишней информации — оставим только границы [−5; 5] и нули производной x = −3 и x = 2,5. Также отметим знаки:

Очевидно, в точке x = −3 знак производной меняется с минуса на плюс. Это и есть точка минимума.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−3; 7]. Найдите точку максимума функции f(x) на этом отрезке.

Перечертим график, оставив на координатной оси только границы [−3; 7] и нули производной x = −1,7 и x = 5. Отметим на полученном графике знаки производной. Имеем:

Очевидно, в точке x = 5 знак производной меняется с плюса на минус — это точка максимума.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−6; 4]. Найдите количество точек максимума функции f(x), принадлежащих отрезку [−4; 3].

Из условия задачи следует, что достаточно рассмотреть только часть графика, ограниченную отрезком [−4; 3]. Поэтому строим новый график, на котором отмечаем только границы [−4; 3] и нули производной внутри него. А именно, точки x = −3,5 и x = 2. Получаем:

На этом графике есть лишь одна точка максимума x = 2. Именно в ней знак производной меняется с плюса на минус.

Небольшое замечание по поводу точек с нецелочисленными координатами. Например, в последней задаче была рассмотрена точка x = −3,5, но с тем же успехом можно взять x = −3,4. Если задача составлена корректно, такие изменения не должны влиять на ответ, поскольку точки «без определенного места жительства» не принимают непосредственного участия в решении задачи. Разумеется, с целочисленными точками такой фокус не пройдет.

Нахождение интервалов возрастания и убывания функции

В такой задаче, подобно точкам максимума и минимума, предлагается по графику производной отыскать области, в которых сама функция возрастает или убывает. Для начала определим, что такое возрастание и убывание:

  1. Функция f(x) называется возрастающей на отрезке если для любых двух точек x 1 и x 2 из этого отрезка верно утверждение: x 1 ≤ x 2 ⇒ f(x 1) ≤ f(x 2). Другими словами, чем больше значение аргумента, тем больше значение функции.
  2. Функция f(x) называется убывающей на отрезке если для любых двух точек x 1 и x 2 из этого отрезка верно утверждение: x 1 ≤ x 2 ⇒ f(x 1) ≥ f(x 2). Т.е. большему значению аргумента соответствует меньшее значение функции.

Сформулируем достаточные условия возрастания и убывания:

  1. Для того чтобы непрерывная функция f(x) возрастала на отрезке , достаточно, чтобы ее производная внутри отрезка была положительна, т.е. f’(x) ≥ 0.
  2. Для того чтобы непрерывная функция f(x) убывала на отрезке , достаточно, чтобы ее производная внутри отрезка была отрицательна, т.е. f’(x) ≤ 0.

Примем эти утверждения без доказательств. Таким образом, получаем схему для нахождения интервалов возрастания и убывания, которая во многом похожа на алгоритм вычисления точек экстремума:

  1. Убрать всю лишнюю информацию. На исходном графике производной нас интересуют в первую очередь нули функции, поэтому оставим только их.
  2. Отметить знаки производной на интервалах между нулями. Там, где f’(x) ≥ 0, функция возрастает, а где f’(x) ≤ 0 — убывает. Если в задаче установлены ограничения на переменную x, дополнительно отмечаем их на новом графике.
  3. Теперь, когда нам известно поведение функции и ограничения, остается вычислить требуемую в задаче величину.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−3; 7,5]. Найдите промежутки убывания функции f(x). В ответе укажите сумму целых чисел, входящих в эти промежутки.

Как обычно, перечертим график и отметим границы [−3; 7,5], а также нули производной x = −1,5 и x = 5,3. Затем отметим знаки производной. Имеем:

Поскольку на интервале (− 1,5) производная отрицательна, это и есть интервал убывания функции. Осталось просуммировать все целые числа, которые находятся внутри этого интервала:
−1 + 0 + 1 + 2 + 3 + 4 + 5 = 14.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−10; 4]. Найдите промежутки возрастания функции f(x). В ответе укажите длину наибольшего из них.

Избавимся от лишней информации. Оставим только границы [−10; 4] и нули производной, которых в этот раз оказалось четыре: x = −8, x = −6, x = −3 и x = 2. Отметим знаки производной и получим следующую картинку:

Нас интересуют промежутки возрастания функции, т.е. такие, где f’(x) ≥ 0. На графике таких промежутков два: (−8; −6) и (−3; 2). Вычислим их длины:
l 1 = − 6 − (−8) = 2;
l 2 = 2 − (−3) = 5.

Поскольку требуется найти длину наибольшего из интервалов, в ответ записываем значение l 2 = 5.

Сегодня мы расскажем вам о том, как найти образующую конуса, что частенько требуется в школьных задачках по геометрии.

Понятие образующей конуса

Прямой конус — это фигура, которая получается в результате вращения прямоугольного треугольника вокруг одно из его катетов. Основание конуса образует круг. Вертикальное сечение конуса — это треугольник, горизонтальное — круг. Высотой конуса является отрезок, соединяющий вершину конуса с центром основания. Образующей конуса является отрезок, который соединяет вершину конуса с любой точкой на линии окружности основания.

Так как конус образуется вращением прямоугольного треугольника, то получается, что первым катетом такого треугольника является высота, вторым — радиус круга, лежащего в основании, а гипотенузой будет образующая конуса. Нетрудно догадаться, что для расчета длины образующей пригодится теорема Пифагора. А теперь подробнее о том, как найти длину образующей конуса.

Находим образующую

Легче всего понять, как найти образующую, можно на конкретном примере. Допустим, даны такие условия задачи: высота равна 9 см., диаметр круга основания составляет 18 см. Необходимо найти образующую.

Итак, высота конуса (9 см.) - это один из катетов прямоугольного треугольника, с помощью которого был образован данный конус. Второй катет будет являться радиусом круга основания. Радиус — это половина диаметра. Таким образом, делим данный нам диаметр пополам и получаем длину радиуса: 18:2 = 9. Радиус равен 9.

Теперь найти образующую конуса очень легко. Так как она является гипотенузой, то квадрат ее длины будет равен сумме квадратов катетов, то есть сумме квадратов радиуса и высоты. Итак, квадрат длины образующей = 64 (квадрат длины радиуса) + 64 (квадрат длины высоты) = 64x2 = 128. Теперь извлекаем квадратный корень из 128. В итоге получаем восемь корней из двух. Это и будет образующая конуса.

Как видите, ничего сложного в этом нет. Для примера мы взяли простые условия задачи, однако в школьном курсе они могут быть и сложнее. Помните, что для расчета длины образующей вам нужно выяснить радиус круга и высоту конуса. Зная эти данные, найти длину образующей легко.