Синусы малых углов. Синус, косинус, тангенс: что такое? Как найти синус, косинус и тангенс? Сбор и использование персональной информации

Глава III. Кривые второго порядка

§ 43. Уравнения эллипса, гиперболы и параболы
в других (неканонических) системах координат

Применим выведенные в § 13 формулы перехода от одной прямоугольной декартовой системы координат к другой для изучения неканонических уравнений гиперболы, параболы, эллипса.

1) Рассмотрим уравнение

ху = а , а > 0. (1)

Из школьного курса известно, что уравнение (1) называется уравнением гиперболы и имеет график, изображенный на рис. 121.

Посмотрим, каким будет уравнение этой гиперболы в другой системе координат, в системе, которая получается из исходной поворотом базисных векторов на угол α = 45°.

В данном случае старые координаты х и у выражаются через новые х " и у " следующим образом:

Заменяя в уравнении (1) старые переменные новыми, получаем

√ 2 / 2 (х " - у ") √ 2 / 2 (х " + у ") = a

х " 2 - у " 2 = 2а . (2)

Мы получили каноническое уравнение равносторонней гиперболы. Следовательно, уравнение (1) задает равностороннюю гиперболу. Старые оси координат являются асимптотами гиперболы, поэтому уравнение (1) называют уравнением гиперболы, отнесенным к асимптотам (см. рис. 121). Сравнивая уравнения (1) и (2), видим, что действительная ось гиперболы, заданной уравнением (1), равна √2а .

Новая система координат О , i" , j" называется канонической, так как в ней уравнение гиперболы имеет канонический вид.

Уравнение ху = а, а < 0, приводится к каноническому виду аналогично. Для получения новых базисных векторов в этом случае следует повернуть старые базисные векторы на угол α = - 45°.

Задача 1. Дано каноническое уравнение равносторонней гиперболы х 2 - у 2 = 18. Написать ее уравнение, отнесенное к асимптотам.

Выполним поворот на угол α == -45°. Тогда старше координаты выражаются через новые по формулам

Подставив в данное уравнение значения х и у , получим

1 / 2 (х " - у ") 2 - 1 / 2 (х " + у ") 2 = 18

или после упрощения х"у" = 9.

2) Рассмотрим уравнение

y = αx 2 + βx + γ, α =/=0. (3)

Вам хорошо знакомо это уравнение и его график: парабола с осью, параллельной оси ординат. Записав уравнение (3) в виде

(4)

находим координаты вершины параболы

Перейдем к новой системе координат, направления осой которой совпадают с направлениями осей старой системы, а начало координат О" находится в вершине параболы. Точка О" имеет, следовательно, координаты (). Положив в формулах переноса

Так выражаются в данном случае старые координаты x и у через новые х" и у" . Заменяя в уравнении (4) старые координаты новыми, приходим к уравнению

y" = αx " 2 , α =/= 0.

Итак, если парабола в некоторой системе координат имеет уравнение (3), то всегда можно перейти к новой системе координат, в которой уравнение параболы будет иметь более простой вид: y" = αx " 2 , α =/= 0. Более того, всегда можно выбрать систему координат так, чтобы коэффициент в уравнении параболы был положителен. В самом деле, пусть α < 0, т. е. парабола расположена так, как показано на рис. 122.

Тогда в системе О", i", j" , которая получается из системы О", i", j" поворотом осей на угол α = 180°, уравнение параболы будет иметь вид y"" = - αx"" 2 . Полагая α 1 = - α, получаем y"" = α 1 x"" 2 , где α 1 > 0.

3) Пусть в некоторой системе координат парабола задана уравнением

y = αx 2 , α > 0. (5)

Перейдем к новой системе координат, которая получается из исходной поворотом базисных векторов на угол α = 90° (рис. 123).

Формулы поворота в этом случае принимают вид

Применяя в уравнении (5) старые координаты новыми, получаем

х" = αу" 2 или у" 2 = 1 / α х" .

Обозначим 1 / α через 2р , тогда

у" 2 = 2рх" .

Мы получили каноническое уравнение параболы. Таким образом, уравнением (5) задается парабола с фокальным параметром, равным 1 / 2α .

Из результатов, полученных в пункте 2), следует, что фокальный параметр параболы, заданной уравнением y = αx 2 + βx + γ, α =/=0 , равен 1 / 2 |α | .

Задача 2. Дано уравнение параболы y = 2x 2 + 6x + 7.

Привести его к каноническому виду. Найти расстояние от фокуса параболы до ее директрисы.

Выделим полный квадрат в правой части данного уравнения

у = 2(x 2 + 3х ) + 7 = 2(x + 3 / 2) 2 + 5 / 2 .

Координаты вершины параболы (- 3 / 2 ; 5 / 2).

Перейдем к новой системе координат, которая получается из исходной переносом начала координат в точку O" (- 3 / 2 ; 5 / 2) и поворотом базисных векторов на угол α = 90°
(рис. 124).

По формулам (3) § 13 получаем

Подставив эти значения х и у в уравнение параболы, получим

5 / 2 + x" =2(- 3 / 2 - y" + 3 / 2) 2 + 5 / 2

т. e. x" = 2y" 2 , или y" 2 = 1 / 2 x" .

Из полученного уравнения видно, что расстояние от фокуса параболы до директрисы (фокальный параметр) равно 1 / 4 .

4) Рассмотрим уравнение

(6)

Это уравнение похоже на каноническое уравнение эллипса, но не является таковым, так как в каноническом уравнении эллипса а > b.

Перейдем от системы координат хОу к системе х"Оу" , которая получается из исходной системы поворотом базисных векторов на угол α = 90°. Формулы поворота в этом случае имеют вид

Поэтому в новой системе данное уравнение запишется так:

Мы получили каноническое уравнение эллипса. Следовательно, уравнением (6) задается эллипс, большая ось которого лежит на оси Оу , малая на оси Ох . Фокусы такого эллипса расположены в точках F 1 (0; с ) и F 2 (0; -с ), где с = b 2 - a 2 (рис. 125).

Задача 3. Доказать, что кривая, заданная уравнением

25х 2 + 16y 2 -50х + 64y - 311 = 0,

является эллипсом. Найти его полуоси и координаты фокусов. Дать чертеж.

Преобразуем данное уравнение к виду:

25 (х - 1) 2 + 16 (у + 2) 2 = 400.

Oт системы координат хОу перейдем к системе х"О"у" , сохранив направление осей, а начало координат поместив и точку О" (1; -2). Тогда старые и новые координаты будут связаны формулами переноса

Поэтому в новой системе координат кривая имеет уравнение

25х" 2 + 16у" 2 = 400

Итак, данная кривая является эллипсом, полуоси которого равны 5 и 4. Полуфокусное расстояние с = √25-16 =3. Фокусы эллипса в новой системе имеют координаты (0; 3) и (0; -3). По формулам переноса находим их координаты в старой системе:
(1; 1) и (1; -5). Чертеж дан на рис. 126.

Задача 4. Написать уравнение эллипса, одна ось которого принадлежит оси ординат и равна 12, а другая ось принадлежит оси абсцисс и равна 8.

По условию задачи b = 6, а = 4, следовательно,

Задача 5. Написать уравнение эллипса, одна ось которого принадлежит оси ординат и равна 20, а расстояние между фокусами равно 16. Центр эллипса находится в точке
(0; 0).

Искомое уравнение эллипса можно записать в виде

Так как 2с = 16, 2b = 20, то с = 8, b = 10, а так как фокусы расположены на оси Оу , то
а 2 = b 2 - c 2 = 100 - 64 = 36 .Следовательно, эллипс имеет уравнение

Задача 6. Найти длины полуосей эллипса 25х 2 + 16у 2 = 400 и вычислить координаты его фокусов.

Запишем данное уравнение в виде

Следовательно, а 2 = 16, b 2 = 25 и с = b 2 - a 2 = √25-16 =3.
В результате имеем а = 4, b = 5, F 1 (0; 3),F 2 (0; - 3).


В этой статье собраны таблицы синусов, косинусов, тангенсов и котангенсов . Сначала мы приведем таблицу основных значений тригонометрических функций, то есть, таблицу синусов, косинусов, тангенсов и котангенсов углов 0, 30, 45, 60, 90, …, 360 градусов (0, π/6, π/4, π/3, π/2, …, 2π радиан). После этого мы дадим таблицу синусов и косинусов, а также таблицу тангенсов и котангенсов В. М. Брадиса, и покажем, как использовать эти таблицы при нахождении значений тригонометрических функций.

Навигация по странице.

Таблица синусов, косинусов, тангенсов и котангенсов для углов 0, 30, 45, 60, 90, … градусов

Список литературы.

  • Алгебра: Учеб. для 9 кл. сред. шк./Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского.- М.: Просвещение, 1990.- 272 с.: ил.- ISBN 5-09-002727-7
  • Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.
  • Брадис В. М. Четырехзначные математические таблицы: Для общеобразоват. учеб. заведений. - 2-е изд. - М.: Дрофа, 1999.- 96 с.: ил. ISBN 5-7107-2667-2

В принципе можно было бы мерить все углы в радианах. На практике широко используется и градусное измерение углов, хотя с чисто математической точки зрения оно неестественно. При этом для малых углов используются специальные единицы: угловая минута и угловая секунда. Угловая минута - это 1/60 часть градуса; угловая секунда - это 1/60 часть угловой минуты. Если, например, величина угла равна 129 градусам, 34 минутам и 16 секундам, то пишут: 129◦ 340 1600 .

Задача 4.1. На какой угол поворачивается за одну секунду:

а) часовая стрелка часов;

б) минутная стрелка часов;

в) секундная стрелка часов?

Решение. Разберем только пункт а). Полный оборот часовая стрелка делает за 12 часов; стало быть, за час она поворачивается на 360/12 = 30◦ . Следовательно, за минуту часовая стрелка повернется на угол, в 60 раз меньший, чем за час, то есть на 300 ;

в свою очередь, за секунду стрелка повернется на угол, в 60 раз меньший, чем за минуту, то есть на 30 00 . Теперь вы видите, на-

сколько мала угловая секунда: ведь даже угол, в тридцать раз больший (поворот часовой стрелки за секунду времени) мы не

в состоянии заметить.

Представление об угловой минуте дает такой факт: «разрешающая способность» человеческого глаза (при стопроцентном зрении и хорошем освещении) равна примерно одной угловой минуте. Это означает, что две точки, которые видны под углом 10 или меньше, на глаз воспринимаются как одна.

Посмотрим, что можно сказать о синусе, косинусе и тангенсе малых углов. Если на рис. 4.2 угол α мал, то высота BC, дуга BD и отрезок BE, перпендикулярный AB, очень близки. Их длины - это sin α, радианная мера α и tg α. Стало быть, для малых углов синус, тангенс и радианная мера приближенно равны друг другу:

Рис. 4.1. Разрешающая способность.

Если α - малый угол, измеренный в радианах, то sin α ≈ α; tg α ≈ α.

Задача 4.2. Запишите приближенные формулы для синуса и тангенса малых углов, считая, что угол измеряется в градусах.

Ответ. sin α◦ ≈ πα/180.

Видно, что формулы сложнее, чем для радианной меры - еще один довод в ее пользу!

Задача 4.3. Под каким углом видно дерево высотой 10 метров с расстояния в 800 метров? Дайте ответ: а) в радианах; б) в угловых минутах.

Задача 4.4. Чему равно расстояние, равное одной минуте дуги земного меридиана? Радиус Земли равен примерно 6370 .

Расстояние, о котором идет речь в этой задаче, примерно равно морской миле (именно так и появилась эта мера длины).

Рис. 4.3. Парсек.

Рис. 4.4. Формула тысячных.

Задача 4.5. В астрономии применяется единица измерения расстояний, называемая парсек. По определению, расстояние в 1 парсек - это расстояние с которого радиус земной орбиты1 виден под углом 100 (рис.4.3 ). Сколько километров в одном парсеке? (Радиус земной орбиты равен примерно 150 миллионам километров.)

Задача 4.6. Военные пользуются единицей измерения углов, называемой «тысячная». По определению, тысячная - это 1/3000 развернутого угла. Такое измерение углов военные применяют в следующей формуле для определения расстояния до удаленных предметов: = (/) · 1000. Здесь - расстояние до предмета, - его высота, - угол, под которым он виден, измеренный в тысячных (рис. 4.4 ). Точна ли эта формула? Почему ей можно пользоваться на практике? Чему равно число π, по мнению военных?

Мы видим, что формулы sin α ≈ α, tg α ≈ α верны с хорошей точностью для малых углов. Посмотрим, что произойдет,

1 Астрономы поправили бы нас: не радиус (орбита Земли - не круг, а эллипс), а большая полуось (половина расстояния между наиболее удаленными друг от друга точками орбиты).

если угол не столь мал. Для угла в 30◦ точное значение синуса равно 0,5, а радианная мера равна π/6 ≈ 0,52. Ошибка (или, как еще говорят, погрешность), которую дает формула sin α ≈ α, равна примерно 0,02, что составляет 4% от значения синуса. Можно сказать, что относительная погрешность при таком вычислении (отношение погрешности к значению синуса) составляет 4%. Для углов, меньших 10◦ , относительная погрешность формулы sin α ≈ α меньше одного процента. Чем меньше угол α, тем меньше относительная погрешность формулы sin α ≈ α.

Существуют и другие формулы, позволяющие вычислять синусы и тангенсы - и не только малых углов - с хорошей точностью. Например, формула sin α ≈ α − α3 /6 (напоминаем, что α измеряется в радианах!) дает относительную погрешность менее 1% уже для всех углов, не превосходящих 50◦ . Позднее мы увидим, как оценить погрешность наших формул.

Задача 4.7. Пусть α - острый угол, измеренный в радианах. Докажите неравенство cos α > 1 − α2 .

Задача 4.8. Для косинусов малых углов в качестве приближенного значения можно брать 1. Докажите, что при величине угла менее 5◦ относительная погрешность этого приближения будет менее 1%.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Одним из разделов математики, с которыми школьники справляются с наибольшими трудностями, является тригонометрия. Неудивительно: для того чтобы свободно овладеть этой областью знаний, требуется наличие пространственного мышления, умение находить синусы, косинусы, тангенсы, котангенсы по формулам, упрощать выражения, уметь применять в вычислениях число пи. Помимо этого, нужно уметь применять тригонометрию при доказательстве теорем, а это требует либо развитой математической памяти, либо умения выводить непростые логические цепочки.

Истоки тригонометрии

Знакомство с данной наукой следует начать с определения синуса, косинуса и тангенса угла, однако прежде необходимо разобраться, чем вообще занимается тригонометрия.

Исторически главным объектом исследования данного раздела математической науки были прямоугольные треугольники. Наличие угла в 90 градусов дает возможность осуществлять различные операции, позволяющие по двум сторонам и одному углу либо по двум углам и одной стороне определять значения всех параметров рассматриваемой фигуры. В прошлом люди заметили эту закономерность и стали активно ею пользоваться при строительстве зданий, навигации, в астрономии и даже в искусстве.

Начальный этап

Первоначально люди рассуждали о взаимоотношении углов и сторон исключительно на примере прямоугольных треугольников. Затем были открыты особые формулы, позволившие расширить границы употребления в повседневной жизни данного раздела математики.

Изучение тригонометрии в школе сегодня начинается с прямоугольных треугольников, после чего полученные знания используются учениками в физике и решении абстрактных тригонометрических уравнений, работа с которыми начинается в старших классах.

Сферическая тригонометрия

Позже, когда наука вышла на следующий уровень развития, формулы с синусом, косинусом, тангенсом, котангенсом стали использоваться в сферической геометрии, где действуют иные правила, а сумма углов в треугольнике всегда больше 180 градусов. Данный раздел не изучается в школе, однако знать о его существовании необходимо как минимум потому, что земная поверхность, да и поверхность любой другой планеты, является выпуклой, а значит, любая разметка поверхности будет в трёхмерном пространстве «дугообразной».

Возьмите глобус и нитку. Приложите нитку к двум любым точкам на глобусе, чтобы она оказалась натянутой. Обратите внимание - она обрела форму дуги. С такими формами и имеет дело сферическая геометрия, применяющаяся в геодезии, астрономии и других теоретических и прикладных областях.

Прямоугольный треугольник

Немного узнав про способы применения тригонометрии, вернемся к базовой тригонометрии, чтобы в дальнейшем разобраться, что такое синус, косинус, тангенс, какие расчёты можно с их помощью выполнять и какие формулы при этом использовать.

Первым делом необходимо уяснить понятия, относящиеся к прямоугольному треугольнику. Во-первых, гипотенуза - это сторона, лежащая напротив угла в 90 градусов. Она является самой длинной. Мы помним, что по теореме Пифагора её численное значение равно корню из суммы квадратов двух других сторон.

Например, если две стороны равны 3 и 4 сантиметрам соответственно, длина гипотенузы составит 5 сантиметров. Кстати, об этом знали ещё древние египтяне около четырех с половиной тысяч лет назад.

Две оставшиеся стороны, которые образуют прямой угол, носят название катетов. Кроме того, надо помнить, что сумма углов в треугольнике в прямоугольной системе координат равняется 180 градусам.

Определение

Наконец, твердо понимая геометрическую базу, можно обратиться к определению синуса, косинуса и тангенса угла.

Синусом угла называется отношение противолежащего катета (т. е. стороны, располагающейся напротив нужного угла) к гипотенузе. Косинусом угла называется отношение прилежащего катета к гипотенузе.

Запомните, что ни синус, ни косинус не может быть больше единицы! Почему? Потому что гипотенуза - это по умолчанию самая длинная Каким бы длинным ни был катет, он будет короче гипотенузы, а значит, их отношение всегда будет меньше единицы. Таким образом, если у вас в ответе к задаче получился синус или косинус со значением, большим, чем 1, ищите ошибку в расчётах или рассуждениях. Этот ответ однозначно неверен.

Наконец, тангенсом угла называется отношение противолежащей стороны к прилежащей. Тот же самый результат даст деление синуса на косинус. Посмотрите: в соответствии с формулой мы делим длину стороны на гипотенузу, после чего делим на длину второй стороны и умножаем на гипотенузу. Таким образом, мы получаем то же самое соотношение, что и в определении тангенса.

Котангенс, соответственно, представляет собой отношение прилежащей к углу стороны к противолежащей. Тот же результат мы получим, разделив единицу на тангенс.

Итак, мы рассмотрели определения, что такое синус, косинус, тангенс и котангенс, и можем заняться формулами.

Простейшие формулы

В тригонометрии не обойтись без формул - как найти синус, косинус, тангенс, котангенс без них? А ведь именно это требуется при решении задач.

Первая формула, которую необходимо знать, начиная изучать тригонометрию, говорит о том, что сумма квадратов синуса и косинуса угла равна единице. Данная формула является прямым следствием теоремы Пифагора, однако позволяет сэкономить время, если требуется узнать величину угла, а не стороны.

Многие учащиеся не могут запомнить вторую формулу, также очень популярную при решении школьных задач: сумма единицы и квадрата тангенса угла равна единице, деленной на квадрат косинуса угла. Присмотритесь: ведь это то же самое утверждение, что и в первой формуле, только обе стороны тождества были поделены на квадрат косинуса. Выходит, простая математическая операция делает тригонометрическую формулу совершенно неузнаваемой. Помните: зная, что такое синус, косинус, тангенс и котангенс, правила преобразования и несколько базовых формул вы в любой момент сможете сами вывести требуемые более сложные формулы на листе бумаги.

Формулы двойного угла и сложения аргументов

Ещё две формулы, которые требуется выучить, связаны со значениями синуса и косинуса при сумме и разности углов. Они представлены на рисунке ниже. Обратите внимание, что в первом случае оба раза перемножается синус и косинус, а во втором складывается попарное произведение синуса и косинуса.

Также существуют формулы, связанные с аргументами в виде двойного угла. Они полностью выводятся из предыдущих - в качестве тренировки попробуйте получить их самостоятельно, приняв угол альфа равным углу бета.

Наконец, обратите внимание, что формулы двойного угла можно преобразовать так, чтобы понизить степень синуса, косинуса, тангенса альфа.

Теоремы

Двумя основными теоремами в базовой тригонометрии являются теорема синусов и теорема косинусов. С помощью этих теорем вы легко сможете понять, как найти синус, косинус и тангенс, а значит, и площадь фигуры, и величину каждой стороны и т. д.

Теорема синусов утверждает, что в результате деления длины каждой из сторон треугольника на величину противолежащего угла мы получим одинаковое число. Более того, это число будет равно двум радиусам описанной окружности, т. е. окружности, содержащей все точки данного треугольника.

Теорема косинусов обобщает теорему Пифагора, проецируя её на любые треугольники. Оказывается, из суммы квадратов двух сторон вычесть их произведение, умноженное на двойной косинус смежного им угла - полученное значение окажется равно квадрату третьей стороны. Таким образом, теорема Пифагора оказывается частным случаем теоремы косинусов.

Ошибки по невнимательности

Даже зная, что такое синус, косинус и тангенс, легко совершить ошибку из-за рассеянности внимания или ошибки в простейших расчётах. Чтобы избежать таких ошибок, ознакомимся с наиболее популярными из них.

Во-первых, не следует преобразовывать обыкновенные дроби в десятичные до получения окончательного результата - можно и ответ оставить в виде обыкновенной дроби, если в условии не оговорено обратное. Такое преобразование нельзя назвать ошибкой, однако следует помнить, что на каждом этапе задачи могут появиться новые корни, которые по задумке автора должны сократиться. В этом случае вы напрасно потратите время на излишние математические операции. Особенно это актуально для таких значений, как корень из трёх или из двух, ведь они встречаются в задачах на каждом шагу. То же касается округлений «некрасивых» чисел.

Далее, обратите внимание, что к любому треугольнику применима теорема косинусов, но не теорема Пифагора! Если вы по ошибке забудете вычесть удвоенное произведение сторон, умноженное на косинус угла между ними, вы не только получите совершенно неверный результат, но и продемонстрируете полное непонимание предмета. Это хуже, чем ошибка по невнимательности.

В-третьих, не путайте значения для углов в 30 и 60 градусов для синусов, косинусов, тангенсов, котангенсов. Запомните эти значения, ведь синус 30 градусов равен косинусу 60, и наоборот. Их легко перепутать, вследствие чего вы неизбежно получите ошибочный результат.

Применение

Многие ученики не спешат приступать к изучению тригонометрии, поскольку не понимают её прикладного смысла. Что такое синус, косинус, тангенс для инженера или астронома? Это понятия, благодаря которым можно вычислить расстояние до далёких звёзд, предсказать падение метеорита, отправить исследовательский зонд на другую планету. Без них нельзя построить здание, спроектировать автомобиль, рассчитать нагрузку на поверхность или траекторию движения предмета. И это только самые очевидные примеры! Ведь тригонометрия в том или ином виде используется повсюду, начиная от музыки и заканчивая медициной.

В заключение

Итак, вы синус, косинус, тангенс. Вы можете использовать их в расчётах и успешно решать школьные задачи.

Вся суть тригонометрии сводится к тому, что по известным параметрам треугольника нужно вычислить неизвестные. Всего этих параметров шесть: длины трёх сторон и величины трёх углов. Всё различие в задачах заключается в том, что даются неодинаковые входные данные.

Как найти синус, косинус, тангенс исходя из известных длин катетов или гипотенузы, вы теперь знаете. Поскольку эти термины обозначают не что иное, как отношение, а отношение - это дробь, главной целью тригонометрической задачи становится нахождение корней обычного уравнения либо же системы уравнений. И здесь вам поможет обычная школьная математика.