Порядок следования цветов в дифракционных спектрах. Определение длины световой волны с помощью дифракционной решетки. Вопросы, знание которых обязательно

Читайте также:
  1. I. Дифракция Фраунгофера на одной щели и определение ширины щели.
  2. I. Сестринский процесс при стенозе митрального отверстия: этиология, механизм нарушения кровообращения, клиника, уход за пациентом.
  3. ГЛАВА 7. Дифракция пЛОСКОЙ ЭЛЕКТРОМАГНИТНОЙ ВОЛНЫ НА ИДЕАЛЬНО ПРОВОДЯЩЕМ ЦИЛИНДРЕ
  4. ГЛАВА 8. ДИФРАКЦИЯ Плоской электромагнитной волны на круглом ОТВЕРСТИи в идеально проводящем экране и на идеально проводящем диске
  5. ДИФРАКЦИОННАЯ РЕШЕТКА КАК СПЕКТРАЛЬНЫЙ ПРИБОР. РАЗРЕШАЮЩАЯ СПОСОБНОСТЬ ДИФРАКЦИОННОЙ РЕШЕТКИ. ДИФРАКЦИЯ БРЭГГА. ДИФРАКЦИЯ НА МНОГИХ БЕСПОРЯДОЧНО РАСПОЛОЖЕННЫХ ПРЕГРАДАХ

Работа № 3. ДИФРАКЦИЯ

Цель работы: научиться получать дифракционные картины от различных объектов в расходящихся лучах, определять длину волны света по картине дифракции.

Вопросы, знание которых обязательно

для допуска к выполнению работы:

1. В чем заключается явление дифракции света?

2. Принцип Гюйгенса-Френеля.

3. Метод зон Френеля.

4. Как по виду дифракционной картины, получаемой от круглого отверстия, можно определить число зон Френеля?

5. В чем отличие дифракции Фраунгофера от дифракции Френеля?

6. Дифракция в расходящихся и параллельных лучах от круглого экрана и круглого отверстия.

7. Каков порядок следования цветов в дифракционных спектрах? Какова окраска нулевого максимума?

8. Что называют зонной пластинкой?

ВВЕДЕНИЕ

Дифракцией называется явление отклонения светового луча от прямолинейного распространения или огибания светом непрозрачных объектов. После дифракции, отклонившиеся от прямолинейного распространения, лучи могут встречаться и налагаться друг на друга, а в виду того, что они получены из одной волны, они являются когерентными (см. работу по интерференции света) и, следовательно, образуют интерференционную картину (чередование максимумов и минимумов излучения). Такую картину называют «дифракционной картиной». Для анализа такой картины необходимо знать амплитуды и фазы встречающихся волн.

Рассмотрим дифракция в расходящихся лучах (дифракция Френеля) и дифракция в параллельных лучах (дифракция Фраунгофера).

Дифракция в расходящихся лучах от круглого отверстия (дифракция Френеля)



Амплитуды колебаний, пришедших в точку А от различных участков волновой поверхности (рис.1), зависят от расстояния (b ) этих участков до точки А , их величины и угла a между нормалью к

фронту волны и направлением на точку А . При нахождении результирующей амплитуды колебаний от всех участков необходимо учитывать еще и то, что фазы отдельных колебаний могут не совпадать, так как различны их пути до точки А . Нахождение амплитуды колебаний, в общем случае довольно сложная задача. Френель предложил простой метод, применение которого дает качественно правильную картину дифракции в ряде простейших случаев.

При разности хода волн ( – длина волны) колебания происходят в противофазе и гасят друг друга. Френель предложил разбить волновой фронт на зоны, крайние точки которых дают колебания в противофазе, эта зона – часть шаровой поверхности на волновом фронте.

Зоны Френеля строятся следующим образом. Центральная зона (рис.1) включает все точки, разность фаз колебаний от которых в точке А не превышает p (расстояние которых до точки А не более b 1 = , где b – кратчайшее расстояние от волнового фронта до точки А ). Соседняя вторая зона (при разности хода ) представляет кольцевую область на сфере, заключенную между точками, для которых , с одной стороны, и , с другой стороны. Очевидно, что следующие зоны будут также кольцевыми, ограниченными снаружи точками, для которых , где k – номер зоны. Можно показать, что площади всех зон приблизительно равны, а радиус k -ой зоны равен

. (1)

Расчет результирующей амплитуды колебаний от всех зон Френеля в точке А удобно производить на векторной диаграмме. Для этого мысленно разобьем каждую зону Френеля на большое число концентрических подзон одинаковой площади. Тогда амплитуду колебаний всей подзоны можно представить в виде суммы элементарных векторов, имеющих между собой малый сдвиг фаз, т. е. поворот на dj , а крайние элементарные векторы будут сдвинуты по фазе на угол p , т. е. направлены в противоположные стороны. Все элементарные векторы зоны вместе образуют полуокружность, а результирующая амплитуда колебаний Е 1 от одной зоны может быть найдена суммированием всех векторов, т. е. образует вектор, соединяющий начало и конец цепочки элементарных векторов (рис.2,а).

Аналогично можно сделать построение, включая вторую зону (рис.2,б). Результирующий вектор Е 2 направлен против Е 1 и по абсолютной величине несколько меньше Е 1 . Последнее обстоятельство связано с тем, что, хотя площади зон одинаковы, но вторая зона слегка наклонена по отношению к наблюдателю в точке А . Однако суммарная амплитуда колебаний Е 1 + Е 2 мала (рис.2,б).

Графически расчет амплитуды колебаний можно производить, заменяя цепочки векторов соответствующими частями окружности. На рис.2 (в и г) приведены такие построения для трех и большего числа зон сферического волнового фронта. Сравнивая случаи а и г, заметим, что амплитуда колебаний от 1-ой зоны Френеля в два раза (а интенсивность света I в 4 раза, так как I » A 2) больше, чем соответствующая амплитуда от бесконечного числа зон.

Пусть имеется точечный источник S и непрозрачная пластинка M с круглым отверстием (рис.3,а). Требуется определить освещенность в точке А , лежащей на прямой, проходящей от источника S через центр отверстия. Очевидно, отверстие пропустит лишь часть сферической волны. Освещенность в точке А будет определяться действием только этой части фронта, т. е. только открытыми зонами Френеля, число которых зависит от диаметра отверстия, длины волны и геометрии опыта.

Если число открытых зон К четное, то графический расчет интенсивности (рис.2,б) приводит к исчезающе малой интенсивности, т. е. в точке А будет темнота, а при нечетном К (рис.2,а, в) в точке А будет максимальная освещенность.

Очевидно, она должна быть симметричной относительно точки А (так как в точках, находящихся на одном и том же расстоянии от центральной, условия дифракции будут одинаковы). При этом, если в точке на оси мы наблюдаем светлое пятно, то вокруг него мы обнаружим темное кольцо, вокруг которого заметим светлое кольцо, т. е. картина дифракции представляет собой чередующиеся темные и светлые кольца (окружности) (рис.3,б).

Угол a , характеризующий направление на какой-либо дифракционный максимум, называется углом дифракции (рис.3,а). Можно (хотя и непросто) показать, что направление на первое кольцо характеризуется углом (точнее 1,22 ), где d – диаметр отверстия.


1 | | |

кладется на плоскую стеклянную пластинку выпуклой стороной. Между ними образуется воздушная прослойка, толщина которой увеличивается от центра к краям (рис. 1).

Если на линзу падает монохроматический

свет, то волны, отраженные от верхней и

нижней границы этой воздушной прослойки,

будут интерферировать между собой, а разность

хода между ними будет зависеть от толщины

воздушной прослойки в этом месте.

В отраженном

наблюдается следующая картина: в центре –

темное пятно, окруженное чередующимися

концентрическими светлыми и

интерференционными

кольцами

убывающей

толщины. В проходящем свете будет обратная картина: пятно в центре будет светлым, а все светлые кольца заменяются темными и наоборот. Интерференционная картина при использовании обычных источников света, например, ламп накаливания, обычно имеет небольшие размеры (r < 10-3 м), поскольку с увеличением толщины воздушной прослойки ее контрастность падает. Поэтому для обычных источников света при наблюдении используют микроскоп. Это связано с низкой когерентностью обычных источников. Использование лазера позволяет проецировать интерференционную картину на стену и измерять радиусы колец обычной линейкой.

В данной работе наблюдения ведутся в отраженном свете. Центральное пятно считается нулевым, а нумерация темных и светлых колец ведется раздельно. Таким образом, мы имеем 1-е, 2-е, ... m -е темные кольца и 1-е, 2-е, ... m -е светлые кольца.

Интерференция происходит между волнами, отраженными от верхней и нижней поверхностей воздушной прослойки, то есть между лучами I и II (рис. 1).

Оптическая разность хода этих лучей δ m , обусловленная воздушной прослойкой

где абсолютный показатель преломления воздуха принят равным единице, а слагаемое λ /2 обусловлено сдвигом по фазе наπ при отражении от оптически более плотной среды (луч I в точке L на рис. 1). Предполагая малым угол падения световых лучей на поверхность линзы, а также из подобия соответствующих треугольников, можем вывести:r m /R =δ m /r m . Отсюда видим, чтоr m = R δ m .

Из последнего равенства, соотношения (3) и условий (1), (2) следует, что радиусы m-го светлого (rm св ) и m-го темного (rm ) колец Ньютона в отраженном свете равны:

(m − k) λ

− r k 2

где m – номер кольца.

Последовательно записывая формулу (5) для m-го и k-го темных колец, можно найти выражение для радиуса кривизны плосковыпуклой линзы:

R = m , (m− k)λ

где λ – длина волны монохроматического света.

Более удобно производить расчет, придав формуле (6) следующий вид:

R = (rm + rk ) (rm − rk ).

3) Оптический рельс, на котором устанавливаются рейтеры с оптическими элементами.

Экран для наблюдения

Оптическая

состоящая

плосковыпуклой

стеклянной

пластинки.

система обозначена цифрой 2. Линза и пластинка собраны в юстировочной оправе, которая позволяет изменять величину зазора и месторасположение точки контакта линзы и пластинки. Юстировочная оправа закрепляется в держателе рейтера.

ВНИМАНИЕ

1) Установка содержит гелий-неоновый лазер ЛГ-128, в блоке питания которого вырабатывается напряжение свыше 1000 Вольт, поэтому при работе необходимо соблюдать правила техники электробезопасности.

2) Интенсивность излучения лазера не превышает 5 милливатт, поэтому данный лазер допущен к эксплуатации в учебных установках. Однако не следует допускать прямого попадания лазерного луча в глаза.

3) Качественное изображение колец достигается при правильной настройке оптической системы (юстировке). Юстировка оптической системы является сложной процедурой, которую может провести специалист. Поэтому при отсутствии изображения не следует пытаться получить ее самостоятельно. Любое малейшее смещение

оптических элементов приводит к разъюстировке, поэтому при проведении работы нельзя ставить на стол с оптическими элементами посторонние предметы.

4) После проведения лабораторной работы и проверки преподавателем экспериментальных данных необходимо сдать установку в первоначальном состоянии дежурному лаборанту.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1) Подключить шнуры настольной лампы и лазера к электрической сети. Затем с помощью тумблера на корпусе прибора включить ЛГ-128.

2) Лазерный луч из расширителя пучка при правильной настройке попадает на систему из линзы и плоской пластины, а после отражения от нее дает изображение колец на противоположной стене. Рассмотрите ход лучей, помещая последовательно лист бумаги на пути лучей до и после линзы, затем – полученное изображение.

3) Прикрепить листок бумаги и зарисовать кольца (лучше карандашом). Полученное изображение должно содержать достаточное количество колец, количество и номера колец указывает преподаватель.

4) Как видно из формулы (3), картина интерференционных колец весьма чувствительна,

– определяется изменением воздушной прослойки на доли длины световой волны

(λ = 0,6328 мкм). Из-за высокой чувствительности метода и малых деформаций пластины, реально всегда имеющих место, кольца имеют некоторую эллиптичность. Поэтому, чтобы уменьшить погрешность в определении радиуса, замер диаметра кольца необходимо производить в двух взаимно-перпендикулярных направлениях, как показано на рис. 3. Затем производится простое арифметическое усреднение:

D m средн.=

D гориз.+ D верт.

D горизm D .

5) После определения усредненных радиусов двух колец Ньютона производится вычисление среднего радиуса кривизны R средн. линзы по формуле (7).

6) Погрешность данного метода определяется тем, насколько применимы формулы (4)–

(7). Данный метод предполагает пластинку идеально плоской. Если же пластинка не идеально плоская, то это приводит к эллиптичности колец. Относительная погрешность этого метода может быть оценена как величина эллиптичности

D горm .− D вертm .

D среднm .

тогда абсолютную погрешность в определении радиуса кривизны R = ε R. Окончательная запись должна иметь вид:

R = Rсредн ± R.

КОНТРОЛЬНЫЕ ВОПРОСЫ

R можно оценить как

1) Что называется интерференцией света?

2) Какие волны называются когерентными?

3) Что называется оптической разностью хода лучей?

4) Какая среда называется оптически более плотной?

5) Каков сдвиг фаз при отражении от оптически более плотной среды?

6) На чем основан интерференционный метод определения толщины диэлектрических пленок?

7) Обоснуйте высокую чувствительность интерференционных методов измерения.

ЛАБОРАТОРНАЯ РАБОТА № 46

Измерение длины световой волны с помощью дифракционной решетки

Цель работы: изучение законов дифракции.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Дифракционная решетка обычно представляет собой стеклянную пластинку, на которую с помощью делительной машины через строго одинаковые интервалы нанесены параллельные штрихи. Неповрежденные места являются очень узкими дифракционными щелями, прозрачными для света. Они разделены одинаковыми непрозрачными промежутками – штрихами, являющимися препятствиями для света. Лучшие дифракционные решетки, изготовляемыевнастоящеевремя, имеютдо1700 штриховна1 мм.

Дифракцией называется явление отклонения света от прямолинейного распространения при прохождении узких щелей или отверстий. Пусть свет с длиной волны λ падает на дифракционную решетку нормально (рис. 1). Дифракция происходит, когда ширина щели сравнима сλ. Так как это условие выполняется для щели решетки, то на каждой

щели решетки лучи света будут отклоняться от прямолинейного распространения. Явление дифракции объясняется с помощью принципа Гюйгенса, согласно которому каждая точка, до которой доходит волна, служит источником вторичных волн, а огибающая этих волн дает положение волнового фронта в какой-то момент времени. Рассмотрим плоскую волну, падающую нормально на отверстие в экране (рис. 2). Любая точка отверстия или края отверстия, например, точки А и В, служат источником вторичных волн. Построив огибающую вторичных волн для некоторого момента времени (дуга CD), видим, что фронт волны заходит за края отверстия. Дифракция характерна для волновых процессов и подтверждает волновую природу света. Однако принцип Гюйгенса не может объяснить наличие дифракционных максимумов. Френель дополнил принцип Гюйгенса идеей интерференции вторичных волн. Согласно принципу Гюйгенса – Френеля, каждая щель является источником вторичных световых волн, амплитуды которых в некоторой точке пространства (на экране) будут складываться и в зависимости от разности хода лучей усиливать или ослаблять друг друга. Возникает интерференция световых волн. Обычно наблюдают интерференцию, когда точка наблюдения находится в бесконечности или на достаточно далеком расстоянии по сравнению с размером решетки. В этом случае для каждой щели направление, в котором производится наблюдение, определяется углом φ между нормалью к решетке и направлением лучей. Для наблюдения картины интерференции на более близком расстоянии все параллельные лучи фокусируют с помощью линзы на экран (рис. 1).

Световая волна, падающая на решетку нормально, возбуждает колебания для каждой щели в одинаковой фазе. Если вторичные лучи, испускаемые каждой щелью, имеют направление под некоторым углом φ, то каждый такой луч для различных щелей будет проходить до экрана различное расстояние, то есть лучи будут иметь различную разность хода и будут интерферировать.

Пусть φ = 0, в этом случае все лучи придут в точку наблюдения в одинаковой фазе, и амплитуды лучей будут складываться. В этом направлении наблюдается максимум света на экране. При увеличении угла φ между лучами возникает разность хода, лучи приходят в точку экрана в различной фазе, и амплитуды лучей, складываясь, создадут значительно меньшую или даже нулевую интенсивность света в данной точке. Однако

существует еще несколько значений угла φ, при которых все лучи придут в соответствующую точку экрана в одинаковой фазе и дадут максимум интенсивности света. Для этого необходимо, чтобы разность хода лучей соседних щелей была равна n·λ (условие максимума для интерференции), гдеn = 0, ±1, ±2, …

Из рис. 1 видно, что разность хода между соседними лучами 1 и 2

δ = d·sinφ, (1)

где d – расстояние между центрами щелей. Тогда максимум интенсивности света на экране будет наблюдаться для направлений, определяемых условием

Максимумы, удовлетворяющие условию (1), называются главными (рис. 2). Кроме главных максимумов возможны направления, в которых свет, посылаемый различными щелями, гасится (взаимно уничтожается).

Минимум интенсивности света на экране будет наблюдаться для направлений, определяемых условием

где n = 1, 2, …, N – 1, N + 1, …, 2 N – 1, 2 N + 1, …, N – число штрихов дифракционной решетки.

Из (2) следует, что между двумя главными максимумами располагается (N–1) добавочных минимумов, разделенных вторичными максимумами (рис. 3). Интенсивность этих максимумов значительно меньше интенсивности главных максимумов, поэтому они обычно не наблюдаются.

На экране дифракционная картина состоит из наиболее яркой центральной линии (n=0) и симметрично расположенных двух максимумов первого порядка (n=1), второго порядка (n=2) и т. д. (рис. 3). Эти максимумы получаются только для монохроматического света, с определенным значением λ. Если осветить дифракционную решетку белым светом, то каждой соответствующей длине волны λ, согласно формуле (1), будет соответствовать определенное значение угла φ. Поэтому на экране светлые

полосы растянуты в спектры, разделенные темными промежутками. Исключение будет составлять нулевой максимум, в котором при n= 0 по формуле (1) лучи любого цвета имеют угловое направление φ= 0, и который поэтому не будет разлагаться в спектр.

ОПИСАНИЕ УСТАНОВКИ

Дифракционная решетка 1 укреплена в специальном держателе (рис. 4). Источник света (электрическая лампочка) освещает щель 3, ширину которой можно плавно изменить. Если смотреть на освещенную щель через дифракционную решетку, то справа и слева от изображения щели видны дифракционные спектры. Пусть некоторая линия спектра смещена на величину S, а расстояние между измерительной шкалой 4 и дифракционной решеткой равно l .

tg ϕ =S

Так как угол φ мал, то tgφ с достаточной степенью точности равен sin φ. Сравнивая

последнее выражение с формулой (2), получим

sinϕ =

λ =

где S – расстояние между центром шкалы и центром данной линии спектра:d = 10-5 м – постоянная дифракционной решетки;l = 0,55 м; n – порядок спектра.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1) Включите электрическую лампочку. Наблюдая щель через дифракционную решетку и подбирая положение лампочки, добиваются наиболее яркого изображения спектров первого и второго порядков.

2) Измерьте по шкале 4 среднее положение красного, оранжевого, желтого, зеленого, голубого, синего, фиолетового цветов для спектров первого порядка справа и слева от

щели и результат усредните для каждого цвета. То же самое проделайте для 2-го порядка. Результаты измерений занесите в таблицу.

3) По формуле (3) вычислить длину волны каждого цвета в спектре первого и второго порядков. Затем найти среднее λ для каждого цвета. Результаты вычислений занести в таблицу.

Расстояние до линии, см

Длина волны λ, мкм

Цвет линии

1 порядок

2 порядок

1 порядок

2 порядок

Оранжевый

Фиолетовый

КОНТРОЛЬНЫЕ ВОПРОСЫ

1) Как распределяется интенсивность лучей света после дифракционной решетки по величине углов и почему?

2) В чем заключается явление дифракции?

3) При каких условиях наблюдается дифракция света?

4) Каков порядок следования цветов в дифракционных спектрах?

5) Какова окраска нулевого максимума для белого света?

6) Чему равна разность хода между соседними лучами, идущими от каждой щели в направлении главных максимумов?

7) Почему интенсивность главных максимумов намного больше интенсивности других точек на экране?

8) Почему возникает разность хода лучей, идущих от щелей дифракционной решетки?

9) Почему дифракционная решетка разлагает белый свет в спектр?

ЛАБОРАТОРНЫЕ РАБОТЫ № 48 и № 48а

Снятие вольтамперной, люксамперной и спектральной характеристик фотоэлемента и определение работы выхода электрона

Цель работы: изучение законов фотоэффекта и приборов на его основе.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Внешний фотоэффект и его законы . Внешним фотоэффектом называется явление испускания электронов веществом под действием электромагнитного излучения (света, рентгеновских лучей, гамма-лучей). Фотоэффект был открыт Г. Герцем в 1887 г. Первые фундаментальные исследования фотоэффекта были выполнены русским ученым А.Г. Столетовым в 1888–1889 годах. Фотоэффект можно наблюдать на установке, схематично изображенной на рис. 1, где через hν обозначен свет,Кв – кварцевое окошко,В – вольтметр,Г – микроамперметр,П – потенциометр

Два электрода (катод К и анодА ) помещены в баллон, из которого выкачан воздух. Электроды подключены к источнику питания так, что с помощью потенциометраП можно менять не только значение, но и знак подаваемого на них напряжения. Свет падает на катод через кварцевое окноКв . Электроны, испущенные катодомК вследствие фотоэффекта, перемещаются под действием электрического поля к анодуА . В результате

в цепи потечет фототок, измеряемый микроамперметром Г .

С ростом напряжения U сила фототокаI растет вначале пропорционально, а при достижении некоторого напряженияU = U уск. ток достигает насыщенияI нас. (рис. 2).

где n – число электронов, испускаемых катодом в 1 секунду.

Для дальнейшего увеличения фототока необходимо увеличить падающий на катод световой поток Ф :

Ф = Q

где Q – световая энергия, t – время.

Сила фототока насыщения пропорциональна падающему световому потоку (пропорциональна освещенности):

I нас. =α ·Ф, (3)

где α – коэффициент пропорциональности.

В свою очередь освещенность Е пропорциональна световому потоку, поэтому величина фототокаI обратно пропорциональна квадрату расстояния от источника света до катода, т. е.:

где Е 1 ,Е 2 – освещенности катода;

I 1 ,I 2 – соответствующие этим освещенностям значения фототока насыщения;r 1 ,r 2 – расстояния от источника света до катода.

Из уравнения (4) имеем:

т. е. величина фототока насыщения обратно пропорциональна квадрату расстояния от источника света до фотоэлемента. Из вольтамперной характеристики следует, что при U = 0 фототок не исчезнет. Следовательно, электроны, выбитые светом из катода, обладают некоторой начальной скоростьюV , а значит, и отличной от нуля кинетической энергией и могут достигнуть анода без внешнего поля.

Для того чтобы фототок стал равным нулю, необходимо приложить задерживающее напряжение U зад. . Путем изучения экспериментальных данных были установлены три закона фотоэффекта.

1) При фиксированной частоте падающего света сила фототока насыщения пропорциональна величине падающего светового потока или освещенности катода.

2) Максимальная скорость (максимальная кинетическая энергия) фотоэлектронов не зависит от интенсивности падающего света, а определяется только его частотой ν .

3) Для каждого вещества существует «красная граница» фотоэффекта, т. е. минимальная частота света, ниже которой фотоэффект невозможен (или максимальная длина волны выше которой фотоэффект невозможен).

Гипотеза Планка и уравнение Эйнштейна. Основываясь на положении о непрерывном энергетическом спектре излучения светящимися телами, волновая теория не могла объяснить независимости скорости выбитых электронов от интенсивности падающего света. Немецкий физик Макс Планк выдвинул гипотезу о том, что электромагнитная энергия излучается не непрерывным потоком, а отдельными порциями энергии – квантами.

Энергия каждого кванта ε прямо пропорциональна частоте света

где h = 6,62·10-34 Дж·с – постоянная Планка;λ – длина волны падающего света;

c = 3·108 м/с – скорость света в вакууме.

ОПРЕДЕЛЕНИЕ

Дифракционным спектром называют распределение интенсивности на экране, которое получается в результате дифракции.

При этом основная часть световой энергии сосредоточена в центральном максимуме.

Если в качестве рассматриваемого прибора, при помощи которого осуществляется дифракция, взять дифракционную решётку, то из формулы:

(где d - постоянная решетки; - угол дифракции; - длина волны света; . - целое число), следует, что угол под которым возникают главные максимумы связан с длиной волны падающего на решетку света (свет на решетку падает нормально). Это означает, что максимумы интенсивности, которые дает свет разной длины волны, возникают в разных местах пространства наблюдения, что дает возможность применять дифракционную решетку как спектральный прибор.

Если на дифракционную решетку падает белый свет, то все максимумы за исключением центрального максимума, раскладываются в спектр. Из формулы (1) следует, что положение максимума го порядка можно определить как:

Из выражения (2) следует, что с увеличением длины волны, расстояние от центрального максимума до максимума с номером m увеличивается. Получается, что фиолетовая часть каждого главного максимума будет обращена к центру картины дифракции, а красная область наружу. Следует вспомнить, что при спектральном разложении белого света фиолетовые лучи отклоняются сильнее, чем красные.

Дифракционную решетку применяют как простой спектральный прибор, с помощью которого можно определять длину волны. Если известен период решетки, то нахождение длины волны света сведется к измерению угла, который соответствует направлению на избранную линию порядка спектра. Обычно используют спектры первого или второго порядков.

Следует отметить, что дифракционные спектры высоких порядков накладываются друг на друга. Так, при разложении белого света спектры второго и третьего порядков уже частично перекрываются.

Дифракционное и дисперсное разложение в спектр

При помощи дифракции, как и дисперсии можно разложить луч света на составляющие. Однако есть принципиальные отличия в этих физических явлениях. Так, дифракционный спектр - это результат огибания светом препятствий, например затемненных зон у дифракционной решетки. Такой спектр равномерно распространяется во всех направлениях. Фиолетовая часть спектра обращена к центру. Спектр при дисперсии можно получать при пропускании света сквозь призму. Спектр получается растянутым в фиолетовом направлении и сжатым в красном. Фиолетовая часть спектра занимает большую ширину, чем красная. Красные лучи при спектральном разложении отклоняются меньше, чем фиолетовые, значит, красная часть спектра ближе к центру.

Максимальный порядок спектра при дифракции

Используя формулу (2) и принимая во внимание то, что не может быть больше единицы, получим, что:

Примеры решения задач

ПРИМЕР 1

Задание На дифракционную решетку падает перпендикулярно ее плоскости свет с длиной волны равной =600 нм, период решетки равен м. Каков наибольший порядок спектра? Чему равно число максимумов в данном случае?
Решение Основой для решения задачи служит формула максимумов, которые получают при дифракции на решетке в заданных условиях:

Максимальное значение m получится при

Проведем вычисления, если =600 нм=м:

Количество максимумов (n) будет равно:

Ответ =3;

ПРИМЕР 2

Задание На дифракционную решетку, перпендикулярно ее плоскости падает монохроматический пучок света, имеющий длину волны . На расстоянии L от решетки находится экран, на нем с помощью линзы формируют спектральную дифракционную картину. Получают, что первый главный максимум дифракции расположен на расстоянии x от центрального (рис.1). Какова постоянная дифракционной решетки (d)?
Решение Сделаем рисунок.