Сообщение ультрафиолетовое излучение. Свойства ультрафиолетового излучения и его влияние на организм человека. Влияние УФ-волн на глаза

Благоприятные воздействия УФ лучей на организм

Лучи солнца обеспечивают тепло и свет, которые улучшают общее самочувствие и стимулируют кровообращение. Небольшое количество ультрафиолета необходимо организму для выработки витамина D. Витамин D играет важную роль в усвоении кальция и фосфора из пищи, а также в развитии скелета, функционировании иммунной системы и в формировании клеток крови. Без сомнения, небольшое количество солнечного света полезно для нас. Воздействия солнечного света в течение 5 - 15 минут на кожу рук, лица и кистей два - три раза в неделю в течение летних месяцев достаточно для поддержания нормального уровня витамина D. Ближе к экватору, где UV излучение интенсивнее, достаточно еще более короткого промежутка.

Следовательно, для большинства людей дефицит витамина D маловероятен. Возможные исключения – это те, кто значительно ограничил свое пребывание на солнце: не покидающие своего дома престарелые люди или люди с сильно пигментированной кожей, которые проживают в странах с низким уровнем UV излучения. Витамин D естественного происхождения очень редок в нашей пище, он присутствует главным образом в рыбьем жире и масле из печени трески.

Ультрафиолетовое излучение успешно используется при лечении множества заболеваний, включая рахит, псориаз, экзему и др. Это терапевтическое воздействие не исключает отрицательные побочные эффекты UV излучения, но оно проводится под медицинским наблюдением, чтобы гарантировать, что польза превышает риск.

Несмотря на значительную роль в медицине, негативные эффекты UV излучения обычно значительно перевешивают положительные. В дополнение к хорошо известным непосредственным эффектам избытка ультрафиолетового облучения, таким как ожоги или аллергические реакции, долгосрочные эффекты представляют опасность здоровью на протяжении всей жизни. Чрезмерный загар способствует поражению кожи, глаз и, вероятно, иммунной системы. Многие люди забывают о том, что UV радиация накапливается в течение всей жизни. Ваше отношение к загару сейчас определяет возможность развития у вас рака кожи или катаракты в дальнейшей жизни! Риск развития рака кожи напрямую связан с продолжительностью и частотой загара.

Воздействие у льтрафиолета на кожу

Здорового загара не существует! Клетки кожи производят пигмент темного цвета только с целью защиты от последующего излучения. Загар обеспечивает некоторую защиту против ультрафиолета. Темный загар на белой коже эквивалентен фактору защиты SPF между 2 и 4. Однако, это не является защитой от отдаленных последствий, таких как рак кожи. Загар может быть привлекательным в косметическом плане, но фактически это означает только то, что ваша кожа была повреждена и попыталась защитить себя.

Есть два различных механизма образования загара: быстрый загар, когда под воздействием ультрафиолета темнеет уже существующий в клетках пигмент. Этот загар начинает исчезать через несколько часов после прекращения воздействия. Долговременный загар возникает в течение приблизительно трех дней, когда новый меланин будет произведен и распределен между клетками кожи. Этот загар может сохраняться в течение нескольких недель.

Солнечный ожог- Высокие дозы ультрафиолета губительны для большинства клеток эпидермиса, а уцелевшие клетки оказываются повреждены. В лучшем случае солнечный ожог вызывает покраснение кожи, называемое эритемой. Она появляется вскоре после инсоляции и достигает максимальной интенсивности между 8 и 24 часами. В этом случае последствия исчезают в течение нескольких дней. Однако сильный загар может оставлять на коже болезненные пузыри и пятна белого цвета, новая кожа на месте которых лишена защиты и более чувствительна к повреждению ультрафиолетом.

Фотосенсибилизация - Небольшой процент населения обладают особенностью очень остро реагировать на ультрафиолетовое излучение. Даже минимальной дозы ультрафиолетового излучения достаточно для запуска у них аллергических реакций, приводящих к быстрому и сильному солнечному ожогу. Фотосенсибилизация часто связывается с использованием некоторых медикаментов, включая некоторые нестероидные противовоспалительные препараты, болеутоляющие средства, транквилизаторы, пероральные противодиабетические средства, антибиотики и антидепрессанты. Если вы постоянно принимаете какие-либо препараты, внимательно ознакомьтесь с аннотацией или проконсультируйтесь с вашим лечащим врачом о возможных реакциях фотосенсибилизации. Некоторые пищевые и косметические продукты, такие как парфюмерия или мыла могут также содержать увеличивающие чувствительность к ультрафиолету компоненты.

Фотостарение- Воздействие солнца способствует старению вашей кожи путем сочетания нескольких факторов. UVB стимулирует быстрое увеличение количества клеток в верхнем слое кожи. Поскольку все больше клеток произведено, эпидермис утолщается.

UVA, проникающий в более глубокие слои кожи, повреждает структуры соединительной ткани и кожа постепенно теряет эластичность. Морщины, дряблость кожи - часто встречающийся результат этой потери. Явление, которое мы часто можем заметить у пожилых людей - локальное избыточное производство меланина, приводящее к темным участкам или печеночным пятнам. Кроме того, лучи солнца высушивают вашу кожу, делая ее шершавой и грубой.

Немеланомные раковые заболевания кожи- В отличие от меланомы, базальноклеточная и чешуйчатая карцинома обычно не приводят к летальному исходу, но их хирургическое удаление может быть болезненным и привести к образованию рубцов.

Немеланомные раковые образования чаще всего располагаются на открытых солнцу частях тела, таких как уши, лицо, шея и предплечья. Обнаружено, что они более часто встречаются у рабочих, работающих вне помещений, чем у находящихся внутри помещений. Это дает основание полагать, что длительное накопление воздействия UV играет главную роль в развитии немеланомных раковых образований кожи.

Меланома- Злокачественная меланома - самый редкий, но и наиболее опасный тип рака кожи. Это одно из наиболее часто встречающихся раковых образований у людей в возрасте 20-35 лет, особенно в Австралии и Новой Зеландии. Все формы рака кожи имеют тенденцию к увеличению за прошлые двадцать лет, однако, самая высокая во всем мире остается за меланомой.

Меланома может возникнуть под видом новой родинки или как изменения цвета, формы, размера или изменения ощущений в уже существующих пятнах, веснушках или родинках. Меланомы обычно имеют неровный контур и неоднородную окраску. Зуд – еще один частый признак, но он также может встречаться при нормальных родинках. Если заболевание распознано и лечение проведено своевременно, прогноз для жизни благоприятный. При отсутствии лечения опухоль может быстро разрастаться и раковые клетки могут распространиться к другим частям тела.

Воздействие ультрафиолетового излучения на глаза

Глаза занимают менее 2 процентов от поверхности тела, однако представляют собой единственную систему органов, допускающую возможность проникновения видимого света вглубь организма. В течение эволюции множество механизмов развилось, чтобы защитить этот очень чувствительный орган от вредных воздействий солнечных лучей:

Глаз расположен в анатомических углублениях головы, защищен бровными дугами, бровями и ресницами. Однако эта анатомическая адаптация лишь частично защищает от ультрафиолетовых лучей в чрезвычайных условиях, таких как использование солярия или при сильном отражения света от снега, воды и песка.

Сужение зрачка, закрытие век и прищуривание минимизирует проникновение лучей солнца в глаз.

Однако эти механизмы активизированы ярким видимым светом, а не ультрафиолетовыми лучами, но в облачный день ультрафиолетовое излучение также может быть высоким. Поэтому, эффективность этих естественных механизмов защиты против воздействия ультрафиолета ограничена.

Фотокератит и фотоконъюнктивит- Фотокератит - воспаление роговой оболочки, в то время как фотоконъюнктивит относится к воспалению конъюнктивы, мембраны, которая ограничивает сферу глаза и покрывает внутреннюю поверхность век. Воспалительные реакции глазного яблока и век могут быть наравне с солнечным ожогом кожи очень чувствительны и обычно появляются в течение нескольких часов после воздействия. Фотокератит и фотоконъюнктивит могут быть очень болезненными, однако, они обратимы и, по всей видимости, не приводят к продолжительному повреждению глаз или нарушению зрения.

Крайняя форма фотокератита – «снежная слепота». Это иногда происходит у лыжников и альпинистов, которые испытывают воздействие очень высоких доз ультрафиолетовых лучей из-за высотных условий и очень сильного отражения. Свежий снег может отражать до 80 процентов ультрафиолетовых лучей. Эти сверхвысокие дозы ультрафиолета действуют губительно на клетки глаза и могут привести к слепоте. «Снежная слепота» очень болезненна. Чаще всего новые клетки растут быстро и зрение восстанавливается в течение нескольких дней. В отдельных случаях солнечная слепота может привести к осложнениям, таким как хроническое раздражение или слезотечение.

Птеригиум - Это разрастание конъюнктивы на поверхности глаза – часто встречающийся косметический недостаток, предположительно связанный с длительным воздействием ультрафиолета. Птеригиум может распространяться к центру роговой оболочки и таким образом уменьшать зрение. Данное явление также может воспаляться. Несмотря на то, что заболевание может быть устранено хирургическим путем, оно имеет тенденциюрецидивировать.

Катаракта- ведущая причина слепоты в мире. Белки хрусталика накапливают пигменты, которые покрывают линзу и в конечном итоге приводят к слепоте. Несмотря на то, что с возрастом катаракта появляется в различной степени у большинства людей, судя по всему, вероятность ее возникновения возрастает под воздействием ультрафиолета.

Раковые поражения глаз- По последним научным данным полагают, что различные формы рака глаза могут быть связаны воздействием ультрафиолетового излучения в течение жизни.

Меланома – частое раковое поражение глаз и иногда требующее хирургического удаления. Базальноклеточная карцинома наиболее часто располагается в области век.

Влияние УФ излучения на иммунную систему

Воздействие солнечного света может предшествовать герпетическим высыпаниям. По всей вероятности радиация UVB уменьшает эффективность иммунной системы и она больше не может держать под контролем вирус простого герпеса. В результате происходит высвобождение инфекции. В одном исследовании, проведенном в Соединенных Штатах, изучался эффект влияния солнцезащитного крема на выраженность высыпаний герпеса. Из 38 пациентов страдающих инфекцией простого герпеса у 27 развились высыпания после воздействия UV излучения. При использовании солнцезащитного крема напротив, ни у одного из пациентов высыпаний не возникло. Поэтому, кроме защиты от солнца, солнцезащитный крем может быть эффективным в предотвращении рецидива высыпаний герпеса, вызванных солнечным светом.

Исследования последних лет все больше доказывают, что воздействие ультрафиолетового излучения внешней среды может изменить активность и распределение некоторых клеток, ответственных за иммунный ответ в организме человека. Как следствие избыток UV излучения может увеличить риск инфекции или уменьшать способность организма обороняться против рака кожи. Там, где уровень ультрафиолетового излучения высок, (главным образом в развивающихся странах) это может снизить эффективность прививок.

Также высказаны предположения о том, что ультрафиолетовое излучение способно вызвать рак двумя разными способами: путем непосредственного повреждения ДНК и ослабляя иммунную систему. До настоящего времени было проведено не так много исследований, чтобы описать потенциальное влияние иммуномодуляции на развитие рака.

Живительные лучи.

Солнце испускает три типа ультрафиолетовых лучей. Каждый из этих типов по-разному воздействует на кожу.

Большинство из нас после отдыха на пляже чувствует себя более здоровыми и полными жизни. Благодаря живительным лучам в коже образуется витамин D, который необходим для полноценного усвоения кальция. Но благотворно воздействуют на организм только небольшие дозы солнечного облучения.

Но сильно загорелая кожа это все-таки поврежденная кожа и,как следствие преждевременное старение и высокий риск развития рака кожи.

Солнечный свет - электромагнитное излучение. Кроме видимого спектра излучения в нем присутствует ультрафиолетовое, которое собственно и отвечает за загар. Ультрафиолет стимулирует способность пигментных клеток меланоцитов производить больше меланина, выполняющего защитную функцию.

Типы УФ лучей.

Существуют три типа ультрафиолетовых лучей, которые различаются по длине волны. Ультрафиолетовое излучение способно проникать сквозь эпидермис кожи в более глубокие слои. Это активизирует процесс производства новых клеток и кератина, в результате кожа становится более жесткой и грубой. Солнечные лучи, проникая сквозь дерму разрушают коллаген и приводят к изменениям толщины и текстура кожи.

Ультрафиолетовые лучи А.

Эти лучи обладают наиболее низким уровнем радиации. Раньше было принято считать, что они безвредны, однако, в настоящее время доказано, что это не так. Уровень этих лучей остается практически постоянным на протяжении всего дня и года. Они проникают даже сквозь стекло.

УФ лучи типа А проникают сквозь слои кожи, достигая дермы, повреждают основание и структуру кожи, разрушая волокна коллагена и эластина.

А-лучи способствуют появлению морщин, уменьшают эластичность кожи, ускоряют появление признаков преждевременного старения, ослабляют защитную систему кожи, делая ее более подверженной инфекциям и, возможно, онкологическим заболеваниям.

Ультрафиолетовые лучи В.

Лучи этого типа испускаются солнцем лишь в определенные времена года и часы дня. В зависимости от температуры воздуха и географической широты они обычно проникают в атмосферу в период с 10 до 16 часов.

УФ лучи типа В наносят коже более серьезный урон, так как взаимодействуют с молекулами ДНК, которые содержатся в клетках кожи. В-лучи повреждают эпидермис, что приводит к появлению солнечных ожогов. В-лучи повреждают эпидермис, что приводит к появлению солнечных ожогов. Излучение этого типа усиливает активность свободных радикалов, которые ослабляют естественную защитную систему кожи.

Ультрафиолетовые лучи В способствуют появлению загара и вызывают солнечные ожоги, ведут к преждевременному старению и появлению темных пигментных пятен, делают кожу грубой и шершавой, ускоряют появление морщин, могут спровоцировать развитие предраковых заболеваний и рака кожи.

Свойства ультрафиолетового излучения определяются множеством параметров. Ультрафиолетовым излучением называются невидимое электромагнитное излучение, которое занимает определённую спектральную область между рентгеновским и видимым излучением в пределах соответствующих длин волн. Длина волны ультрафиолетового излучения составляет 400 – 100 нм и оказывает слабые биологические действия.

Чем выше биологическая активность волн данного излучения, тем слабее действие, соответственно, чем ниже длина волны, тем сильнее биологическая активность. Самой сильной активностью обладают волны с длиной 280 – 200 нм, которые оказывают бактерицидные действия и активно воздействуют на ткани организма.

Частота ультрафиолетового излучения тесно связана с длинами волн поэтому чем выше длина волны, тем меньше частоты излучения. Диапазон ультрафиолетового излучения, доходящий до поверхности Земли, составляет 400 – 280 нм, а более короткие волны, исходящие от Солнца поглощаются ещё в стратосфере при помощи озонового слоя .

Область УФ-излучения условно делится на:

  • Ближнюю – от 400 до 200 нм
  • Далёкую – от 380 до 200 нм
  • Вакуумную – от 200 до 10 нм

Спектр же ультрафиолетового излучения зависит от природы происхождения данного излучения и бывает:

  • Линейчатый (излучение атомов, лёгких молекул и ионов)
  • Непрерывный (торможение и рекомбинация электронов)
  • Состоящий из полос (излучение тяжёлых молекул)

Свойства УФ излучения

Свойствами ультрафиолетового излучения является химическая активность, проникающая способность, невидимость, уничтожение микроорганизмов, благотворное влияние на организм человека (в небольших дозах) и отрицательное воздействие на человека (в больших дозах). Свойства ультрафиолетового излучения в оптической области имеют значительные отличия от оптических свойств ультрафиолета видимой области. Наиболее характерной чертой является увеличение особого коэффициента поглощения, который приводит к уменьшению прозрачности многих тел, обладающих прозрачностью в видимой области .

Коэффициент отражения различных тел и материалов уменьшается с учётом уменьшения длины волны самого излучения. Физика ультрафиолетового излучения соответствует современным представлениям и перестаёт быть самостоятельной динамикой при высоких энергиях, а также объединяется в одну теорию со всеми калибровочными полями.

А вы знаете, что различно при разной интенсивности такого излучения? Прочитайте подробную информацию о полезных и вредных дозах УФ излучения в одной из наших статей.

У нас также доступна информация об использовании на приусадебном участке. Многие дачники уже используют солнечные батареи в своих домах. Попробуйте и вы, прочитав наш материал.

История открытия ультрафиолетового излучения

Ультрафиолетовое излучение, история открытия которого приходится на 1801 год, было озвучено лишь только в 1842 году. Данное явление было открыто немецким физиком Иоганном Вильгельмом Риттером и получило название «актинического излучения ». Это излучение входило в состав отдельных компонентов света, и играло роль восстановительного элемента.

Само понятие ультрафиолетовых лучей впервые встретилось в истории в 13-ом веке, в труде учёного Шри Мадхачарая, который описал атмосферу местности Бхутакаши, содержащей фиолетовые лучи, невидимые для глаз человека.

В ходе опытов в 1801 году группа учёных выяснила, что свет имеет несколько составляющих отдельных компонентов: окислительный, тепловой (инфракрасный), осветительный (видимый свет) и восстановительный (ультрафиолет).

УФ – излучение является непрерывно действующим фактором окружающей внешней среды и оказывает сильнейшее воздействие на различные физиологические процессы, которые протекают в организмах.

По мнению учёных именно оно сыграло основную роль в протекании эволюционных процессов на Земле. Благодаря данному фактору произошёл абиогенный синтез органических земных соединений, что повлияло на увеличения разнообразия видов жизненных форм.

Выяснилось, что все живые существа, в ходе эволюции приспособились использовать энергию всех частей спектра солнечной энергии. Видимую часть солнечного диапазона — для фотосинтеза, инфракрасную для тепла. Ультрафиолетовые компоненты используются в качестве фотохимического синтеза витамина D , который играет важнейшую роль обменов фосфора и кальция в организме живых существ и человека.

Ультрафиолетовый диапазон располагается от видимого света с коротковолновой стороны, и лучи ближней области воспринимаются человеком в качестве появления на коже загара. Короткие волны вызывают разрушительное воздействие на биологические молекулы.

Ультрафиолетовое излучение солнца имеет биологическую эффективность трёх спектральных участков, которые существенно отличаются один от другого и имеют соответствующие диапазоны, по-разному влияющие на живые организмы.

Данное излучение принимается для лечебных и профилактических целей в определённых дозировках. Для таких лечебных процедур используют специальные искусственные источники облучения, спектр излучения которых состоит из более коротких лучей, что оказывает более интенсивное воздействие на биологические ткани.

Вред от ультрафиолетового излучения приносит сильное воздействие данного источника радиации на организм и может вызвать поражения слизистых оболочек и различные дерматиты кожи . В основном вред от ультрафиолета наблюдается у работников различных сфер деятельности, которые контактируют с искусственными источниками данных волн.

Измерение ультрафиолетового излучения проводится многоканальными радиометрами и спектрорадиометрами непрерывного излучения, которые основаны на использовании вакуумных фотодиодов и фотоидов имеющих ограниченный диапазон длин волн.

Свойства ультрафиолетового излучения фото

Ниже приводим фотографии по теме статьи «Свойства ультрафиолетового излучения». Для открытия галереи фотографий достаточно нажать на миниатюру изображения.

Ультрафиолетовое излучение (УФИ) - электромагнитное излучение оптического диапазона, которое условно подразделяется на коротковолновое (УФИ С - с длиной волны 200-280 нм), средневолновое (УФИ В - с длиной волны 280-320 нм) и длинноволновое (УФИ А - с длиной волны 320-400 нм).

УФИ генерируют как естественные, так и искусственные источники. Основной естественный источник УФИ - Солнце. До поверхности Земли доходит УФИ в диапазоне 280-400 нм, так как более короткие волны поглощаются в верхних слоях стратосферы.

Искусственные источники УФИ широко применяются в промышленности, медицине и др.

Фактически любой материал, нагретый до температуры, превышающей 2500 еК, генерирует УФИ. Источниками УФИ является сварка кислородно-ацетиленовыми, кислородно-водородными, плазменными горелками.

Источники биологически эффективного УФИ можно подразделить на газоразрядные и флюоресцентные. К газоразрядным относятся ртутные лампы низкого давления с максимумом излучения на длине волны 253,7 нм, т.е. соответствующие максимуму бактерицидной эффективности, и высокого давления с длинами волн 254, 297, 303, 313 нм. Последние широко используются в фотохимических реакторах, в печатном деле, для фототерапии кожных заболеваний. Ксеноновые лампы применяются для тех же целей, что и ртутные. Оптические спектры импульсных ламп зависят от используемого в них газа - ксенон, криптон, аргон, неон и др.

В люминесцентных лампах спектр зависит от использованного ртутного люминофора.

Избыточному воздействию УФИ могут подвергаться работники промышленных предприятий и медицинских учреждений, где используются выше перечисленные источники, а также люди, работающие на открытом воздухе за счет солнечной радиации (сельскохозяйственные, строительные, железнодорожные рабочие, рыбаки и др.).

Установлено, что как недостаток, так и избыток УФИ отрицательно сказываются на состоянии здоровья человека. При недостаточности УФИ у детей развивается рахит вследствие нехватки витамина Д и нарушения фосфорно-кальциевого обмена, снижается активность защитных систем организма, в первую очередь - иммунной, что делает его более уязвимым к воздействию неблагоприятных факторов.

Критическими органами к восприятию УФИ являются кожа и глаза. Острые поражения глаз, так называемые электроофтальмии (фотоофтальмии), представляют собой острые конъюнктивиты. Заболеванию предшествует латентный период, продолжительность которого около 12 часов. С хроническими поражениями глаз связывают хронический конъюнктивит, блефарит, катаракту хрусталика.

Поражения кожи протекают в форме острых дерматитов с эритемой, иногда отеком, вплоть до образования пузырей. Наряду с местной реакцией могут отмечаться общетоксические явления. В дальнейшем наблюдаются гиперпигментация и шелушение. Хронические изменения кожных покровов, вызванных УФИ, выражаются в старении кожи, развитии кератоза, атрофии эпидермиса, возможны злокачественные новообразования.

В последнее время интерес к укреплению здоровья населения путем профилактического ультрафиолетового облучения значительно возрос. Действительно, ультрафиолетовое голодание, наблюдаемое обычно в зимнее время года и особенно у жителей Севера России, ведет к значительному снижению защитных сил организма и повышению уровня заболеваемости. В первую очередь страдают дети.

Наша страна является родоначальницей движения за компенсацию ультрафиолетовой недостаточности у населения с исполь- зованием искусственных источников ультрафиолетовой радиации, спектр которых приближается к естественному. Опыт использования искусственных источников ультрафиолетовой радиации требует соответствующей коррекции в отношении дозы и методов использования.

Территория России с юга на север простирается от 40 до 80? с.ш. и условно делится на пять климатических районов страны. Оценим естественный ультрафиолетовый климат двух крайних и одного среднего географических районов. Это районы Севера (70? с.ш. - Мурманск, Норильск, Дудинка и др.), Средней полосы (55? с.ш. - Москва и др.) и Юга (40? с.ш. - Сочи и др.) нашей страны.

Напомним, что по биологическому действию спектр ультрафиолетового излучения Солнца делится на две области: «А» - излучение с длиной волны 400-315 нм, и «В» - излучение с длиной волны менее 315 нм (до 280 нм). Однако практически земной поверхности лучи короче 290 нм не достигают. Ультрафиолетовое излучение с длиной волны менее 280 нм, которое имеется только в спектре искусственных источников, относится к области «C» ультрафиолетовой радиации. У человека отсутствуют рецепторы, которые срочно (с малым латентным периодом) реагируют на ультрафиолетовую радиацию. Особенностью естественного УФ-излучения является его способность вызывать (с относительно длинным латентным периодом) эритему, являющуюся специфической реакцией организма на действие УФ-радиации солнечного спектра. В наибольшей степени образовывать эритему способна УФ-радиация с длиной волны максимум 296,7 нм (табл. 10.1).

Таблица 10.1. Эритемная эффективность монохроматического УФ-излучения

Как видно из табл. 10.1, излучение с длиной волны 285 нм в 10 раз, а лучи с длиной волны 290 нм и 310 нм в 3 раза менее активно образуют эритему, чем излучение с длиной волны 297 нм.

Приход суточной УФ-радиации солнца для указанных выше районов страны в летний период (табл. 10.2) относительно высок 35- 52 эр-ч/м -2 (1 эр-ч/м -2 = 6000 мкВт-мин/см 2). Однако в другие периоды года имеется существенное различие, и зимой, особенно на Севере, естественная радиация солнца отсутствует.

Таблица 10.2. Среднее распределение эритемной радиации области (эр-ч/м -2)

Северная широта

Месяц

III

VI

IX

XII

18,2

26,7

46,5

Величина суммарной радиации в различных широтах отражает суточный приход излучения. Однако при учете количества излуче- ния, поступающего в среднем не за 24, а лишь за 1 час, выявляется следующая картина. Так, в июне на широте 70? с.ш. за сутки поступает 35 эр-ч/м -2 . Солнце при этом все 24 часа не уходит с небосвода, следовательно, в час эритемная радиация будет составлять 1,5 эр-ч/м -2 . В этот же период года на широте 40? Солнце излучает 77 эр-ч/м -2 и сияет 15 часов, следовательно, часовая эритемная облученность составит 5,13 эр-ч/м -2 , т.е. величину в 3 раза большую, чем на широте 70?. Для определения режима облучения целесообразно проводить оценку прихода суммарной УФ солнечной радиации не за 24, а за 15 часов, т.е. за период бодрствования человека, так как в конечном итоге нас интересует количество естественной радиации, влияющей на человека, а не количество энергии Солнца, падающей на поверхность Земли вообще.

Важной особенностью действия на человека естественной УФрадиации является способность предупреждать так называемую D-витаминную недостаточность. В отличие от обычных витаминов, витамин D фактически не содержится в естественных продуктах питания (исключение составляют печень некоторых рыб, особенно трески и палтуса, а также яичный желток и молоко). Этот витамин синтезируется в коже под воздействием УФ радиации.

Недостаточное воздействие УФ-излучения без одновременного действия видимой радиации на организм человека приводит к разно- образным проявлениям D-авитаминоза.

В процессе D-витаминной недостаточности в первую очередь нарушаются трофика центральной нервной системе и клеточное дыхание, как субстрат нервной трофики. Это нарушение, ведущее к ослаблению окислительно-восстановительных процессов, следует, очевидно, считать основным, в то время как все остальные многообразные проявления будут вторичными. Наиболее чувствительны к отсутствию УФ-радиации маленькие дети, у которых в результате D-авитаминоза может развиться рахит и, как следствие рахита, - близорукость.

Способностью предупреждать и излечивать рахит в наибольшей степени обладает УФ-излучение области В.

Процесс синтеза витамина D под воздействием УФ-излучения довольно сложен.

В нашей стране витамин D был получен синтетическим путем в 1952 г. Исходным сырьем для синтеза послужил холестерин. В процессе превращения холестерина в провитамин образовывалась двойная связь в кольце В стерина путем последовательного бромирования. Полученный бензонат 7-дегидрохолестерина омыляется в Г-дегидрохолестерин, который уже под воздействием УФ-излучения превращается в витамин. Сложные процессы перехода провитамина в витамин зависят от спектрального состава УФ-радиации. Так, лучи с длиной волны максимум 310 нм способны превращать эргостерин в люмистерин, который переходит в техистерин, и, наконец, под действием лучей с длиной волны 280-313 нм техистерин превращается в витамин D.

Витамин D в организме осуществляет регуляцию содержания кальция и фосфора в крови. При недостаточности этого витамина нарушается фосфорно-кальциевый обмен, тесно связанный с процессами окостенения скелета, кислотно-щелочным равновесием, свертываемостью крови и т.д.

При рахите нарушается условно-рефлекторная деятельность, при этом образование условных рефлексов происходит медленнее, чем у здоровых людей, и они быстро исчезают, т.е. возбудимость коры головного мозга у детей, страдающих рахитом, значительно понижена. При этом клетки коры функционируют слабо и легко истощаются. Кроме того, наблюдается расстройство тормозной функции больших полушарий.

Торможение в течение длительного времени может широко распространяться по коре мозга.

Совершенно ясно, что необходимо проводить соответствующие профилактические мероприятия, т.е. использовать полноценный УФ-климат.

Тип источника

Мощность, Вт

Облученность в энергетических единицах на расстоянии 1 м

УФ-радиация область А

УФ-радиация область В

УФ-радиация область С

мкВт/см 2

%

мкВт/см 2

%

мкВт/см 2

%

ПРК-7 (ДРК-7)

1000

ЛЭР-40

28,6

22,6

Однако следует заметить, что спектральный состав искусственного радиационного климата, имеющий место в условиях фотария с лампой типа ПРК, значительно отличается от естественного наличием коротковолновой УФ-радиации.

С выпуском в нашей стране эритемных люминесцентных ламп небольшой мощности стало возможным использование искусст- венных источников УФ-радиации в условиях фотария и в системе общего освещения.

Доза профилактического УФ-облучения. Несколько слов из истории. Профилактическое облучение шахтеров было начато в 30-х годах ХХ столетия. В то время не было соответствующего опыта и необходимой теоретической базы в отношении выбора дозы именно

профилактического облучения. Было решено использовать опыт лечебный, применяемый в физиотерапевтической практике при лечении разного рода заболеваний. Заимствованы были не только источники УФ-радиации, но и схема облучения. Биологический эффект облучения лампами ПРК, в спектре которых имеется бактерицидное излучение, был весьма сомнителен. Так, нами установлено, что соотношение биологической активности областей «В» и «С», участвующих в образовании эритемы, составляет 1:8. Первые методические указания по эксплуатации фотариев были разработаны преимущественно физиотерапевтами. В дальнейшем вопросами профилактического облучения занимались гигиенисты, биологи. В 50-х годах прошлого столетия проблема профилактического облучения приобрела гигиеническую направленность. Были проведены многочисленные исследования в разных городах и климатических районах России, которые позволили по-новому подойти к дозе профилактического УФ-облучения.

Установление профилактической дозы УФ-радиации является весьма трудной задачей, ибо следует решать и учитывать ряд связанных между собой факторов, таких как:

Источник УФ-радиации;

Способ его использования;

Площадь облучаемой поверхности;

Сезон начала облучения;

Фоточувствительность кожи (биодоза);

Интенсивность облучения (облученность);

Время облучения.

В работе использовались эритемные лампы, в спектре которых отсутствует бактерицидное УФ-излучение. Эритемная биодоза

Таблица 10.4. Взаимосвязь физических и приведенных единиц для

выражения дозы УФ-радиации области В (280-350 нм)

мкВт/см 2

мЭр-ч/м 2

мкЭр-ч/см 2

мЭр-мин/м 2

мкВт/см 2

0,0314

мЭр-ч/м 2

мкЭр-ч/м 2

0,157

мЭр-мин/м 2

0,0157

выражена в физических (мкВт/см 2) или приведенных (мкЭр/см 2) величинах, соотношения которых представлены в табл. 10.4.

Следует особо подчеркнуть, что облученность эритемного потока УФ излучения оценивать в эффективных (или приведенных) еди- ницах - эрах (Эр - эритемный поток излучения с длиной волны 296,7 нм мощностью 1 Вт) можно лишь при излучении области «В».

Для выражения облученности участка «В» УФ-спектра в эрах следует его облученность, выраженную в физических единицах (Вт), умножить на коэффициент эритемной чувствительности кожи. Коэффициент эритемной чувствительности кожи для лучей с длиной волны 296,7 нм принят в 1935 г. Международной комиссией по освещению за единицу.

Используя лампы ЛЭР, мы приступили к нахождению оптимальной профилактической дозы УФ-радиации и оценке «метода облучения», под которым имеется в виду главным образом длительность ежедневного облучения, продолжающегося от минуты до нескольких часов.

В свою очередь длительность профилактического облучения зависит от способа использования искусственных излучателей (исполь- зования излучателей в системе общего освещения или в условиях фотария) и от фоточувствительности кожи (от значения эритемной биодозы).

Разумеется, что при разных способах применения искусственных излучателей облучению подвергаются разные по площади поверхности тела. Так, при использовании люминесцентных ламп в системе общего освещения облучаются лишь открытые части тела - лицо, руки, шея, волосистая часть головы, а в фотарии - практически все тело.

УФ-облученность в помещении при использовании эритемных ламп небольшая, отсюда длительность облучения составляет 6-8 ч, тогда как в фотарии, где облученность достигает значительной величины, действие радиации не превышает 5-6 мин.

При нахождении оптимальной дозы профилактического облучения следует руководствоваться тем, что начальная дозы профилактического облучения должна быть ниже биодозы, т.е. субэритемной. В противном случае возможен ожог кожи. Профилактическая доза УФ-составляющей должна выражаться в абсолютных величинах.

Постановка вопроса о выражении профилактической дозы в абсолютных физических (приведенных) величинах отнюдь не

означает отказа от необходимости определения индивидуальной чувствительности кожи к УФ-радиации. Определение биодозы перед началом облучения необходимо, но лишь для того, чтобы выяснить, не меньше ли она рекомендуемой профилактической дозы. Практически при определении биодозы (по Горбачеву) можно использовать биодизиметр, имеющий не 8 или 10 отверстий, как это имеет место в лечебной практике, а значительно меньше или даже одно, которое может быть облучено дозой, равной профилактической. Если облучаемый участок кожи покраснел, т.е. биодоза меньше профилактической, то начальная доза облучения должна быть уменьшена, а облучение проводится возрастающими дозами при начальной дозе равной биодозе.

Сравнительный анализ таких физиологических показателей, как эритемная биодоза, фагоцитарная активность лейкоцитов крови, ломкость капилляров, активность щелочной фосфотазы свидетельствовал о том, что дополнительное искусственное облучение УФ-радиацией эритемными лампами, проводимое зимой, вызывая весьма положительное действие, не способствует в полной мере поддержанию изучаемых физиологических реакций на том уровне, который наблюдается осенью после длительного воздействия природной УФ-радиации.

Анализ уровней физиологических показателей облучающихся дозой УФ-радиации при разном методе облучения, обусловленном способом использования искусственных излучателей, позволил сделать заключение, что биологический эффект воздействия УФ-радиации не зависит от примененных методов облучения.

Динамика чувствительности кожи к УФ-радиации известным образом отражает процессы, происходящие в организме в результате длительного отсутствия природной УФ-радиации.

При профилактическом УФ-облучении необходимо учитывать климатические особенности местности, где проживают облучаемые (для определения сроков облучения), среднее значение их эритемной биодозы (для выбора начальной дозы облучения) и то, что профилактическая доза облучения, нормируемая в абсолютных величинах, не должна быть ниже 2000 мкВт-мин/см 2 (60-62 мЭр-ч/м 2).

Профилактические мероприятия по предупреждению острого конъюнктивита при воздействии УФИ сводятся к применению светозащитных очков или щитков при электросварочных и других работах с источниками УФИ. Для защиты кожи от УФИ используются

защитная одежда, противосолнечные экраны (навесы), специальные кремы.

Основная роль в профилактике неблагоприятного воздействия УФИ на организм принадлежит гигиеническим нормативам. В настоящее время действуют «Санитарные нормы ультрафиолетового излучения в производственных помещениях» СН? 4557-88. Нормируемой величиной является облученность, Вт/м1. Указанные нормативы регламентируют допустимые величины УФИ для кожи с учетом длительности облучения в течение рабочей смены и площади облучаемой поверхности кожи.

В сельскохозяйственном производстве для технологического воздействия оптическим излучением на живые организмы и рас­тения широко применяют специальные источники ультрафиоле­тового (100…380 нм) и инфракрасного (780…106 нм) излучения, а также источники фотосинтетически активного излучения (400…700 нм).

По распределению потока оптического излучения между раз­личными областями ультрафиолетового спектра различают источ­ники общего ультрафиолетового (100…380 нм), витального (280…315 нм) и преимущественно бактерицидного (100…280 нм) действия.

Источники общего ультрафиолетового излучения - дуговые ртут­ные трубчатые лампы высокого давления типа ДРТ (ртутно-кварцевые лампы). Лампа типа ДРТ представляет собой трубку из кварцевого стекла, в концы которой впаяны вольфрамовые элект­роды. В лампу вводится дозированное количество ртути и аргона. Для удобства крепления к арматуре лампы ДРТ снабжены метал­лическими держателями. Лампы ДРТ выпускаются мощностью 2330, 400, 1000 Вт.

Витальные люминесцентные лампы типа ЛЭ выполнены в виде цилиндрических трубок из увиолевого стекла, внутренняя поверх­ность которых покрыта тонким слоем люминофора, излучающего в ультрафиолетовой области спектра световой поток с длиной вол­ны 280…380 нм (максимум излучения в области 310…320 нм). Кро­ме сорта стекла, диаметра трубки и состава люминофора, трубча­тые витальные лампы конструктивно не отличаются от трубчатых люминесцентных ламп низкого давления и включаются в сеть с помощью тех же устройств (дросселя и стартера), что и люминес­центные лампы той же мощности. Лампы ЛЭ выпускаются мощностью 15 и 20 Вт. Кроме этого разработаны и витально-осветительные люминесцентные лампы.

Бактерицидные лампы - это источники коротковолнового ульт­рафиолетового излучения, большая часть которого (до 80 %) при­ходится на длину волны 254 нм. Конструкция бактерицидных ламп принципиально не отличается от трубчатых люминесцент­ных ламп низкого давления, но стекло с легирующими присадка­ми, применяемое для их изготовления, хорошо пропускает излу­чение в диапазоне спектра менее 380 нм. Кроме этого колба бакте­рицидных ламп не покрыта люминофором и имеет несколько уменьшенные размеры (диаметр и длину) по сравнению с анало­гичными люминесцентными лампами общего назначения одина­ковой мощности.

Бактерицидные лампы включают в сеть с помощью тех же уст­ройств, что и люминесцентные лампы.

Лампы повышенного фотосинтетически активного излучения . Эти лампы применяют при искусственном облучении растений. К ним относятся люминесцентные фотосинтетические лампы низкого давления типов ЛФ и ЛФР (Р означает рефлекторные), дуговые ртутные люминесцентные фотосинтетические высокого давления типа ДРЛФ, металлогалогенные дуговые ртутные высокого давле­ния типов ДРФ, ДРИ, ДРОТ, ДМЧ, дуговые ртутные вольфрамо­вые типа ДРВ.

Люминесцентные фотосинтетические лампы низкого давления типов ЛФ и ЛФР по конструкции аналогичны люминесцент­ным лампам низкого давления и отличаются от них только со­ставом люминофора, а следовательно, и спектром излучения. В лампах типа ЛФ относительно высокая плотность излучения лежит в диапазонах волн 400…450 и 600…700 нм, на которые приходится максимум спектральной чувствительности зеленых растений.

Лампы ДРЛФ конструктивно сходны с лампами типа ДРЛ, но в отличие от последних у них увеличено излучение в красной части спектра. Под слоем люминофора у ламп ДРЛФ есть отражающее покрытие, обеспечивающее требуемое распределение лучистого потока в пространстве.

Источником инфракрасного излучения в простейшем случае может служить обычная осветительная лампа накаливания . В ее спектре излучения инфракрасная область занимает почти 75 %, причем увеличить поток инфракрасных лучей можно за счет уменьшения на 10…15% подводимого к лампе напряжения или окраской колбы в синий или красный цвет. Однако основным ис­точником инфракрасного излучения являются специальные инф­ракрасные зеркальные лампы.

Инфракрасные зеркальные лампы (термоизлучатели) отлича­ются от обычных осветительных ламп параболоидной формой колбы и более низкой температурой нити накаливания. Относи­тельно низкая температура нити накаливания ламп-термоизлучателей позволяет сместить спектр их излучения в инфракрасную область и увеличить среднюю продолжительность горения до 5000 ч.

Внутренняя часть колбы таких ламп, прилегающая к цоколю, покрыта зеркальным слоем, что позволяет перераспределять и концентрировать в заданном направлении излучаемый инфра­красный поток. Для снижения интенсивности видимого излуче­ния нижнюю часть колбы некоторых инфракрасных ламп покры­вают красным или синим теплостойким лаком.