Чему равняется п. Чему равно число ПИ и что оно означает? Рекорд запоминания числа пи

Как изменить механическую энергию тела? Да очень просто. Поменять его местоположение или придать ему ускорение. Например, пнуть мячик или поднять его над землей повыше.

В первом случае мы изменим его кинетическую энергию, во втором потенциальную. А как обстоит дело с внутренней энергией? Каким способом изменить внутреннюю энергию тела? Для начала разберемся, что же это такое. Внутренняя энергия - это кинетическая и потенциальная энергия всех частиц, из которых состоит тело. В частности, кинетическая энергия частиц - это энергия их движения. А скорость их движения, как известно, зависит от температуры. То есть, логичный вывод - повышая температуру тела, мы повысим его внутреннюю энергию. Самый простой способ повысить температуру тела - это теплообмен. При контакте тел с разной температурой более холодное тело нагревается за счет более теплого. Более теплое тело в этом случае охлаждается.

Простой ежедневный пример: холодная ложка в чашке с горячим чаем очень быстро нагревается, а чай при этом чуть-чуть остывает. Повышение температуры тела возможно и другими способами. Как мы все поступаем, когда у нас на улице замерзают лицо или руки? Мы трем их. При трении предметы нагреваются. Также предметы нагреваются при ударах, давлении, то есть, иными словами, при взаимодействии. Всем известно, как добывали огонь в древности - либо терли деревяшки друг о друга, либо стукали кремнием по другому камню. Также и в наше время в кремниевых зажигалках используется трение металлического стержня о кремень.

До сих пор речь шла о изменении внутренней энергии путем изменения кинетической энергии составляющих его частиц. А как насчет потенциальной энергии этих же самых частиц? Как известно, потенциальная энергия частиц - это энергия их взаиморасположения. Таким образом, для изменения потенциальной энергии частиц тела, нам надо тело деформировать: сжать, скрутить и так далее, то есть, изменить расположение частиц друг относительно друга. Это достигается путем воздействия на тело. Мы меняем скорость отдельных частей тела, то есть совершаем над ним работу.

Примеры изменения внутренней энергии

Таким образом, все случаи воздействия на тело с целью изменения его внутренней энергии достигаются двумя способами. Либо путем передачи ему тепла, то есть теплопередачей, либо путем изменения скорости его частиц, то есть совершением над телом работы.

Примеры изменения внутренней энергии - это практически все происходящие в мире процессы. Не меняется внутренняя энергия частиц в случае, когда с телом абсолютно ничего не происходит, что согласитесь, крайняя редкость - закон сохранения энергии действует. Вокруг нас все время что-то происходит. Даже с предметами, с которыми на первый взгляд ничего не происходит, на самом деле происходят различные незаметные нам изменения: незначительные изменения температуры, небольшие деформации и так далее. Стул прогибается под нашей тяжестью, у книги на полке чуть-чуть изменяется температуру от каждого движения воздуха, не говоря уже про сквозняки. Ну а что касается живых тел - тут понятно без слов, что в них внутри все время что-то происходит, и внутренняя энергия меняется практически в каждый момент времени.

Как изменить механическую энергию тела? Да очень просто. Поменять его местоположение или придать ему ускорение. Например, пнуть мячик или поднять его над землей повыше.

В первом случае мы изменим его кинетическую энергию, во втором потенциальную. А как обстоит дело с внутренней энергией? Каким способом изменить внутреннюю энергию тела? Для начала разберемся, что же это такое. Внутренняя энергия - это кинетическая и потенциальна частиц - это энергия их движения. А скорость их движения, как известно, зависит от температуры. То есть, логичный вывод - повышая температуру тела, мы повысим его внутреннюю энергию. Самый простой способ повысить температуру тела - это теплообмен. При контакте тел с разной температурой более холодное тело нагревается за счет более теплого. Более теплое тело в этом случае охлаждается.

Простой ежедневный пример: холодная ложка в чашке с горячим чаем очень быстро нагревается, а чай при этом чуть-чуть остывает. Повышение температуры тела возможно и другими способами. Как мы все поступаем, когда у нас на улице замерзают лицо или руки? Мы трем их. При трении предметы нагреваются. Также предметы нагреваются при ударах, давлении, то есть, иными словами, при взаимодействии. Всем известно, как добывали огонь в древности - либо терли деревяшки друг о друга, либо стукали кремнием по другому камню. Также и в наше время в кремниевых зажигалках используется трение металлического стержня о кремень.

До сих пор речь шла о изменении внутренней энергии путем изменения кинетической энергии составляющих его частиц. А как насчет потенциальной энергии этих же самых частиц? Как известно, потенциальная энергия частиц - это энергия их взаиморасположения. Таким образом, для изменения потенциальной энергии частиц тела, нам надо тело деформировать: сжать, скрутить и так далее, то есть, изменить расположение частиц друг относительно друга. Это достигается путем воздействия на тело. Мы меняем скорость отдельных частей тела, то есть совершаем над ним работу.

Таким образом, все случаи воздействия на тело с целью изменения его внутренней энергии достигаются двумя способами. Либо путем передачи ему тепла, то есть теплопередачей, либо путем изменения скорости его частиц, то есть совершением над телом работы.

Примеры изменения внутренней энергии - это практически все происходящие в мире процессы. Не меняется внутренняя энергия частиц в случае, когда с телом абсолютно ничего не происходит, что согласитесь, крайняя редкость - закон сохранения энергии действует. Вокруг нас все время что-то происходит. Даже с предметами, с которыми на первый взгляд ничего не происходит, на самом деле происходят различные незаметные нам изменения: незначительные изменения температуры, небольшие деформации и так далее. Стул прогибается под нашей тяжестью, у книги на полке чуть-чуть изменяется температуру от каждого движения воздуха, не говоря уже про сквозняки. Ну а что касается живых тел - тут понятно без слов, что в них внутри все время что-то происходит, и внутренняя энергия меняется практически в каждый момент времени.

Внутренняя энергия и работа газа

Основы термодинамики

Повторение. Закон сохранения полной механической энергии : полная механическая энергия замкнутой системы, в которой не действуют силы трения (сопротивления), сохраняется.

Систему называют замкнутой , если все ее компоненты взаимодействуют только между собой.

Совершение работы и выделение энергии при термодинамических процессах говорит о том, что термодинамические системы обладают запасом внутренней энергии .

Под внутренней энергией системы U в термодинамике понимают сумму кинетической энергии движения всех микрочастиц системы (атомов или молекул) и потенциальной энергии их взаимодействия между собой. Подчеркнем, что механическая энергия (потенциальная энергия тела, поднятого под поверхно­стью Земли и кинетическая энергия его движения как целого) не входит во внутреннюю энергию.

Опыт показывает, что существуют два способа изменения внутренней энергии системы - совершение механической работы над системой и теплообмен с другими системами.

Первый способ изменения внутренней энергии - совершение механической работы А" внешними силами над системой или самой системой над внешними телами А (А = -А"). При совершении работы внутренняя энергия системы изменяется за счет энергии внешнего источника. Так, при накачивании велосипедного колеса система нагревается за счет работы насоса, при помощи трения наши предки смогли получить огонь и т. д.

Второй способ изменения внутренней энергии системы (без совершения работы) называется теплообменом (теплопередачей). Количество энергии, полученное или отданное телом при таком процессе, называется количеством теплоты и обозначается ΔQ .

Существуют три вида теплообмена: теплопроводность, конвекция, тепловое излучение.

При теплопроводности происходит передача теплоты от более нагретого тела к менее нагретому при тепловом контакте между ними. Теплообмен может происходить и между частями тела: от более нагретой части к его менее нагретой без переноса частиц, составляющих тело.

Конвекция - перенос теплоты потоками движущихся жидкости или газа из одних областей занимаемого ими объема в другие. При нагревании чайника на плите теплопроводность обеспечивает поступление теплоты через дно чайника к нижним (пограничным) слоям воды, однако нагревание внутренних слоев воды как раз и есть результат конвекции, приводящей к перемешиванию нагретой и холодной воды.

Тепловое излучение - перенос теплоты посредством электромагнитных волн. При этом отсутствует механический контакт нагревателя и получателя теплоты. Например, при поднесении руки на небольшое расстояние к лампе накаливания Вы почувствуете ее тепловое излучение. Земля получает энергию от Солнца также за счет теплового излучения.



Поскольку внутренняя энергия U однозначно определяется термодинамическими параметрами системы, то она является функцией состояния. Соответственно, изменение внутренней энергии ΔU при изменении состояния системы (изменение температуры, объема, давления, переход из жидкого состояния в твердое и т. д.) может быть найдено по формуле

ΔU=U 2 - U 1

где U 1 и U 2 - внутренняя энергия в первом и во втором состояниях. Изменение внутренней энергии ΔU не зависит от промежуточных состояний системы в процессе такого перехода, а определяется только начальным и конечным значениями энергии.

Внутренняя энергия 1-й закон термодинамики.
Сумма кинетических энергий хаотического движения всех частиц тела относительно центра масс тела (молекул, атомов) и потенциальных энергий их взаимодействия друг с другом называется внутренней энергией.
Кинетическая энергия частиц определяется скоростью, а значит - температурой тела. Потенциальная - расстоянием между частицами, а значит - объемом. Следовательно: U=U (T,V) - внутренняя энергия зависит от объема и температуры. U=U (T,V)
Для идеального газа: U=U (T) , т.к. взаимодействием на расстоянии пренебрегаем. - внутренняя энергия идеального одноатомного газа. Внутренняя энергия - однозначная функция состояния (с точностью до произвольной постоянной) и в замкнутой системе сохраняется. Обратное неверно(!) - одной и той же энергии могут соответствовать разные состояния. U – внутренняя энергия N – число атомов - средняя кинетическая энергия K – постоянная Больцмана m - масса M - молярная масса R – универсальная газовая постоянная Ρ плотность v – количество вещества Идеальный газ:
Опыты Джоуля доказали эквивалентность работы и количества теплоты, т.е. и та и другая величины являются мерой изменения энергии, их можно измерять в одинаковых единицах: 1 кал = 4,1868 Дж ≈ 4,2 Дж. Эта величина наз. механическим эквивалентом теплоты.

14 мар 2012

14 марта математики отмечают один из самых необычных праздников - Международный день числа «Пи». Эта дата выбрана неслучайно: числовое выражение π (Пи) - 3,14 (3 месяц (март) 14 число).

Впервые с этим необычным числом школьники сталкиваются уже в младших классах при изучении круга и окружности. Число π - математическая константа, которая выражает отношение длины окружности к длине ее диаметра. Т.е если взять окружность с диаметром равным единице, то длина окружности и будет равна числу «Пи». Число π имеет бесконечную математическую продолжительность, но в повседневных вычислениях используют упрощенное написание числа, оставляя только два знака после запятой, - 3,14.

В 1987 году этот день отмечался впервые. Физик Ларри Шоу из Сан-Франциско заметил, что в американской системе записи дат (месяц / число) дата 14 марта - 3/14 совпадает с числом π (π = 3,1415926…). Обычно празднования начинаются в 1:59:26 дня (π = 3,1415926 …).

История числа «Пи»

Предполагается, что история числа π начинается в Древнем Египте. Египетские математики определяли площадь круга диаметром Dкак (D-D/9) 2 . Из данной записи видно, что в то время число π приравнивали к дроби (16/9) 2 , или 256/81, т.е. π 3,160...

В VI в. до н.э. в Индии в религиозной книге джайнизма есть записи, свидетельствующие о том, что число π в то время принимали равным квадратному корню из 10, что даёт дробь 3,162...
В III в. до н.э.Архимед в своей небольшой работе "Измерение круга" обосновал три положения:

  1. Всякий круг равновелик прямоугольному треугольнику, катеты которого соответственно равны длине окружности и её радиусу;
  2. Площади круга относятся к квадрату, построенному на диаметре, как 11 к 14;
  3. Отношение любой окружности к её диаметру меньше 3 1/7 и больше 3 10/71.

Последнее положение Архимед обосновал последовательным вычислением периметров правильных вписанных и описанных многоугольников при удвоении числа их сторон. По точным расчётам Архимеда отношение окружности к диаметру заключено между числами 3*10 / 71и 3*1/7, а это означает, что число «пи» равно 3,1419... Истинное значение этого отношения 3,1415922653...
В V в. до н.э. китайский математик Цзу Чунчжи нашёл более точное значение этого числа: 3,1415927...
Впервой половине XV в. астроном и математикал-Каши вычислил π с 16 десятичными знаками.

Спустя полтора столетия в Европе Ф.Виетнашёл число π только с 9 правильными десятичными знаками: он сделал 16 удвоений числа сторон многоугольников. Ф.Виетпервым заметил, что π можно отыскать, используя пределы некоторых рядов. Это открытие имело большое значение, оно позволило вычислить π с какой угодно точностью.

В 1706 г английский математик У.Джонсон ввёл обозначение отношения длины окружности к диаметру и обозначил его современным символом π первой буквой греческого слова periferia-окружность.

На протяжении длительного периода времени учёные всего мира пытались разгадать тайну этого загадочного числа.

В чем же сложность вычисления значения π ?

Число π является иррациональным: его невозможно выразить в виде дроби p/q, где p и q целые числа, данное число не может быть корнем алгебраического уравнения. Нельзя указать алгебраическое или дифференциальное уравнение, корнем которого будет π, поэтому данное число называется трансцендентным и вычисляется путём рассмотрения какого-либо процесса и уточняется за счет увеличения шагов рассматриваемого процесса. Множественные попытки просчитать максимальное количество знаков числа π привели к тому, что сегодня, благодаря современной вычислительной технике, можно рассчитать последовательность с точностью в 10 триллионов цифр после запятой.

Цифры десятичного представления числа π достаточно случайны. В десятичном разложении числа можно найти любую последовательность цифр. Предполагают, что в данном числе в зашифрованном виде есть все написанные и ненаписанные книги, любая информация, которую только можно представить, находится в числе π.

Можете сами попробовать разгадать тайну этого числа самостоятельно. Записать число «Пи» полностью, конечно не получится. Но самым любопытным предлагаю рассмотреть первые 1000 знаковчисла π = 3,
1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 8410270193 8521105559 6446229489 5493038196 4428810975 6659334461 2847564823 3786783165 2712019091 4564856692 3460348610 4543266482 1339360726 0249141273 7245870066 0631558817 4881520920 9628292540 9171536436 7892590360 0113305305 4882046652 1384146951 9415116094 3305727036 5759591953 0921861173 8193261179 3105118548 0744623799 6274956735 1885752724 8912279381 8301194912 9833673362 4406566430 8602139494 6395224737 1907021798 6094370277 0539217176 2931767523 8467481846 7669405132 0005681271 4526356082 7785771342 7577896091 7363717872 1468440901 2249534301 4654958537 1050792279 6892589235 4201995611 2129021960 8640344181 5981362977 4771309960 5187072113 4999999837 2978049951 0597317328 1609631859 5024459455 3469083026 4252230825 3344685035 2619311881 7101000313 7838752886 5875332083 8142061717 7669147303 5982534904 2875546873 1159562863 8823537875 9375195778 1857780532 1712268066 1300192787 6611195909 2164201989

Запоминаем число «Пи»

В настоящее время с помощью вычислительной техники вычислено в десять триллионов знаков числа «Пи». Максимальное число цифр, которое смог запомнить человек составляет сто тысяч.

Чтобы запомнить максимальное количество знаков числа «Пи», используют различные стихотворные «запоминалки», в которых слова с определённым количеством букв располагаются в такой же последовательности, как цифры в числе «Пи»: 3,1415926535897932384626433832795…. Для восстановления числа необходимо подсчитать число символов в каждом из слов и записать по порядку.

Вот и знаю я число, именуемое "Пи". Молодец! (7 цифр)

Вот и Миша и Анюта прибежали
Пи узнать число они желали. (11 цифр)

Это я знаю и помню прекрасно:
Пи многие знаки мне лишни, напрасны.
Доверимся знаньям громадным
Тех, пи кто сосчитал, цифр армаду. (21 цифра)

Раз у Коли и Арины
Распороли мы перины.
Белый пух летал, кружился,
Куражился, замирал,
Ублажился,
Нам же дал
Головную боль старух.
Ух, опасен пуха дух! (25 знаков)

Можно использовать рифмованные строки, которые помогают запомнить нужное число.

Чтобы нам не ошибиться,
Нужно правильно прочесть:
Девяносто два и шесть

Если очень постараться,
Можно сразу пи прочесть:
Три, четырнадцать, пятнадцать,
Девяносто два и шесть.

Три, четырнадцать, пятнадцать,
Девять, два, шесть, пять, три, пять.
Чтоб наукой заниматься,
Это каждый должен знать.

Можно просто постараться
И почаще повторять:
«Три, четырнадцать, пятнадцать,
Девять, двадцать шесть и пять».

Остались вопросы? Хотите знать больше о числе "Пи"?
Чтобы получить помощь репетитора – зарегистрируйтесь.
Первый урок – бесплатно!

Чему равно число Пи мы знаем и помним со школы. Оно равно 3.1415926 и так далее… Обычному человеку достаточно знать, что это число получается, если разделить длину окружности на ее диаметр. Но многим известно, что число Пи возникает в неожиданных областях не только математики и геометрии, но и в физике. Ну а если вникнуть в подробности природы этого числа, то можно заметить много удивительного среди бесконечного ряда цифр. Возможно ли, что Пи скрывает самые сокровенные тайны Вселенной?

Бесконечное число

Само число Пи возникает в нашем мире как длина окружности, диаметр которой равен единице. Но, несмотря на то, что отрезок равный Пи вполне себе конечен, число Пи начинается, как 3.1415926 и уходит в бесконечность рядами цифр, которые никогда не повторяются. Первый удивительный факт состоит в том, что это число, используемое в геометрии, нельзя выразить в виде дроби из целых чисел. Иначе говоря, вы не сможете его записать отношением двух чисел a/b. Кроме этого число Пи трансцендентное. Это означает, что нет такого уравнения (многочлена) с целыми коэффициентами, решением которого было бы число Пи.

То, что число Пи трансцендентно, доказал в 1882 году немецкий математик фон Линдеман. Именно это доказательство стало ответом на вопрос, можно ли с помощью циркуля и линейки нарисовать квадрат, у которого площадь равна площади заданного круга. Эта задача известна как поиск квадратуры круга, волновавший человечество с древнейших времен. Казалось, что эта задача имеет простое решение и вот-вот будет раскрыта. Но именно непостижимое свойство числа Пи показало, что у задачи квадратуры круга решения не существует.

В течение как минимум четырех с половиной тысячелетий человечество пыталось получить все более точное значение числа Пи. Например, В Библии в Третьей Книги Царств (7:23) число Пи принимается равным 3.

Замечательное по точности значение Пи можно обнаружить в пирамидах Гизы: соотношение периметра и высоты пирамид составляет 22/7. Эта дробь дает приближенное значение Пи, равное 3.142… Если, конечно, египтяне не задали такое соотношение случайно. Это же значение уже применительно к расчету числа Пи получил в III веке до нашей эры великий Архимед.

В папирусе Ахмеса, древнеегипетском учебнике по математике, который датируется 1650 годом до нашей эры, число Пи рассчитано как 3.160493827.

В древнеиндийских текстах примерно IX века до нашей эры наиболее точное значение было выражено числом 339/108, которое равнялось 3,1388…

После Архимеда почти две тысячи лет люди пытались найти способы рассчитать число Пи. Среди них были как известные, так и неизвестные математики. Например, римский архитектор Марк Витрувий Поллион, египетский астроном Клавдий Птолемей, китайский математик Лю Хуэй, индийский мудрец Ариабхата, средневековый математик Леонардо Пизанский, известный как Фибоначчи, арабский ученый Аль-Хорезми, от чьего имени появилось слово «алгоритм». Все они и множество других людей искали наиболее точные методики расчета Пи, но вплоть до 15 века никогда не получали больше чем 10 цифр после запятой в связи со сложностью расчетов.

Наконец, в 1400 году индийский математик Мадхава из Сангамаграма рассчитал Пи с точностью до 13 знаков (хотя в двух последних все-таки ошибся).

Количество знаков

В 17 веке Лейбниц и Ньютон открыли анализ бесконечно малых величин, который позволил вычислять Пи более прогрессивно – через степенные ряды и интегралы. Сам Ньютон вычислил 16 знаков после запятой, но не упомянул это в своих книгах – об этом стало известно после его смерти. Ньютон утверждал, что занимался расчетом Пи исключительно от скуки.

Примерно в то же время подтянулись и другие менее известные математики, предложившие новые формулы расчета числа Пи через тригонометрические функции.

Например, вот по какой формуле рассчитывал Пи преподаватель астрономии Джон Мэчин в 1706 году: PI / 4 = 4arctg(1/5) – arctg(1/239). С помощью методов анализа Мэчин вывел из этой формулы число Пи с сотней знаков после запятой.

Кстати, в том же 1706 году число Пи получило официальное обозначение в виде греческой буквы: его в своем труде по математике использовал Уильям Джонс, взяв первую букву греческого слова «периферия», что означает «окружность». Родившийся в 1707 великий Леонард Эйлер популяризовал это обозначение, нынче известное любому школьнику.

До эры компьютеров математики занимались тем, чтобы рассчитать как можно больше знаков. В связи с этим порой возникали курьезы. Математик-любитель У. Шенкс в 1875 году рассчитал 707 знаков числа Пи. Эти семь сотен знаков увековечили на стене Дворца Открытий в Париже в 1937 году. Однако спустя девять лет наблюдательными математиками было обнаружено, что правильно вычислены лишь первые 527 знаков. Музею пришлось понести приличные расходы, чтобы исправить ошибку – сейчас все цифры верные.

Когда появились компьютеры, количество цифр числа Пи стало исчисляться совершенно невообразимыми порядками.

Один из первых электронных компьютеров ENIAC, созданный в 1946 году, имевший огромные размеры, и выделявший столько тепла, что помещение прогревалось до 50 градусов по Цельсию, вычислил первые 2037 знаков числа Пи. Этот расчет занял у машины 70 часов.

По мере совершенствования компьютеров наше знание числа Пи все дальше и дальше уходило в бесконечность. В 1958 году было рассчитано 10 тысяч знаков числа. В 1987 году японцы высчитали 10 013 395 знаков. В 2011 японский исследователь Сигеру Хондо превысил рубеж в 10 триллионов знаков.

Где еще можно встретить Пи?

Итак, зачастую наши знания о числе Пи остаются на школьном уровне, и мы точно знаем, что это число незаменимо в первую очередь в геометрии.

Помимо формул длины и площади окружности число Пи используется в формулах эллипсов, сфер, конусов, цилиндров, эллипсоидов и так далее: где-то формулы простые и легко запоминающиеся, а где-то содержат очень сложные интегралы.

Затем мы можем встретить число Пи в математических формулах, там, где, на первый взгляд геометрии и не видно. Например, неопределенный интеграл от 1/(1-x^2) равен Пи.

Пи часто используется в анализе рядов. Для примера приведем простой ряд, который сходится к числу Пи:

1/1 – 1/3 + 1/5 – 1/7 + 1/9 — …. = PI/4

Среди рядов число Пи наиболее неожиданно появляется в известной дзета-функции Римана. Рассказать про нее в двух словах не получится, скажем лишь, что когда-нибудь число Пи поможет найти формулу расчета простых чисел.

И совершенно удивительно: Пи появляется в двух самых красивых «королевских» формулах математики – формуле Стирлинга (которая помогает найти приблизительное значение факториала и гамма-функции) и формуле Эйлера (которая связывает аж целых пять математических констант).

Однако самое неожиданное открытие ожидало математиков в теории вероятности. Там тоже присутствует число Пи.

Например, вероятность того, что два числа окажутся взаимно простыми, равна 6/PI^2.

Пи появляется в задаче Бюффона о бросании иглы, сформулированной в 18 веке: какова вероятность того, что брошенная на расчерченный лист бумаги игла пересечет одну из линий. Если длина иглы L, а расстояние между линиями L, и r > L то мы можем приблизительно рассчитать значение числа Пи по формуле вероятности 2L/rPI. Только представьте – мы можем получить Пи из случайных событий. И между прочим Пи присутствует в нормальном распределении вероятностей, появляется в уравнении знаменитой кривой Гаусса. Значит ли это, что число Пи еще более фундаментально, чем просто отношение длины окружности к диаметру?

Мы можем встретить Пи и в физике. Пи появляется в законе Кулона, который описывает силу взаимодействия между двумя зарядами, в третьем законе Кеплера, который показывает период обращения планеты вокруг Солнца, встречается даже в расположении электронных орбиталей атома водорода. И что опять же самое невероятное – число Пи прячется в формуле принципа неопределенности Гейзенберга – фундаментального закона квантовой физики.

Тайны числа Пи

В романе Карла Сагана «Контакт», по которому снят одноименный фильм, инопланетяне сообщают героине, что среди знаков Пи содержится тайное послание от Бога. С некоторой позиции цифры в числе перестают быть случайными и представляют себе код, в котором записаны все секреты Мироздания.

Этот роман на самом деле отразил загадку, занимающую умы математиков всей планеты: является ли число Пи нормальным числом, в котором цифры разбросаны с одинаковой частотой, или с этим числом что-то не так. И хотя ученые склоняются к первому варианту (но не могут доказать), число Пи выглядит очень загадочно. Один японец как то подсчитал, сколько раз встречаются числа от 0 до 9 в первом триллионе знаков Пи. И увидел, что числа 2, 4 и 8 встречаются чаще, чем остальные. Это может быть одним из намеков на то, что Пи не совсем нормальное, и цифры в нем действительно не случайны.

Вспомним всё, что мы прочли выше, и спросим себя, какое еще иррациональное и трансцендентное число так часто встречается в реальном мире?

А в запасе имеются еще странности. Например, сумма первых двадцати цифр Пи равна 20, а сумма первых 144 цифр равна «числу зверя» 666.

Главный герой американского сериала «Подозреваемый» профессор Финч рассказывал студентам, что в силу бесконечности числа Пи в нем могут встретиться любые комбинации цифр, начиная от цифр даты вашего рождения до более сложных чисел. Например, на 762-ой позиции находится последовательность из шести девяток. Эта позиция называется точкой Фейнмана в честь известного физика, который заметил это интересное сочетание.

Нам известно также, что число Пи содержит последовательность 0123456789, но находится она на 17 387 594 880-й цифре.

Все это означает, что в бесконечности числа Пи можно обнаружить не только интересные сочетания цифр, но и закодированный текст «Войны и Мира», Библии и даже Главную Тайну Мироздания, если таковая существует.

Кстати, о Библии. Известный популяризатор математики Мартин Гарднер в 1966 году заявил, что миллионным знаком числа Пи (на тот момент еще неизвестным) будет число 5. Свои расчеты он объяснил тем, что в англоязычной версии Библии, в 3-й книге, 14-й главе, 16-м стихе (3-14-16) седьмое слово содержит пять букв. Миллионную цифру получили спустя восемь лет. Это было число пять.

Стоит ли после этого утверждать, что число Пи случайно?