Формулы призмы и пирамиды. Урок-практикум "объем призмы, пирамиды и конуса". Все учащиеся будут знать

Ответ: СВОЙСТВО 1. Величина определителя не изменится, если все его строки заменить столбцами, причем каждую строку заменить столбцом с тем же номером, то есть

СВОЙСТВО 2. Перестановка двух столбцов или двух строк определителя равносильна умножению его на -1. Например,

.СВОЙСТВО 3. Если определитель имеет два одинаковых столбца или две одинаковые строки, то он равен нулю.СВОЙСТВО 4. Умножение всех элементов одного столбца или одной строки определителя на любое число k равносильно умножению определителя на это число k. Например,

.СВОЙСТВО 5. Если все элементы некоторого столбца или некоторой строки равны нулю, то сам определитель равен нулю. Это свойство есть частный случае предыдущего (при k=0).СВОЙСТВО 6. Если соответствующие элементы двух столбцов или двух строк определителя пропорциональны, то определитель равен нулю.СВОЙСТВО 7. Если каждый элемент n-го столбца или n-й строки определителя представляет собой сумму двух слагаемых, то определитель может быть представлен в виде суммы двух определителей, из которых один в n-м столбце или соответственно в n-й строке имеет первые из упомянутых слагаемых, а другой - вторые; элементы, стоящие на остальных местах, у вех трех определителей одни и те же. Например,

СВОЙСТВО 8. Если к элементам некоторого столбца (или некоторой строки) прибавить соответствующие элементы другого столбца (или другой строки), умноженные на любой общий множитель, то величина определителя при этом не изменится. Например,

.

Дальнейшие свойства определителей связаны с понятием алгебраического дополнения и минора. Минором некоторого элемента называется определитель, получаемый из данного путем вычеркиванием строки и столбца, на пересечении которых расположен этот элемент.Алгебраическое дополнение любого элемента определителя равняется минору этого элемента, взятому со своим знаком, если сумма номеров строки и столбца, на пересечении которых расположен элемент, есть число четное, и с обратным знаком, если это число нечетное.Алгебраическое дополнение элемента мы будем обозначать большой буквой того же наименования и тем же номером, что и буква, кторой обозначен сам элемент.СВОЙСТВО 9. Определитель

равен сумме произведений элементов какого-либо столбца (или строки) на их алгебраические дополнения.

Определитель. Это многочлен, комбинирующий элементы квадратной матрицы таким образом, что его значение сохраняется при транспонировании и линейных комбинациях строк или столбцов.То есть, определитель характеризует содержание матрицы. В частности, если в матрице есть линейно-зависимые строки или столбцы, - определитель равен нулю.Определитель играет ключевую роль в решении в общем виде систем линейных уравнений, на его основе вводятся базовые понятия.В общем случае матрица может быть определена над любым коммутативным кольцом, в этом случае определитель будет элементом того же кольца.Определитель матрицы А обозначается как: det(A), |А| или Δ(A).

5.Вырожденная матрица. Обратная матрица, её свойства, вычисление, теорема существования.

Ответ: Вы́рожденной, особой (сингулярной) матрицей называется квадратная матрица А, если её определитель (Δ) равен нулю. В противном случае матрица А называется невырожденной.

Рассмотрим проблему определения операции, обратной умножению матриц.

Пусть - квадратная матрица порядка. Матрица, удовлетворяющая вместе с заданной матрицейравенствам:

называется обратной. Матрицу называютобратимой, если для нее существует обратная, в противном случае - необратимой.

Из определения следует, что если обратная матрица существует, то она квадратная того же порядка, что и. Однако не для всякой квадратной матрицы существует обратная. Если определитель матрицыравен нулю, то для нее не существует обратной. В самом деле, применяя теорему об определителе произведения матриц для единичной матрицыполучаем противоречие

так как определитель единичной матрицы равен 1. Оказывается, что отличие от нуля определителя квадратной матрицы является единственным условием существования обратной матрицы. Напомним, что квадратную матрицу, определитель которой равен нулю, называют вырожденной {особой), в противном случае - невырожденной {неособой).

Теорема 4.1 о существовании и единственности обратной матрицы. Квадратная матрица, определитель которой отличен от нуля, имеет обратную матрицу и притом только одну:

где - матрица, транспонированная для матрицы, составленной из алгебраических дополнений элементов матрицы.

Матрица называетсяприсоединенной матрицей по отношению к матрице .

В самом деле, матрица существует при условии. Надо показать, что она обратная к, т.е. удовлетворяет двум условиям:

Докажем первое равенство. Согласно п.4 замечаний 2.3, из свойств определителя следует, что . Поэтому

что и требовалось показать. Аналогично доказывается второе равенство. Следовательно, при условии матрицаимеет обратную

Единственность обратной матрицы докажем от противного. Пусть кроме матрицы существует еще одна обратная матрицатакая, что. Умножая обе части этого равенства слева на матрицу, получаем. Отсюда, что противоречит предположению. Следовательно, обратная матрица единственная.

Замечания 4.1

1. Из определения следует, что матрицы иперестановочны.

2. Матрица, обратная к невырожденной диагональной, является тоже диагональной:

3. Матрица, обратная к невырожденной нижней (верхней) треугольной, является нижней (верхней) треугольной.

4. Элементарные матрицы имеют обратные, которые также являются элементарными (см. п.1 замечаний 1.11).

Свойства обратной матрицы

Операция обращения матрицы обладает следующими свойствами:

если имеют смысл операции, указанные в равенствах 1-4.

Докажем свойство 2: если произведение невырожденных квадратных матриц одного и того же порядка имеет обратную матрицу, то.

Действительно, определитель произведения матриц не равен нулю, так как

Следовательно, обратная матрица существует и единственна. Покажем по определению, что матрицаявляется обратной по отношению к матрице. Действительно:

Из единственности обратной матрицы следует равенство . Второе свойство доказано. Аналогично доказываются и остальные свойства.

Замечания 4.2

1. Для комплексной матрицы справедливо равенство, аналогичное свойству 3:

Где - операция сопряжения матриц.

2. Операция обращения матриц позволяет определить целую отрицательную степень матрицы. Для невырожденной матрицы и любого натурального числаопределим.

6.системы линейных уравнений. Коэффициенты при неизвестных, свободных членах. Решение системы линейных уравнений. Совместность системы линейных уравнений. Система линейных однородных уравнений и её особенности.

Ответ: Системой линейных алгебраических уравнений, содержащей m уравнений и n неизвестных, называется система вида

где числа a ij называются коэффициентами системы, числа b i - свободными членами. Подлежат нахождению числа x n .

Такую систему удобно записывать в компактной матричной форме

Здесь А - матрица коэффициентов системы, называемая основной матрицей;

Вектор-столбец из неизвестных x j .

Вектор-столбец из свободных членов b i .

Произведение матриц А*Х определено, так как в матрице А столбцов столько же, сколько строк в матрице Х (n штук).

Расширенной матрицей системы называется матрица A системы, дополненная столбцом свободных членов

Решением системы называется n значений неизвестных х 1 =c 1 , x 2 =c 2 , ..., x n =c n , при подстановке которых все уравнения системы обращаются в верные равенства. Всякое решение системы можно записатьв виде матрицы-столбца

Система уравнений называется совместной, если она имеет хотя бы одно решение, и несовместной, если она не имеет ни одного решения.

Совместная система называется определенной, если она имеет единственное решение, и неопределенной, если она имеет более одного решения. В последнем случае каждое ее решение называется частным решением системы. Совокупность всех частных решений называется общим решением.

Решить систему - это значит выяснить, совместна она или несовместна. Если система совместна, найти ее общее решение.

Две системы называются эквивалентными (равносильными), если они имеют одно и то же общее решение. Другими словами, системы эквивалентны, если каждое решение одной из них является решением другой, и наоборот.

Эквивалентные системы получаются, в частности, при элементарных преобразованиях системы при условии, что преобразования выполняются лишь над строками матрицы.

Система линейных уравнений называется однородной, если все свободные члены равны нулю:

Однородная система всегда совместна, так как x 1 =x 2 =x 3 =...=x n =0 является решением системы. Это решение называется нулевым или тривиальным.

4.2. Решение систем линейных уравнений.

Теорема Кронекера-Капелли

Пусть дана произвольная система n линейных уравнений с n неизвестными

Исчерпывающий ответ на вопрос о совместности этой системы дает теоремаКронекера-Капелли.

Теорема 4.1. Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг расширенной матрицы системы равен рангу основной матрицы.

Примем ее без доказательства.

Правила практического разыскания всех решений совместной системы линейных уравнений вытекают из следующих теорем.

Теорема 4.2. Если ранг совместной системы равен числу неизвестных, то система имеет единственное решение.

Теорема 4.3. Если ранг совместной системы меньше числа неизвестных, то система имеет бесчисленное множество решений.

Правило решения произвольной системы линейных уравнений

1. Найти ранги основной и расширенной матриц системы. Если r(A)≠r(A), то система несовместна.

2. Если r(A)=r(A)=r, система совместна. Найти какой-либо базисный минор порядка r(напоминание: минор, порядок которого определяет ранг матрицы, называется базисным). Взять r уравнений, из коэффициентов которых составлен базисный минор (остальные уравнения отбросить). Неизвестные, коэффициенты которых входят в базисный минор, называют главными и оставляют слева, а остальные n-r неизвестных называют свободными и переносят в правые части уравнений.

3. Найти выражения главных неизвестных через свободные. Получено общее решение системы.

4. Придавая свободным неизвестным произвольные значения, получим соответствующие значения главных неизвестных. Таким образом можно найти частные решения исходной системы уравнений.

Пример 4.1.

4.3 Решение невырожденных линейных систем. Формулы Крамера

Пусть дана система n линейных уравнений с n неизвестными

(4.1)

или в матричной форме А*Х=В.

Основная матрица А такой системы квадратная. Определитель этой матрицы

называется определителем системы. Если определитель системы отличен от нуля, то система называется невырожденной.

Найдем решение данной системы уравнений в случае

Умножив обе части уравнения А*Х=В слева на матрицу A -1, получим

A -1 *A*X=A -1 *B Поскольку. A -1 *A=E и Е*Х=Х, то

Отыскание решения системы по формуле (4.1) называют матричным способомрешения системы.

Матричное равенство (4.1) запишем в виде

Отсюда следует, что

Но есть разложение определителя

по элементам первого столбца. Определитель  получается из определителя путем замены первого столбца коэффициентов столбцом из свободных членов. Итак,

Аналогично:

где 2 получен из  путем замены второго столбца коэффициентов столбцом из свободных членов:

называются формулами Крамера.

Итак, невырожденная система n линейных уравнений с n неизвестными имеет единственное решение, которое может быть найдено матричным способом (4.1) либо по формулам Крамера (4.2).

Пример 4.3.

4.4 Решение систем линейных уравнений методом Гаусса

Одним из наиболее универсальных и эффективных методов решений линейных алгебраических систем является метод Гаусса, состоящий в последовательном исключении неизвестных.

Пусть дана система уравнений

Процесс решения по методу Гаусса состоит из двух этапов. На первом этапе (прямой ход) система приводится к ступенчатому (в частности, треугольному) виду.

Приведенная ниже система имеет ступенчатый вид

Коэффициенты aii называются главными элементами системы.

На втором этапе (обратный ход) идет последовательное определение неизвестных из этой ступенчатой системы.

Опишем метод Гаусса подробнее.

Преобразуем систему (4.3), исключив неизвестное х1 во всех уравнениях, кроме первого (используя элементарные преобразования системы). Для этого умножим обе части первого уравнения на и сложим почленно со вторым уравнением системы. Затем умножим обе части первого уравнения наи сложим с третьим уравнением системы. Продолжая этот процесс, получим эквивалентную систему

Здесь - новые значения коэффициентов и правых частей, которые получаются после первого шага.

Аналогичным образом, считая главным элементом , исключим неизвестное х 2 из всех уравнений системы, кроме первого я второго, и так далее. Продолжаем этот процесс, пока это возможно.

Если в процессе приведения системы (4.3) к ступенчатому виду появятся нулевые уравнения, т. е. равенства вида 0=0, их отбрасывают Если же появится уравнение вида то это свидетельствует о несовместности системы.

Второй этап (обратный ход) заключается в решении ступенчатой системы. Ступенчатая система уравнений, вообще говоря, имеет бесчисленное множество решений, В последнем уравнении этой системы выражаем первое неизвестное x k через остальные неизвестные (x k+ 1,…,x n). Затем подставляем значение x k в предпоследнее уравнение системы и выражаем x k-1 через (x k+ 1,…,x n). , затем находим x k-2 ,…,x 1. . Придавая свободным неизвестным (x k+ 1,…,x n). произвольные значения, получим бесчи­сленное множество решений системы.

Замечания:

1. Если ступенчатая система оказывается треугольной, т. е. k=n, то исходная система имеет единственное решение. Из последнего уравнения находим x n из предпоследнего уравнения x n-1 , далее подни­маясь по системе вверх, найдем все остальные неизвестные (x n-1 ,...,x 1).

2. На практике удобнее работать не с системой (4.3), а с расширенной ее матрицей, выполняя все элементарные преобразования над ее строками. Удобно, чтобы коэффициент a 11 был равен 1 (уравнения переставить местами, либо разделить обе части уравнения на a 11 1).

Пример 4.4.

Решение: В результате элементарных преобразований над расширенной матрицейсистемы

исходная система свелась к ступенчатой:

Поэтому общее решение системы: x 2 =5x 4 -13x 3 -3;x 1 =5x 4 -8x 3 -1 Если положить, например, x 3 =0,x 4 =0, то найдем одно из частных решений этой системы x 1 =-1,x 2 =-3,x 3 =0,x 4 =0.

Пример 4.5.

Решить систему методом Гаусса:

Решение: Произведем элементарные преобразования над строчками расширенной матрицы системы:

Полученная матрица соответствует системе

Осуществляя обратный ход, находим x 3 =1, x 2 =1,x 1 =1.

4.5 Системы линейных однородных уравнений

Пусть дана система линейных однородных уравнений

Очевидно, что однородная система всегда совместна , она имеет нулевое (тривиальное) решение x 1 =x 2 =x 3 =...=x n =0.

При каких условиях однородная система имеет и ненулевые решения?

Теорема 4.4. Для того, чтобы система однородных уравнений имела ненулевые решения, необходимо и достаточно, чтобы ранг r ее основной матрицы был меньше числа n неизвестных, т. е. r

Необходимость.

Так как ранг не может превосходить размера матрицы, то, очевидно, r<=n. Пусть r=n. Тогда один из минеров размера nхn отличен от нуля. Поэтому соответствующаясистема линейных уравнений имеет единственное решение:

Значит, других, кроме тривиальных, решений нет. Итак, если есть нетривиальное решение, то r

Достаточность:

Пусть r

Теорема 4.5. Для того, чтобы однородная система n линейных уравнений с n неизвестными имела ненулевые решения, необходимо и достаточно, чтобы ее определитель  был равен нулю, т. е. =0.

Если система имеет ненулевые решения, то =0. Ибо при 0 система имеет только единственное, нулевое решение. Если же =0, то ранг r основной матрицы системы меньше числа неизвестных, т.е. r

Пример 4.6.

Решить систему

Положив x 3 =0,получаем одно частное решение: x 1 =0, x 2 =0, x 3 =0. Положив x 3 =1, получаем второе частное решение: x 1 =2, x 2 =3, x 3 =1 и т д.

Так как для нахождения обратной матрицы важно, равен ли определитель марицы нулю или нет, то введем следующие определения.

Определение 14.9 Квадратную матрицу назовем вырожденной или особенной матрицей , если , и невырожденной или неособенной матрицей , если .

Предложение 14.21 Если обратная матрица существует, то она единственна.

Доказательство . Пусть две матрицы и являются обратными для матрицы . Тогда

Следовательно, .

Правило Крамера .

Пусть матричное уравнение AX = B

Где ; – определитель, полученный из определителя D заменой i -го столбца столбцом свободных членов матрицы B :

Доказательство теоремы разобъем на три части:

1.Решение системы (1) существует и является единственным.

2.Равенства (2) являются следствием матричного уравнения (1).

3.Равенства (2) влекут за собой матричное уравнение (1).

Так как , то существует и при том единственная, обратная матрица .
Умножая обе части матричного уравнения (1) слева на , получаем решение этого уравнения:

Единственность обратной матрицы доказывает первую часть теоремы.

Перейдем к доказательству взаимно-однознаяного соответствия между формулами (1) и (2).

Используя формулу (4), получим выражение для i -го элемента. Для этого нужно умножить i -ую строку матрицы

на столбец B .

Учитывая, что i -ая строка присоединенной матрицы составлена из алгебраических дополнений , получаем следующий результат:

Вывод формул Крамера завершен. Покажем теперь, что выражения

Изменим порядок суммирования в правой части полученного выражения:

где – дельта символ Кронекера.

Учитывая, что дельта символ снимает суммирование по одному из индексов, получаем требуемый результат:

Комплексные числа : Идея – определение новых объектов с помощью известных. Вещественные числа расположены на прямой. При переходе на плоскость получаем комплексные числа. Определение : Комплексным числом называется пара вещественных чисел z = (a,b). Число a = Re z называется вещественной частью, а b = Im z мнимой частью комплексного числа z .

Операции над комплексными числами: Комплексные числа z1 z2 равны Z1 = z2 ⇔ Re z1 = Re z2 & Im z1 = Im z2. Сложение: Z=z1+z2. ⇔Re z=Re z1+Re z2 & Im z1+ Im z2. Число (0,0) обозначается через 0. Это нейтральный элемент. Проверяется, что сложение комплексных чисел обладает свойствами аналогичными свойствам сложения вещественных чисел. (1. Z1+ z2 = z2 + z1 – коммутативность; 2. Z1 + (z2 + z3) = (z1 + z2) + z3 – ассоциативность; 3. Z1 + 0 = z1 - существование нуля (нейтрального элемента) ;4. z + (−z) = 0 - существование противоположного элемента). Умножение : z= z1 z2⇔Re z=Re z1 Re z2-Im z1 Im z2 & Im z1=Im z1 Re z2+Im z2 Re z1. Комплексное число z лежит на вещественной оси, если Imz = 0 . Результаты операций над такими числами совпадают с результатами операций над обычными вещественными числами. Умножение комплексных чисел обладает свойствами замкнутости, коммутативности и ассоциативности. Число (1,0) обозначается через 1. Оно является нейтральным элементом по умножению.Если a∈ R, z ∈C , то Re(az) = aRe z, Im(az) = a Imz . Определение Число (0,1) обозначается через i и называется мнимой единицей. В этих обозначениях получаем запись комплексного числа в алгебраической форме: z = a + ib, a,b∈ R. i=-1. (a,b)=(a,0)+(0,b) ;(a,0)+b(0,1)=a+ib=z; (a1+ib)(a2+ib2)=a1a2+i(a1b2+1-a2b1)-b1b2; (a+ib)(1+0i)=a+ib; z(a,b), z(0+i0)=0; z!=0; a 2 +b 2 >0 (a+ib)(a-ib/a 2 +b 2)=1.Число называется сопряженным к z, если Re =Re z ; Im =- Im z.

= + ; = ; z =(a+ib)(a-ib)=a 2 +b 2 Модулем числа z называется вещественное число| z |= . Справедлива формула| z| 2 = z Из определения следует, что z ≠ 0⇔| z|≠ 0. z -1 = /|z| 2 (1)

Тригонометрическая форма комплексного числа: a=r cos(t); b=r sin(t). Z=a+ib=r(cos(t)+isin(t)) (2) t-аргумент комплексного числа. Z1=z2 =>|z1|=|z2|

arg(z1)-arg(z2)=2пk.

Z1=r1(cos(t1)+isin(t1), Z2=r2(cos(t2)+isin(t2)), Z3=z1 z2=T1T2(cos(t1+t2)+isin(t1+t2)(1)

Arg(z1z2)=arg(z1)+arg(z2) (2)

Z!=0 z -1 = /|z| 2 =1/r(cos(-t)+i(sin(-t)) Z=r(cos(t)+istn(t))

R(cos(t)-isin(t))

Определение: Корнем степени n из единицы называются решения уравнения z n =1Предложение. Имеется n различных корней степени n из единицы. Они записываются в виде z = cos(2 π k / n) + isin(2 π k / n), k = 0,..., n −1 .Теорема. В множестве комплексных чисел уравнение всегда имеет n решений.Z=r(cos(t)+isin(t)); z n =r n (cos(nt)+isin(nt))=1(cos(0)+isin(0))=>z n =1 .Z-целые числа. K пренадлежит Z. k=2=E 2 =E n-1 E n ; E n =1; E n+p =E p . Таким образом доказано, что решениями уравнения являются вершины правильного n-угольника, причем одна из вершин совпадает с 1.

Корень n-ой степени из z 0 . Z k =Z 0 ; Z 0 =0=>Z=0; Z 0 !=0;Z=r(cos(t)-isin(t)); Z 0 =r 0 (cos(t0)+isin(t0)); r0!=0; Z n =r n (cos(nt)+isin(nt))

r n =r 0, nt-t 0 =2пk; r= ; t=(2пk+t0)/n; z= (cos((2пk+t0)/n)+isin((2пk+t0)/n)= (cos t0/n+isin t0/n)(cos(2пk/n)+isin(2пk/n))=Z 1 E k ; z=z 1 E k ; Z 1 n =z 0, k=0, n=1

Матрицы. Определение: Матрицей размера m × n называется прямоугольная таблица, содержащая m строк и n столбцов, элементы которой являются вещественными или комплексными числами. Элементы матрицы имеют двойные индексы.

Если m = n , то это квадратная матрица порядка m , а элементы с одинаковыми индексами образуют главную диагональ матрицы.

Операции над матрицами: Определение: Две матрицы A,B называются

равными, если их размеры совпадают и A = B,1≤ i ≤ m,1≤ j ≤ n

Сложение. Рассматриваются матрицы одного размера. Определение :C = A + B ⇔ C = A + B, ∀i, j Предложение . Сложение матриц коммутативно, ассоциативно, существует нейтральный элемент и для каждой матрицы существует противоположный элемент.

Нейтральным элементом является нулевая матрица, все элементы которой равны 0. Она обозначается через Θ.

Умножение. Матрица A размера m × n обозначается через Amn. Определение: С mk =A mn B nk ó

C= Заметим, что в общем случае умножение не является коммутативным. Замкнутость справедлива для квадратной матрицы фиксированного размера. Пусть даны три матрицы Amn , Bnk , Ckr . Тогда (AB)C = A(BC). Если произведение 3 матриц существует, то оно является ассоциативным.

Символ Кронекера δij . Он равен 1, если индексы совпадают, и 0 иначе. Определение. Единичной матрицей I n называется квадратная матрица порядка n , для которой выполнены равенства n I n [ i | j] = δ ij Предложение. Справедливы равенства I m A mn =A mn I n =A mn

Сложение и умножение матриц связанно законами дистрибутивности. A(B+C)=AB+AC; (A+B)C=AC+BC;(A(B+C)= = = +

Транспонирование матрицы. Транспонированная матрица - это матрица, полученная из исходной путем замены строк на столбцы.

(A+B) Т =А Т +В Т

(АВ) Т =В Т А Т;(AB) Т =(AB)= = (В Т А Т)

Умножение матрицы на число. Произведение числа а на матрицу A mn называется новая матрица B=aA

1*A=A;a(A+B)=aA+aB;(a+b)A=aA+bA;

A(BC)=(aB)C=B(aC); (ab)A=a(bA)=b(aA)


Линейным пространством (L) над полем F называется множество векторов L={α,β..}

1.α+β=β+α(коммутативность) 2.α+(β+γ)= (α+β)+γ, (ab)α=a(bα)(ассоциативность) 3.α+θ=α, α∙1=α(существование нейтрального) 4.α+(-α)=θ (существование противоположного)

a(α+β)=aα+aβ, (a+b)α=aα+bα. Док-во {|(a+b)α|=|a+b||α|, |aα|=|a||α|,|bα|=|b||α|, a и b>0, |a+b|=a+b,|a|=a,|b|=b.} aα+(-a)α=θ, (a+0)α=aα

Примером линейного пространства является множество матриц фиксированного размера с операциями сложения и умножения на число.

Система линейных векторов называется линейно зависимой , если 1.a 1 ,a 2 ..a n ≠0 2. a 1 α 1 ,a 2 α 2 ..a n α n =θ Если система не является линейно зависимой, то она линейно независима. Рассмотрим 1. n=1 α 1 завис. a 1 ≠0, a 1 α 1 =θ, a 1 -1 (a 1 α 1)= a 1 -1∙ θ=θ, (a 1 -1 a 1)α 1 =1∙α 1 =α 1 ; 2. n=2 α 1 ,α 2 завис. a 1 ≠0 ,a 1 α 1 +a 2 α 2 =θ ,α 1 = -a 1 -1 a 2 α 2 =b 2 α 2; 3.n≥2 α 1 ..α n завис. a 1 ≠0, α 1 =Σ k =2 n b k α k , 1α 1 - Σ k =2 n b k α k =θ, (1,b 2 ..b n)≠0

Предложение : Система векторов, содержащая более чем 1 вектор линейно зависима ттогда какой-то вектор системы есть линейная комбинация остальных.

Если система векторов содержит линейно зависимую подсистему, то вся система линейно зависима. Док-во: {α 1 ..α n завис. Система: α 1 ..α n ;α n +1 ..α m , a 1 α 1 +..+a n α n +0α n +1 +..+0α m =θ, a 1 ..a n ,0..0≠0.} Если система содержит нул.вектор, то она линейно зависима. Теорема о линейных пространствах : {Пусть даны 2 системы векторов α 1 ..α m , β 1 ..β n . Система векторов α выражается через β, если каждый вектор α есть линейная комбинация β α i = Σ k =1 n a ik β k , (α) { (β), (β) { (γ)→ (α) { (γ)} Теорема: Даны 2 системы векторов, при этом α независимая и, (α) { (β)→m≤n Докажем, α 1 ..α m +1 β 1 ..β m (α) { (β)→(α)завис. {Докажем методом индукции. m=1: α 1 =a 11 β 1 , α 2 =a 21 β 1 . a 11 =0→ α 1 =θ. a 11 α 2 – a 21 α 1 = a 11 a 21 β 1 - a 21 a 11 β 1 =θ. α 1 = a 11 β 1 +.. a 1 n -1 β n -1 .. α n = a n 1 β 1 +.. a nn -1 β n -1 Если все коэффициенты =0 a 11 =a 12 =..=a 1 n -1 =0→ α 1 =θ→ вся система линейно зависима. a 1 n -1 ≠0 α 2 ′= α 2 –с 2 α 1 =b 21 β 1 +..+b 2 n -2 β n -2 , c 2 =a 2 n -1 / a 1 n -1 , α 3 ′= α 3 –с 3 α 1 .. α n ′= α n –с n α 1 . По пред. индукции сущ-ет ненулевой набор чисел d 2 ..d n: d 2 α 2 ′+d 3 α 3 ′+.. d n α n ′=θ , d 2 (α 2 –с 2 α 1)+d 3 (α 3 –с 3 α 1)+.. d n (α n –с n α 1)=θ , (α) { (β), m>n →(α)завис. если (α) независ. →m≤n}


МЛНП -макс.лин.незвавис.подсистемы. Пусть дана система векторов α 1 ..α n некоторой подсис. α i 1 ..α in называется МЛНП, если 1. α 1 ..α n независ.2. α i 1 ..α ir , α ij завис. Каждый вектор системы есть линейная комбинация векторов МЛНП. { α i 1 ..α ir , α ij завис. a i 1 α i 1 +.. a ir α ir +a ij α ij =θ

a i 1 ..a ir , a ij ≠0 если a ij =0 → a i 1 α i 1 +.. a ir α ir =θ a i 1 ..a ir =0 противоречие a ij ≠0 α ij = a ij -1 (-a i 1 α i 1 -.. a ir α ir) (α 1 ..α n) { (α i 1 ..α ir)

Следствие : Любые 2 МЛНП из одной системы векторов содержат одинаковое число векторов (α i 1 ..α ir) { (α j 1 ..α jk) , (α j 1 ..α jk) { (α i 1 ..α ir) k≤r, r≤k →r=k Число векторов МЛНП называется рангом исходной системы. В случае линейного пространства(система векторов состоит из всех векторов пространства) МЛНП мб конечна или бесконечна. Рассматриваем конечный случай. Число векторов(ранг)- размерность линейного пространства. МЛНП-база. Пространство направленных отрезков. Два неколлинеарных вектора составляют базу в пространстве векторов на плоскости. α 3 = α 1 ′+ α 2 ′=a 1 α 1 + a 2 α 2 . 3 вектора линейно зависимые α 3 =a 1 α 1 + a 2 α 2 . Компланарность- 3 вектора параллельны одной плоскости α 4 = α 4 ′+ α 5 ′ , α 4 ′=a 1 α 1 + a 2 α 2 , α 5 ′= a 3 α 3 , α 4 = a 1 α 1 + a 2 α 2 + a 3 α 3 . Пространство строк длины n . α= Предложение: Пространство строк длины n имеет размерность n. { ξ 1 =<1…0> ξ 2 =<0,1…0> .. ξ n =<0…1> ,a 1 ξ 1 + a 2 ξ 2 +.. a n ξ n =θ=<0,..0> → a 1 =a 2 =..a n =0 (линейная независимость) β= β= b 1 ξ 1 + b 2 ξ 2 +.. b n ξ n →пространство строк длины n имеет размерность и n.

Ранг матрицы.

Две системы векторов α и β называются эквивалентными, если каждый вектор

α{ β(выражается) и β{ α.

Предложение. Ранги эквивалентных систем совпадают.

α i 1 , α i 2 ,…, α ir – МЛНП α , β i 1 , β i 2 ,…, β ik – МЛНП β , α i 1 , α i 2 ,…, α ir < β < β i 1 , β i 2 ,…, β ik → r<=k

Поменяв местами α и β местами → r>=k >>> Значит, r=k.

Определение. Пусть дана матрица A=

α i =

Рангом матрицы А называется ранг системы векторов α1, α2,…, αm, составленных из это матрицы >>rank(A)-ранг

Из определения очевидно, что при перестановке столбцов ранг не меняется. Покажем, что при перестановке столбцов ранг так же не меняется.

А’=

α’i=

Линейно зависимы:

b 1 α 1 + b 2 α 2 +…+ b m α m =θ, b 1 а 11 +b 2 a 21 +…+b m a m 1=0, b 1 α’ 1 + b 2 α’ 2 +…+ b m α’ m , b 1 а 11 +b 2 a 21 +…+b m a m 1=0

Объем прямоугольного параллелепипеда находится по формуле

где с - ребра прямоугольного параллелепипеда. Исходя из этой формулы можно получить формулу для объема куба. Объем куба находят по формуле

где а - ребро куба.

Иногда говорят, что объем прямоугольного параллелепипеда равен произведению его линейных размеров или произведению площади его основания на высоту. Последнее утверждение верно и для любого параллелепипеда.

На рисунке 182 изображен наклонный параллелепипед. Его объем равен где - площадь основания, а - высота наклонного параллелепипеда.

Молено вывести правило нахождения объема любой призмы (в том числе и наклонной).

Объем призмы равен произведению площади ее основания на высоту:

В случае прямой призмы (рис. 183) высота ее совпадает с боковым ребром и объем прямой призмы равен произведению площади основания на боковое ребро.

Объем любой пирамиды находится по формуле

где - площадь основания, - высота пирамиды.

На рисунке 184 изображен правильный тетраэдр с ребром а. Его объем равен V.

Пример. В наклонном параллелепипеде основание и боковая грань - прямоугольники, площади которых соответственно равны угол между их плоскостями равен 30°. Одна из боковых граней параллелепипеда имеет площадь Найти объем параллелепипеда.

(2 часа)

По учебникуЛ.С.Атанасян и др.

«Геометрия 10-11» - М.: «Просвещение», 2010г.

МАОУ «МСОШ №20»

Миасского городского округа

Челябинской области

Левина Татьяна Анатольевна

Урок-практикум по геометрии 11 класс

по теме: «Объем призмы, пирамиды и конуса»

(2 часа)

Цели урока: 1. Систематизировать знания, полученные на предыдущих уроках и закрепить умения решать задачи на вычисление объемов.

2. Развить образное мышление и пространственное воображение, показать красоту геометрии и увлечь учащихся геометрическими задачами.

3. Воспитать чувство ответственности, коллективизма, самостоятельность, умение отстаивать свою точку зрения.

План урока: 1. «Разминка».

2. Проверка домашнего задания.

3. Творческое задание «Аукцион».

4. Индивидуальные задания. Работа в группах.

5. Выступления с отчетами.

6. Решение задач по готовым чертежам.

7. Самостоятельная работа.

8. Итоги урока. Домашнее задание.

Ход урока:

Учитель: Мы начинаем урок – практикум. Тема урока (на доске). Цель нашего урока сегодня: систематизировать знания, полученные на предыдущих уроках и закрепить умения решать задачи на вычисление объемов. Развить образное мышление и пространственное воображение, показать красоту геометрических задач. Воспитать чувство ответственности, коллективизма, самостоятельность, умение отстаивать свою точку зрения. В тетрадях – число, тему урока.

Но работать мы сегодня будем особо – каждый ряд в классе – это команда, группа единомышленников, сплоченных единой целью, быть сегодня самой лучшей. Активность групп будет оценена. (1 мин)

1. Мы с вами изучили формулы объемов призмы, пирамиды, цилиндра и конуса. Для того чтобы работать дальше вспомним формулы – «Разминка» . На доске справа находятся части равенства, а слева – оставшиеся части. Ваша задача восстановить формулу, прочитать её, выбрать соответствующую модель и показать на ней основные элементы.

V кон V ус.кон V приз

V ус.пир

V цил

V пир

(Полученные формулы весь урок находятся на открытой доске!) (3 мин)

2. Проверка домашнего задания (по готовым чертежам объяснить решение)

(по времени-? Можно перенести на конец урока)

704

Дано: конус, h кон =d осн =H

Найти: V кон

Решение: V кон = . По условию R =H /2, h =H .

V кон = π (H /2) 2 H =πH 3 /12

Ответ : πH 3 /12

708

Дано: усеченный конус, R =6м, r =3м, l =5м.

Найти: V ус.кон

Решение: V ус.кон =

Из прямоугольной трапеции ОО 1 А 1 А: Н=4м.

V ус.кон = ==84π м 3

Ответ : 84π м 3 (5 мин)

3. А теперь я предлагаю вам творческое задание «Аукцион» : по готовому чертежу и данным элементам определить какие еще величины можно определить? Активность команд отмечается.

Задача 1 :

Дана правильная четырехугольная пирамида. Боковое ребро 5см,

высота пирамиды 4см. Какие величины можно найти в этой пирамиде?

Задача 2 :

Дан цилиндр. Диаметр цилиндра равен его высоте = 3см,

Какие величины можно найти в этом цилиндре?

(4 мин)

4. А теперь переходим к основному этапу – работа в группах. 2-3 парты сдвигаем и присаживаемся вокруг. Первые парты освобождаем для индивидуальной работы.

Индивидуальные задания получают 3 ученика («слабых»). Им нужно: 1) решить задачу на нахождение объема, 2) выполнить необходимые измерения вычислить объем полученной модели.

1 карточка:

Найти объем цилиндра. (45π см 3 )

Вычислить объем конуса. ( π см 3 )

2 карточка: (15 см 3 )

Вычислить объем цилиндра. ( π см 3 )

3 карточка:

Найти объем конуса. (15π см 3 )

( см 3 )

(После выполнения работы ученики присоединяются к группам!)

Работа в группах (инструкция): Каждая группа получает задачу, которую нужно решить, записать решение в тетради, затем оформить чертеж, условие и краткое решение на доске. После оформления на доске группа готова к отчету. Выступает 1 ученик от группы, объясняет решение своей задачи. Остальные учащиеся записывают решение в тетради, задают вопросы, предлагают свое решение, сомневаются или одобряют решение группы.

Задание №1(сильная группа)

В основании пирамиды лежит треугольник со сторонами 5см, 5см и 6см. Боковые грани пирамиды наклонены к плоскости основания под углом 60º. Найдите объем конуса, вписанного в эту пирамиду.

(Решение: V кон =⅓π R 2 H . Высота конуса = высоте пирамиды. Т.к. боковые грани наклонены под углом 60º к плоскости основания, то вершина пирамиды ( S ) проецируется в центр ( O ) вписанной в треугольник окружности, значит радиус конуса = радиусу вписанной в треугольник окружности. По формуле: r = S / p S тр =1/2·6 ·4 =36см 2 , p =8 см, r =36/8 =1,5 см= OH = R кон . Из треугольника SOH : SH =3 см, SO =4,5см= H кон . Тогда V кон =⅓· π ·(1,5 ) 2 ·4,5= 10,125 π см 3 )

Задание №2(средняя группа)

В основании пирамиды лежит треугольник со сторонами 13, 12 и 5см. Все боковые ребра наклонены к плоскости основания под углом 45º. Найдите объем пирамиды.

(Решение: V пир =⅓S осн ·H . Треугольник АBC в основании прямоугольный, т.к. 13 2 =12 2 +5 2 . S тр =1/2ав=1/2·12·5=30см 2 . Т.к. все боковые ребра наклонены к плоскости основания под углом 45º, то вершина пирамиды (S ) проецируется в центр (О) описанной около треугольника окружности. По формуле: R =abc /4S =(13·12·5)/(4·30)=6,5см или треугольник прямоугольный, то центр описанной окружности лежит на середине гипотенузы, т.е. R =13/2=6,5см. Из треугольника SAO : R =AO =SO =H пир =6,5см. Тогда V пир =⅓·S осн ·H =⅓·30·6,5=65см 3 )

Задание №3(сильная группа)

В цилиндр вписана призма, основанием которой служит прямоугольный треугольник. В нем катет равен 6см, а прилежащий угол 60º. Диагональ большей боковой грани призмы составляет с плоскостью её основания угол в 45º. Найдите объем цилиндра.

(Решение: V цил =πR 2 ·H . Треугольник АBC в основании призмы прямоугольный, то центр описанной окружности(O - центр основания цилиндра) лежит на середине гипотенузы, по условию из треугольника ABC : гипотенуза BC =12см, т.е. R =12/2=6см. Большая боковая грань призмы - эта грань, содержащая гипотенузу прямоугольного треугольника. По условию из треугольника ВВ 1 С: ВВ 1 =H пир =ВС=12см. Тогда V цил =πR 2 ·H =π ·6 2 ·12=432π см 3 )

5. Выступления с отчетами. (Вместе с подготовкой – 32 мин)

6. Решение задач по готовым чертежам.

Задача №1

Дан прямоугольный треугольник с катетами 2см и 5см. Один конус получен вращением этого треугольника вокруг меньшего катета, а другой конус – вращением треугольника вокруг большего катета. Равны ли объемы этих конусов? Если нет, то какой - больше?

(нет ; больше тот, у которого радиус больше, т.е. объем 1 конуса )

Задача №2

Прямоугольная трапеция с основаниями 5см и 8см и большей боковой стороной 5см вращается около меньшего основания. Найдите объем тела вращения.

(тело состоит из цилиндра и вынутого из него конуса,

V тела =V цил – V кон =π4 2 ·8 – ⅓π4 2 ·3=128π – 16π =112 π см 3 )

Задача №3

Стороны оснований правильной четырехугольной усеченной пирамиды равны 12см и 6см. Апофема боковой грани 5см. Найдите объем усеченной пирамиды.

( S б.осн =12 2 =144см 2 , S м.осн =6 2 =36см 2 , из прямоугольной трапеции: высота пирамиды H =4см, V ус.пир = = =·4·(144+36+)= 336см 3 )

Задача №4

В основании пирамиды лежит равнобедренный треугольник с боковой стороной 2см и основанием 2,4см. Боковые ребра пирамиды наклонены к плоскости основания под углом 45º. Найдите объем пирамиды.

(V пир =⅓· S осн · H , S осн =1/2а· h =1/2·2,4·1,6=1,92см 2 . Из условия

Н пир =R опис.окр.Из формулы R =abc /4S =(2·2·2,4)/(4·1,92)=

=1,25см= Н пир. Тогда V пир =⅓·S осн ·H =⅓·1,92·1,25=0,8см 3 )

(13 минут)

7. Самостоятельная работа №8 . (по времени - ? решить 1-2-3 задачи по выбору)

1 вариант

1) Дана правильная треугольная пирамида. Её боковое ребро равное 10см составляет с плоскостью основания угол φ = 30º. Найдите объём пирамиды.

2) Стороны оснований правильной четырехугольной усеченной пирамиды равны 4см и 6см. Площадь диагонального сечения равна 15см 2 . Найдите объём усеченной пирамиды.

2 вариант

1) Дана правильная четырехугольная пирамида. Сторона основания равна 3см, плоский угол при вершине α = 60º. Найдите объём пирамиды.

2) Стороны оснований правильной четырехугольной усеченной пирамиды равны 4√2см и 6√2см. Площадь диагонального сечения равна 90см 2 . Найдите объём усеченной пирамиды.

3) Основанием пирамиды является прямоугольный треугольник, катеты которого 24дм и 18дм. Каждое боковое ребро равно 25дм. Пирамида пересечена плоскостью, параллельной плоскости основания и делящей боковое ребро пополам. Найдите объём полученной усеченной пирамиды.

Возможна проверка ответов : 1 вариант – 1) c м 3 , 2)см 3 , 3)1260см 3

2 вариант – 1)см 3 , 2)456см 3 , 3)1260см 3

(25-30 мин)

8. Итоги урока. Домашнее задание.

Итак, мы сегодня повторили все формулы, решали различные задачи, составляли задачи, восстанавливали формулы, работали в группах, проверили свою готовность к предстоящей контрольной работе.

- Оценки за урок : самая активная группа, индивидуальные задания, фронтальная работа с формулами и задачами по готовым чертежам.

Домашнее задание : Повторить все формулы по теме «Объемы».

Решить из учебника задачи: №691, №706, №747. Готовиться к к/р.

Я думаю, что для вас это не покажется трудным, т.к. подобные задачи мы сегодня разобрали. (2 мин)

1 карточка: 1) Дан цилиндр. Радиус цилиндра 3см. Его высота 5см.

Найти объем цилиндра.

2) Модель конуса. Выполнить необходимые измерения.

Вычислить объем конуса.

2 карточка: 1) Дана правильная четырехугольная пирамида. Сторона основания 3см. Высота пирамиды 5см. Найти объем пирамиды.

2) Модель цилиндра. Выполнить необходимые измерения.

Вычислить объем цилиндра.

___________________________________________________________________________

3 карточка: 1) Дан конус. Радиус конуса 3см. Его высота 5см.

Найти объем конуса.

2) Модель правильной треугольной призмы.

Выполнить необходимые измерения. Вычислить объем призмы.

________________________________________________________________________________________

Задание №1

боковые грани

___________________________________________________________________________

Задание №2

боковые ребра

___________________________________________________________________________

Задание №3

___________________________________________________________________________

Задание №1

В основании пирамиды лежит треугольник со сторонами 5см, 5см и 6см. Все боковые грани пирамиды наклонены к плоскости основания под углом 60º. Найдите объем конуса, вписанного в эту пирамиду.

___________________________________________________________________________

Задание №2

В основании пирамиды лежит треугольник со сторонами 13см, 12см и 5см. Все боковые ребра наклонены к плоскости основания под углом 45º. Найдите объем пирамиды.

___________________________________________________________________________

Задание №3

В цилиндр вписана призма, основанием которой служит прямоугольный треугольник. В нем катет равен 6см, а прилежащий угол 60º. Диагональ большей боковой грани призмы составляет с плоскостью её основания угол в 45º. Найдите объем цилиндра.

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.