Факторы влияющие на скорость химической реакции. Химическая кинетика. Скорость химических реакций

В жизни мы сталкиваемся с разными химическими реакциями. Одни из них, как ржавление железа, могут идти несколько лет. Другие, например, сбраживание сахара в спирт, - несколько недель. Дрова в печи сгорают за пару часов, а бензин в моторе - за долю секунды.

Чтобы уменьшить затраты на оборудование, на химических заводах повышают скорость реакций. А некоторые процессы, например, порчу пищевых продуктов, коррозию металлов, - нужно замедлить.

Скорость химической реакции можно выразить как изменение количества вещества (n, по модулю) в единицу времени (t) - сравните скорость движущегося тела в физике как изменение координат в единицу времени: υ = Δx/Δt . Чтобы скорость не зависела от объема сосуда, в котором протекает реакция, делим выражение на объем реагирующих веществ (v), т. е. получаем изменение количества вещества в единицу времени в единице объема, или изменение концентрации одного из веществ в единицу времени :


n 2 − n 1 Δn
υ = –––––––––– = –––––––– = Δс/Δt (1)
(t 2 − t 1) v Δt v

где c = n / v - концентрация вещества,

Δ (читается «дельта») - общепринятое обозначение изменения величины.

Если в уравнении у веществ разные коэффициенты, скорость реакции для каждого из них, рассчитанная по этой формуле будет различной. Например, 2 моль серни́стого газа прореагировали полностью с 1 моль кислорода за 10 секунд в 1 литре:

2SO 2 + O 2 = 2SO 3

Скорость по кислороду будет: υ = 1: (10 1) = 0,1 моль/л·с

Скорость по серни́стому газу: υ = 2: (10 1) = 0,2 моль/л·с - это не нужно запоминать и говорить на экзамене, пример приведен для того, чтобы не путаться, если возникнет этот вопрос.

Скорость гетерогенных реакций (с участием твердых веществ) часто выражают на единицу площади соприкасающихся поверхностей:


Δn
υ = –––––– (2)
Δt S

Гетерогенными называются реакции, когда реагирующие вещества находятся в разных фазах:

  • твердое вещество с другим твердым, жидкостью или газом,
  • две несмешивающиеся жидкости,
  • жидкость с газом.

Гомогенные реакции протекают между веществами в одной фазе:

  • между хорошо смешивающимися жидкостями,
  • газами,
  • веществами в растворах.

Условия, влияющие на скорость химических реакций

1) Скорость реакции зависит от природы реагирующих веществ . Проще говоря, разные вещества реагируют с разной скоростью. Например, цинк бурно реагирует с соляной кислотой, а железо довольно медленно.

2) Скорость реакции тем больше, чем выше концентрация веществ. С сильно разбавленной кислотой цинк будет реагировать значительно дольше.

3) Скорость реакции значительно повышается с повышением температуры . Например, для горения топлива необходимо его поджечь, т. е. повысить температуру. Для многих реакций повышение температуры на 10° C сопровождается увеличением скорости в 2–4 раза.

4) Скорость гетерогенных реакций увеличивается с увеличением поверхности реагирующих веществ . Твердые вещества для этого обычно измельчают. Например, чтобы порошки железа и серы при нагревании вступили в реакцию, железо должно быть в виде мелких опилок.

Обратите внимание, что в данном случае подразумевается формула (1) ! Формула (2) выражает скорость на единице площади, следовательно не может зависеть от площади.

5) Скорость реакции зависит от наличия катализаторов или ингибиторов.

Катализаторы - вещества, ускоряющие химические реакции, но сами при этом не расходующиеся. Пример - бурное разложение перекиси водорода при добавлении катализатора - оксида марганца (IV):

2H 2 O 2 = 2H 2 O + O 2

Оксид марганца (IV) остается на дне, его можно использовать повторно.

Ингибиторы - вещества, замедляющие реакцию. Например, для продления срока службы труб и батарей в систему водяного отопления добавляют ингибиторы коррозии. В автомобилях ингибиторы коррозии добавляются в тормозную, охлаждающую жидкость.

Еще несколько примеров.

Под скоростью химической реакции понимают изменение концентрации одного из реагирующих веществ в единицу времени при неизменном объеме системы.

Обычно концентрацию выражают в моль/л, а время – в секундах или минутах. Если, например, исходная концентрация одного из реагирующих веществ составляла 1 моль/л, а через 4 с от начала реакции она стала 0,6 моль/л, то средняя скорость реакции будет равна (1-0,6)/4=0,1 моль/(л*с).

Средняя скорость реакции вычисляется по формуле:

Скорость химической реакции зависит от:

    Природы реагирующих веществ.

Вещества с полярной связью в растворах взаимодействуют быстрей, это объясняется тем, что такие вещества в растворах образуются ионы, которые легко взаимодействуют друг с другом.

Вещества с неполярной и малополярной ковалентной связью реагируют с различной скоростью, это зависит от их химической активности.

H 2 + F 2 = 2HF (идёт очень быстро со взрывом при комнатной температуре)

H 2 + Br 2 = 2HBr (идет медленно, даже при нагревании)

    Величины поверхностного соприкосновения реагирующих веществ (для гетерогенных)

    Концентрации реагирующих веществ

Скорость реакции прямопропорциональна произведению концентрации реагирующих веществ, возведенных в степень их стехиометрических коэффициентов.

    Температуры

Зависимость скорости реакции от температуры определяется правилом Вант-Гоффа:

при повышении температуры на каждые 10 0 скорость большинства реакций увеличивается в 2-4 раза.

    Присутствия катализатора

Катализаторами называются вещества, изменяющие скорость химической реакций.

Явление изменения скорости реакции в присутствии катализатора называется катализом.

    Давления

При увеличение давления скорость реакции повышается (для гомогенных)

Вопрос№26. Закон действия масс. Константа скорости. Энергия активации.

Закон действия масс.

скорость, с которой вещества реагируют друг с другом, зависит от их концентрации

Константа скорости.

коэффициент пропорциональности в кинетическом уравнении химической реакции, выражающий зависимость скорости реакции от концентрации

Константа скорости зависит от природы реагирующих веществ и от температуры, но не зависит от их концентраций.

Энергия активации.

энергия, которую надо сообщить молекулам (частицам) реагирующих веществ, чтобы превратить их в активные

Энергия активации зависит от природы реагирующих веществ и изменяется в присутствии катализатора.

Повышение концентрации увеличивается общее число молекул, а соответственно активных частиц.

Вопрос№27. Обратимые и необратимые реакции. Химическое равновесие, константа равновесия. Принцип Ле Шателье.

Реакции, которые протекают только в одном направлении и завершаются полным превращением исходных веществ в конечные, называются необратимыми.

Обратимыми называются такие реакции, которые одновременно протекают в двух взаимно противоположных направлениях.

В уравнениях обратимых реакций между левой и правой частью ставят две стрелки, направленные в противоположные стороны. Примером такой реакции может служить синтез аммиака их водорода и азота:

3H 2 + N 2 = 2NH 3

Необратимыми называются такие реакции, при протекании которых:

    Образующиеся продукты выпадают в осадок, или выделяются в виде газа, например:

BaCl 2 + H 2 SO 4 = BaSO 4 + 2HCl

Na 2 CO 3 + 2HCl = 2NaCl + CO 2 + H 2 O

    Образование воды:

HCl + NaOH = H 2 O + NaCl

Обратимые реакции не доходят до конца и заканчиваются установлением химического равновесия .

Химическое равновесие – это состояние системы реагирующих веществ, при котором скорости прямой и обратной реакции равны между собой.

На состояние химического равновесия оказывает влияние концентрации реагирующих веществ, температура, а для газов – и давление. При изменении одного из этих параметров, химическое равновесия нарушается.

Константа равновесия.

Важнейший параметр, характеризующий обратимую химическую реакцию – константа равновесия К. Если записать для рассмотренной обратимой реакции A + D C + D условие равенства скоростей прямой и обратной реакции в состоянии равновесия – k1[A]равн[B]равн = k2[C]равн[D]равн, откуда [C]равн[D]равн/[A]равн[B]равн = k1/k2 = К, то величина К называется константой равновесия химической реакции.

Итак, при равновесии отношение концентрации продуктов реакции к произведению концентрации реагентов постоянно, если постоянна температура (константы скорости k1 и k2 и, следовательно, константа равновесия К зависят от температуры, но не зависят от концентрации реагентов). Если в реакции участвуют несколько молекул исходных веществ и образуется несколько молекул продукта (или продуктов), концентрации веществ в выражении для константы равновесия возводятся в степени, соответствующие их стехиометрическим коэффициентам. Так для реакции 3H2 + N2 2NH3 выражение для константы равновесия записывается в виде K = 2 равн/3равнравн. Описанный способ вывода константы равновесия, основанный на скоростях прямой и обратной реакций, в общем случае использовать нельзя, так как для сложных реакций зависимость скорости от концентрации обычно не выражается простым уравнением или вообще неизвестна. Тем не менее, в термодинамике доказывается, что конечная формула для константы равновесия оказывается верной.

Для газообразных соединений вместо концентраций при записи константы равновесия можно использовать давление; очевидно, численное значение константы при этом может измениться, если число газообразных молекул в правой и левой частях уравнения не одинаковы.

Пинцип Ле Шателье.

если на систему, находящуюся в равновесии, производится какое-либо внешнее воздействие, то равновесие смещается в сторону той реакции, которая противодействует этому воздействию.

На химическое равновесие влияет:

    Изменение температуры. При повышении температуры равновесие смещается в сторону эндотермической реакции. При понижении температуры равновесие смещается в сторону экзотермической реакции.

    Изменение давления. При повышении давления равновесие смещается в сторону уменьшения числа молекул. При понижении давления равновесие смещается в сторону увеличения числа молекул.

Химические реакции протекают с различными скоростями. Некоторые из них полностью заканчиваются за малые доли секунды, другие осуществляются за минуты, часы, дни; известны реакции, требующие для своего протекания несколько лет. Кроме того, одна и та же реакции может в одних условиях, например, при повышенных температурах, протекать быстро, а в других, — например, при охлаждении, — медленно; при этом различие в скорости одной и той же реакции может быть очень большим.

При рассмотрении вопроса о скорости химической реакции необходимо различать реакции, протекающие в гомогенной системе (гомогенные реакции), и реакции, протекающие в гетерогенной системе (гетерогенные реакции).

ОПРЕДЕЛЕНИЕ

Системой в химии принято называть рассматриваемое вещество или совокупность веществ. При этом системе противопоставляется внешняя среда - вещества, окружающие систему.

Различают гомогенные и гетерогенные системе. Гомогенной называется система, состоящая из одной фазы, гетерогенной - система, состоящая из нескольких фаз. Фазой называется часть системы, отделенная от других её частей поверхностью раздела, при переходе через которую свойства изменяются скачком.

Примером гомогенной системы может служить любая газовая смесь 9все газы при не очень высоких давлениях неограниченно растворяются друг в друге) или раствор нескольких веществ в одном растворителе.

В качестве примеров гетерогенных систем можно привести следующие системы: вода со льдом, насыщенный раствор с осадком, уголь и сера в атмосфере воздуха.

Если реакция протекает в гомогенной системе, то она идет во всем объеме этой системы. Если реакция протекает между веществами, образующими гетерогенную систему то она может идти только на поверхности раздела фаз, образующих систему. В связи с этим скорость гомогенной реакции и скорость гетерогенной реакции определяются различно.

ОПРЕДЕЛЕНИЕ

Скоростью гомогенной реакции называется количество вещества, вступающего в реакцию или образующегося при реакции за единицу времени в единице объема системы.

Скоростью гетерогенной реакции называется количество вещества, вступающего в реакцию или образующегося при реакции за единицу времени на единице площади поверхности фазы.

Оба эти определения можно записать в математической форме. Введем обозначения: υ homogen - скорость реакции в гомогенной системе; υ h etero gen - скорость реакции в гетерогенной системе;n- число молей какого-либо из получающихся при реакции веществ; V- объем системы; t-время; S - площадь поверхности фазы, на которой протекает реакция; Δ - знак приращения (Δn = n 2 -n 1 ; Δt = t 2 -t 1). Тогда

υ homogen = Δn / (V× Δt);

υ heterogen = Δn / (S× Δt).

Первое из этих уравнений можно упростить. Отношение количества вещества (n) к объему (V) системы представляет собою молярную концентрацию (с) вещества: c=n/V, откуда Δc=Δn/V и окончательно:

υ homogen = Δc / Δt.

Примеры решения задач

ПРИМЕР 1

Задание Составьте формулы двух оксидов железа, если массовые доли железа в них 77,8% и 70,0%.
Решение

Найдем массовую долю в каждом из оксидов меди:

ω 1 (О) = 100% — ω 1 (Fe) = 100% — 77,8% = 22,2%;

ω 2 (О) = 100% — ω 2 (Fe) = 100% — 70,0% = 30,0%.

Обозначим количество моль элементов, входящих в состав соединения за «х» (железо) и «у» (кислород). Тогда, мольное отношение будет выглядеть следующим образом (значения относительных атомных масс, взятых из Периодической таблицы Д.И. Менделеева округлим до целых чисел):

x:y = ω 1 (Fe)/Ar(Fe) : ω 1 (O)/Ar(O);

x:y = 77,8/56: 22,2/16;

x:y = 1,39: 1,39 = 1: 1.

Значит формула первого оксида железа будет иметь вид FeO.

x:y = ω 2 (Fe)/Ar(Fe) : ω 2 (O)/Ar(O);

x:y = 70/56: 30/16;

x:y = 1,25: 1,875 = 1: 1,5 = 2: 3.

Значит формула второго оксида железа будет иметь вид Fe 2 O 3 .

Ответ FeO, Fe 2 O 3

ПРИМЕР 2

Задание Составьте формулу соединения водорода, йода и кислорода, если массовые доли элементов в нём: ω(H) = 2,2%, ω(I) = 55,7%, ω(O) = 42,1%.
Решение Массовая доля элемента Х в молекуле состава НХ рассчитывается по следующей формуле:

ω (Х) = n × Ar (X) / M (HX) × 100%.

Обозначим количество моль элементов, входящих в состав соединения за «х» (водород), «у» (йод), «z» (кислород). Тогда, мольное отношение будет выглядеть следующим образом (значения относительных атомных масс, взятых из Периодической таблицы Д.И. Менделеева, округлим до целых чисел):

x:y:z = ω(H)/Ar(H) : ω(I)/Ar(I) : ω(O)/Ar(O);

x:y:z= 2,2/1: 55,7/127: 42,1/16;

x:y:z= 2,2: 0,44: 2,63 = 5: 1: 6.

Значит формула соединения водорода, йода и кислорода будет иметь вид H 5 IO 6 .

Ответ H 5 IO 6

Скорость химической реакции

Тема «Скорость химической реакции», пожалуй, наиболее сложная и противоречивая в школьной программе. Это связано со сложностью самой химической кинетики – одного из разделов физической химии. Неоднозначно уже само определение понятия «скорость химической реакции» (см., например, статью Л.С.Гузея в газете «Химия», 2001, № 28,
с. 12). Еще больше проблем возникает при попытке применить закон действующих масс для скорости реакции к любым химическим системам, ведь круг объектов, для которых возможно количественное описание кинетических процессов в рамках школьной программы, очень узок. Хотелось бы особо отметить некорректность использования закона действующих масс для скорости химической реакции при химическом равновесии.
В то же время вообще отказаться от рассмотрения этой темы в школе было бы неверным. Представления о скорости химической реакции очень важны при изучении многих природных и технологических процессов, без них невозможно говорить о катализе и катализаторах, в том числе и о ферментах. Хотя при обсуждении превращений веществ используются в основном качественные представления о скорости химической реакции, введение простейших количественных соотношений все же желательно, особенно для элементарных реакций.
В публикуемой статье достаточно подробно рассматриваются вопросы химической кинетики, которые можно обсуждать на школьных уроках химии. Исключение из курса школьной химии спорных и противоречивых моментов этой темы особенно важно для тех учащихся, кто собирается продолжить свое химическое образование в вузе. Ведь полученные в школе знания нередко вступают в противоречие с научной реальностью.

Химические реакции могут существенно различаться по времени протекания. Смесь водорода и кислорода при комнатной температуре может долгое время оставаться практически без изменений, однако при ударе или поджигании произойдет взрыв. Железная пластина медленно ржавеет, а кусочек белого фосфора самовоспламеняется на воздухе. Важно знать, насколько быстро протекает та или иная реакция, чтобы иметь возможность контролировать ее ход.

Основные понятия

Количественной характеристикой того, насколько быстро протекает данная реакция, является скорость химической реакции, т. е. скорость расходования реагентов или скорость появления продуктов. При этом безразлично, о каком из участвующих в реакции веществе идет речь, поскольку все они связаны между собой через уравнение реакции. По изменению количества одного из веществ можно судить о соответствующих изменениях количеств всех остальных.

Скоростью химической реакции () называют изменение количества вещества реагента или продукта () за единицу времени () в единице объема (V ):

= /(V ).

Скорость реакции в данном случае обычно выражается в моль/(л с).

Приведенное выражение относится к гомогенным химическим реакциям, протекающим в однородной среде, например между газами или в растворе:

2SO 2 + O 2 = 2SO 3 ,

BаСl 2 + Н 2 SO 4 = ВаSО 4 + 2НСl.

Гетерогенные химические реакции идут на поверхности соприкосновения твердого вещества и газа, твердого вещества и жидкости и т.п. К гетерогенным реакциям относятся, например, реакции металлов с кислотами:

Fе + 2НСl = FeСl 2 + Н 2 .

В этом случае скоростью реакции называют изменение количества вещества реагента или продукта () за единицу времени () на единице поверхности (S):

= /(S ).

Скорость гетерогенной реакции выражается в моль/(м 2 с).

Чтобы управлять химическими реакциями, важно не только уметь определять их скорости, но и выяснить, какие условия оказывают на них влияние. Раздел химии, изучающий скорость химических реакций и влияние на нее различных факторов, называется химической кинетикой .

Частота соударений реагирующих частиц

Важнейший фактор, определяющий скорость химической реакции, – концентрация .

При повышении концентрации реагирующих веществ скорость реакции, как правило, возрастает. Для того чтобы вступить в реакцию, две химические частицы должны сблизиться, поэтому скорость реакции зависит от числа столкновений между ними. Увеличение числа частиц в данном объеме приводит к более частым столкновениям и к возрастанию скорости реакции.

Для гомогенных реакций повышение концентрации одного или нескольких реагирующих веществ приведет к увеличению скорости реакции. При понижении концентрации наблюдается противоположный эффект. Концентрация веществ в растворе может быть изменена путем добавления или удаления из сферы реакции реагирующих веществ или растворителя. В газах концентрация одного из веществ может быть увеличена путем введения дополнительного количества этого вещества в реакционную смесь. Концентрации всех газообразных веществ можно увеличить одновременно, уменьшая объем, занимаемый смесью. При этом скорость реакции возрастет. Увеличение объема приводит к обратному результату.

Скорость гетерогенных реакций зависит от площади поверхности соприкосновения веществ , т.е. от степени измельчения веществ, полноты смешивания реагентов, а также от состояния кристаллических структур твердых тел. Любые нарушения в кристаллической структуре вызывают увеличение реакционной способности твердых тел, т.к. для разрушения прочной кристаллической структуры требуется дополнительная энергия.

Рассмотрим горение древесины. Целое полено горит на воздухе сравнительно медленно. Если увеличить поверхность соприкосновения дерева с воздухом, расколов полено на щепки, скорость горения увеличится. Вместе с тем древесина горит в чистом кислороде значительно быстрее, чем на воздухе, который содержит лишь около 20% кислорода.

Для протекания химической реакции должно произойти столкновение частиц – атомов, молекул или ионов. В результате столкновений происходит перегруппировка атомов и возникают новые химические связи, что приводит к образованию новых веществ. Вероятность столкновения двух частиц достаточно высока, вероятность одновременного столкновения трех частиц существенно меньше. Одновременное столкновение четырех частиц чрезвычайно маловероятно. Поэтому большинство реакций протекает в несколько стадий, на каждой из которых происходит взаимодействие не более трех частиц.

Реакция окисления бромоводорода протекает с заметной скоростью при 400–600 °С:

4НВr + O 2 = 2Н 2 О + 2Вr 2 .

В соответствии с уравнением реакции одновременно должно столкнуться пять молекул. Однако вероятность такого события практически равна нулю. Более того, экспериментальные исследования показали, что повышение концентрации – либо кислорода, либо бромоводорода – увеличивает скорость реакции в одно и то же число раз. И это при том, что на каждую молекулу кислорода расходуется четыре молекулы бромоводорода.

Детальное рассмотрение данного процесса показывает, что он протекает в несколько стадий:

1) НBr + О 2 = НООВr (медленная реакция);

2) НООВr + НВr = 2НОВr (быстрая реакция);

3) НОВr + НВr = Н 2 О + Вr 2 (быстрая реакция).

Приведенные реакции, так называемые элементарные реакции , отражают механизм реакции окисления бромоводорода кислородом. Важно отметить, что в каждой из промежуточных реакций участвует только по две молекулы. Сложение первых двух уравнений и удвоенного третьего дает суммарное уравнение реакции. Общая же скорость реакции определяется наиболее медленной промежуточной реакцией, в которой взаимодействуют одна молекула бромоводорода и одна молекула кислорода.

Скорость элементарных реакций прямо пропорциональна произведению молярных концентраций с (с – это количество вещества в единице объема, с = /V ) реагентов, взятых в степенях, равных их стехиометрическим коэффициентам (закон действующих масс для скорости химической реакции). Это справедливо лишь для уравнений реакций, отражающих механизмы реальных химических процессов, когда стехиометрические коэффициенты перед формулами реагентов соответствуют числу взаимодействующих частиц.

По числу взаимодействующих в реакции молекул различают реакции мономолекулярные, бимолекулярные и тримолекулярные. Например, диссоциация молекулярного йода на атомы: I 2 = 2I – мономолекулярная реакция.

Взаимодействие йода с водородом: I 2 + Н 2 = 2HI – бимолекулярная реакция. Закон действующих масс для химических реакций разной молекулярности записывается по-разному.

Мономолекулярные реакции:

А = В + С,

= kc A ,

где k – константа скорости реакции.

Бимолекулярные реакции:

= kc A c В.

Тримолекулярные реакции:

= kc 2 A c В.

Энергия активации

Столкновение химических частиц приводит к химическому взаимодействию лишь в том случае, если сталкивающиеся частицы обладают энергией, превышающей некоторую определенную величину. Рассмотрим взаимодействие газообразных веществ, состоящих из молекул А 2 и В 2:

А 2 + В 2 = 2АВ.

В ходе химической реакции происходит перегруппировка атомов, сопровождающаяся разрывом химических связей в исходных веществах и образованием связей в продуктах реакции. При столкновении реагирующих молекул сначала образуется так называемый активированный комплекс , в котором происходит перераспределение электронной плотности, и лишь потом получается конечный продукт реакции:

Энергию, необходимую для перехода веществ в состояние активированного комплекса, называют энергией активации .

Активность химических веществ проявляется в низкой энергии активации реакций с их участием. Чем ниже энергия активации, тем выше скорость реакции. Например, в реакциях между катионами и анионами энергия активации очень мала, поэтому такие реакции протекают почти мгновенно. Если энергия активации велика, то очень малая часть соударений приводит к образованию новых веществ. Так, скорость реакции между водородом и кислородом при комнатной температуре практически равна нулю.

Итак, на скорость реакции оказывает влияние природа реагирующих веществ . Рассмотрим для примера реакции металлов с кислотами. Если опустить в пробирки с разбавленной серной кислотой одинаковые кусочки меди, цинка, магния и железа, можно увидеть, что интенсивность выделения пузырьков газообразного водорода, характеризующая скорость протекания реакции, для этих металлов существенно различается. В пробирке с магнием наблюдается бурное выделение водорода, в пробирке с цинком пузырьки газа выделяются несколько спокойнее. Еще медленнее протекает реакция в пробирке с железом (рис.). Медь вообще не вступает в реакцию с разбавленной серной кислотой. Таким образом, скорость реакции зависит от активности металла.

При замене серной кислоты (сильной кислоты) на уксусную (слабую кислоту) скорость реакции во всех случаях существенно замедляется. Можно сделать вывод, что на скорость реакции металла с кислотой влияет природа обоих реагентов – как металла, так и кислоты.

Повышение температуры приводит к увеличению кинетической энергии химических частиц, т.е. увеличивает число частиц, имеющих энергию выше энергии активации. При повышении температуры число столкновений частиц также увеличивается, что в некоторой степени увеличивает скорость реакции. Однако повышение эффективности столкновений за счет увеличения кинетической энергии оказывает большее влияние на скорость реакции, чем увеличение числа столкновений.

При повышении температуры на десять градусов скорость увеличивается в число раз, равное температурному коэффициенту скорости :

= T +10 /T .

При повышении температуры от T до T "
отношение скоростей реакций T " и T равно
температурному коэффициенту скорости в степени (T " – T )/10:

T " /T = (T "–T )/10.

Для многих гомогенных реакций температурный коэффициент скорости равен 24 (правило Вант-Гоффа). Зависимость скорости реакции от температуры можно проследить на примере взаимодействия оксида меди(II) с разбавленной серной кислотой. При комнатной температуре реакция протекает очень медленно. При нагревании реакционная смесь быстро окрашивается в голубой цвет за счет образования сульфата меди(II):

СuО + Н 2 SО 4 = СuSO 4 + Н 2 О.

Катализаторы и ингибиторы

Многие реакции можно ускорить или замедлить путем введения некоторых веществ. Добавляемые вещества не участвуют в реакции и не расходуются в ходе ее протекания, но оказывают существенное влияние на скорость реакции. Эти вещества изменяют механизм реакции (в том числе состав активированного комплекса) и понижают энергию активации, что обеспечивает ускорение химических реакций. Вещества – ускорители реакций называют катализаторами , а само явление такого ускорения реакции – катализом .

Многие реакции в отсутствие катализаторов протекают очень медленно или не протекают совсем. Одной из таких реакций является разложение пероксида водорода:

2Н 2 О 2 = 2Н 2 О + О 2 .

Если опустить в сосуд с водным раствором пероксида водорода кусочек твердого диоксида марганца, то начнется бурное выделение кислорода. После удаления диоксида марганца реакция практически прекращается. Путем взвешивания нетрудно убедиться, что диоксид марганца в данном процессе не расходуется – он лишь катализирует реакцию.

В зависимости от того, в одинаковых или различных агрегатных состояниях находится катализатор и реагирующие вещества, различают гомогенный и гетерогенный катализ.

При гомогенном катализе катализатор может ускорить реакцию путем образования промежуточных веществ за счет взаимодействия с одним из исходных реагентов. Например:

При гетерогенном катализе химическая реакция обычно протекает на поверхности катализатора:

Катализаторы широко распространены в природе. Практически все превращения веществ в живых организмах протекают с участием органических катализаторов – ферментов.

Катализаторы используют в химическом производстве для ускорения тех или иных процессов. Кроме них применяют также вещества, замедляющие химические реакции, – ингибиторы . С помощью ингибиторов, в частности, защищают металлы от коррозии.

Факторы, влияющие на скорость химической реакции

Увеличивают скорость Уменьшают скорость
Наличие химически активных реагентов Наличие химически неактивных реагентов
Повышение концентрации реагентов Понижение концентрации реагентов
Увеличение поверхности твердых и жидких реагентов Уменьшение поверхности твердых и жидких реагентов
Повышение температуры Понижение температуры
Присутствие катализатора Присутствие ингибитора

ЗАДАНИЯ

1. Дайте определение скорости химической реакции. Напишите выражение кинетического закона действующих масс для следующих реакций:

а) 2С (тв.) + О 2 (г.) = 2СО (г.);

б) 2НI (г.) = Н 2 (г.) + I 2 (г.).

2. От чего зависит скорость химической реакции? Приведите математическое выражение зависимости скорости химической реакции от температуры.

3. Укажите, как влияет на скорость реакции (при постоянном объеме):

а) увеличение концентрации реагентов;

б) измельчение твердого реагента;
в) понижение температуры;
г) введение катализатора;
д) уменьшение концентрации реагентов;
е) повышение температуры;
ж) введение ингибитора;
з) уменьшение концентрации продуктов.

4. Рассчитайте скорость химической реакции

СО (г.) + Н 2 О (г.) = СО 2 (г.) + Н 2 (г.)

в сосуде емкостью 1 л, если через 1 мин 30 с после ее начала количество вещества водорода было 0,32 моль, а через 2 мин 10 с стало 0,44 моль. Как повлияет на скорость реакции увеличение концентрации СО?

5. В результате одной реакции за определенный промежуток времени образовалось 6,4 г йодоводорода, а в другой реакции в тех же условиях – 6,4 г диоксида серы. Сравните скорости этих реакций. Как изменятся скорости этих реакций при повышении температуры?

6. Определите скорость реакции

СО (г.) + Сl 2 (г.) = СОCl 2 (г.),

если через 20 с после начала реакции исходное количество вещества оксида углерода(II) уменьшилось c 6 моль в 3 раза (объем реактора равен 100 л). Как изменится скорость реакции, если вместо хлора использовать менее активный бром? Как изменится скорость реакции при введении
а) катализатора; б) ингибитора?

7. В каком случае реакция

СaО (тв.) + СО 2 (г.) = СaCO 3 (тв.)

протекает быстрее: при использовании крупных кусков или порошка оксида кальция? Рассчитайте:
а) количество вещества; б) массу карбоната кальция, образовавшегося за 10 с, если скорость реакции составляет 0,1 моль/(л с), объем реактора равен 1 л.

8. Взаимодействие образца магния с хлороводородной кислотой НСl позволяет получить 0,02 моль хлорида магния через 30 с после начала реакции. Определите, за какое время можно получить 0,06 моль хлорида магния.

Е) от 70 до 40 °С скорость реакции уменьшилась в 8 раз;
ж) от 60 до 40 °С скорость реакции уменьшилась в 6,25 раза;
з) от 40 до 10 °С скорость реакции уменьшилась в 27 раз.

11. Владелец автомашины покрасил ее новой краской, а затем обнаружил, что согласно инструкции она должна сохнуть 3 ч при 105 °С. За какое время высохнет краска при 25 °С, если температурный коэффициент реакции полимеризации, лежащей в основе этого процесса, равен: а) 2; б) 3; в) 4?

ОТВЕТЫ НА ЗАДАНИЯ

1. а) = kc (О 2); б) = kc (HI) 2 .

2. T +10 = T .

3. Скорость реакции увеличивается в случаях а, б, г, е; уменьшается – в, д, ж; не изменяется – з.

4. 0,003 моль/(л с). При увеличении концентрации СО скорость реакции возрастает.

5. Скорость первой реакции в 2 раза ниже.

6. 0,002 моль/(л с).

7. а) 1 моль; б) 100 г.

9. Увеличатся в 2 раза скорости реакций д, ж, з; в 4 раза – а, б, е; в 8 раз – в, г.

10. Температурный коэффициент:

2 для реакций б, е; = 2,5 – в, ж; = 3 – д, з; = 3,5 – а, г.

а) 768 ч (32 сут, т. е. более 1 месяца);
б) 19 683 ч (820 сут, т. е. более 2 лет);
в) 196 608 ч (8192 сут, т. е. 22 года).

Скорость химических реакций, ее зависимость от различных факторов

Гомогенные и гетерогенные химические реакции

Химические реакции протекают с различными скоростями: с малой скоростью — при образовании сталактитов и сталагмитов, со средней скоростью — при варке пищи, мгновенно — при взрыве. Очень быстро проходят реакции в водных растворах, практически мгновенно. Смешаем растворы хлорида бария и сульфата натрия — сульфат бария в виде осадка образуется немедленно. Быстро, но не мгновенно, горит сера, магний растворяется в соляной кислоте, этилен обесцвечивает бромную воду. Медленно образуется ржавчина на железных предметах, налет на медных и бронзовых изделиях, медленно гниет листва, разрушаются зубы.

Предсказание скорости химической реакции, а также выяснение ее зависимости от условий проведения процесса — задача химической кинетики — науки о закономерностях протекания химических реакций во времени.

Если химические реакции происходят в однородной среде, например, в растворе или в газовой фазе, то взаимодействие реагирующих веществ происходит во всем объеме. Такие реакции, как вы знаете, называют гомогенными .

Скорость гомогенной реакции ($v_{гомог.}$) определяется как изменение количества вещества в единицу времени в единице объема:

$υ_{гомог.}={∆n}/{∆t·V},$

где $∆n$ — изменение числа молей одного вещества (чаще всего исходного, но может быть и продукта реакции); $∆t$ — интервал времени (с, мин.); $V$ — объем газа или раствора (л).

Поскольку отношение количества вещества к объему представляет собой молярную концентрацию $С$, то

${∆n}/{V}=∆C.$

Таким образом, скорость гомогенной реакции определяется как изменение концентрации одного из веществ в единицу времени:

$υ_{гомог.}={∆C}/{∆t}[{моль}/{л·с}]$

если объем системы не меняется. Если реакция идет между веществами, находящимися в разных агрегатных состояниях (например, между твердым веществом и газом или жидкостью), или между веществами, неспособными образовывать гомогенную среду (например, между несмешивающимися жидкостями), то она проходит только на поверхности соприкосновения веществ. Такие реакции называют гетерогенными .

Скорость гетерогенной реакции определяется как изменение количества вещества в единицу времени на единице поверхности:

$υ_{гомог.}={∆C}/{∆t·S}[{моль}/{c·м^2}]$

где $S$ — площадь поверхности соприкосновения веществ ($м^2, см^2$).

Если при какой-либо протекающей реакции экспериментально измерять концентрацию исходного вещества в разные моменты времени, то графически можно отобразить ее изменение с помощью кинетической кривой для этого реагента.

Скорость реакции не является постоянной величиной. Мы указывали лишь некоторую среднюю скорость данной реакции в определенном интервале времени.

Представьте себе, что мы определяем скорость реакции

$H_2+Cl_2→2HCl$

а) по изменению концентрации $Н_2$;

б) по изменению концентрации $HCl$.

Одинаковые ли мы получим значения? Ведь из $1$ моль $Н_2$ образуется $2$ моль $HCl$, поэтому и скорость в случае б) окажется больше в два раза. Следовательно, значение скорости реакции зависит и от того, по какому веществу ее определяют.

Изменение количества вещества, по которому определяют скорость реакции, — это внешний фактор, наблюдаемый исследователем. По сути, все процессы осуществляются на микроуровне. Очевидно, для того, чтобы какие-то частицы прореагировали, они прежде всего должны столкнуться, причем столкнуться эффективно: не разлететься, как мячики, в разные стороны, а так, чтобы в частицах разрушились или ослабли старые связи и смогли образоваться новые, а для этого частицы должны обладать достаточной энергией.

Расчетные данные показывают, что, например, в газах столкновения молекул при атмосферном давлении исчисляются миллиардами за $1$ секунду, т.е. все реакции должны были бы идти мгновенно. Но это не так. Оказывается, что лишь очень небольшая доля молекул обладает необходимой энергией, приводящей к эффективному соударению.

Минимальный избыток энергии, который должна иметь частица (или пара частиц), чтобы произошло эффективное соударение, называют энергией активации $E_a$.

Таким образом, на пути всех частиц, вступающих в реакцию, имеется энергетический барьер, равный энергии активации $E_a$. Когда он мал, то находится много частиц, которые могут его преодолеть, и скорость реакции велика. В противном случае требуется толчок. Когда вы подносите спичку, чтобы зажечь спиртовку, вы сообщаете дополнительную энергию $E_a$, необходимую для эффективного соударения молекул спирта с молекулами кислорода (преодоление барьера).

В заключение сделаем вывод: многие возможные реакции практически не идут, т.к. высока энергия активации.

Это имеет огромное значение для нашей жизни. Представьте, что бы случилось, если бы все термодинамически разрешенные реакции могли идти, не имея никакого энергетического барьера (энергии активации). Кислород воздуха прореагировал бы со всем, что может гореть или просто окисляться. Пострадали бы все органические вещества, они превратились бы в углекислый газ $CO_2$ и воду $H_2O$.

Скорость химической реакции зависит от многих факторов. Основными из них являются: природа и концентрация реагирующих веществ, давление (в реакциях с участием газов), температура, действие катализаторов и поверхность реагирующих веществ в случае гетерогенных реакций. Рассмотрим влияние каждого из этих факторов на скорость химической реакции.

Температура

Вам известно, что при повышении температуры в большинстве случаев скорость химической реакции значительно возрастает. В XIX в. голландский химик Я. Х. Вант-Гофф сформулировал правило:

Повышение температуры на каждые $10°С$ приводит к увеличению скорости реакции в 2-4 раза (эту величину называют температурным коэффициентом реакции).

При повышении температуры средняя скорость молекул, их энергия, число столкновений увеличиваются незначительно, зато резко повышается доля активных молекул, участвующих в эффективных соударениях, преодолевающих энергетический барьер реакции.

Математически эта зависимость выражается соотношением:

$υ_{t_2}=υ_{t_1}γ^{{t_2-t_1}/{10}},$

где $υ_{t_1}$ и $υ_{t_2}$ — скорости реакции соответственно при конечной $t_2$ и начальной $t_1$ температурах, а $γ$ — температурный коэффициент скорости реакции, который показывает, во сколько раз увеличивается скорость реакции с повышением температуры на каждые $10°С$.

Однако для увеличения скорости реакции повышение температуры не всегда применимо, т.к. исходные вещества могут начать разлагаться, могут испаряться растворители или сами вещества.

Концентрация реагирующих веществ

Изменение давления при участии в реакции газообразных веществ также приводит к изменению концентрации этих веществ.

Чтобы осуществилось химическое взаимодействие между частицами, они должны эффективно столкнуться. Чем больше концентрация реагирующих веществ, тем больше столкновений и, соответственно, выше скорость реакции. Например, в чистом кислороде ацетилен сгорает очень быстро. При этом развивается температура, достаточная для плавления металла. На основе большого экспериментального материала в 1867 г. норвежцами К. Гульденбергом и П. Вааге и независимо от них в 1865 г. русским ученым Н. И. Бекетовым был сформулирован основной закон химической кинетики, устанавливающий зависимость скорости реакции от концентрации реагирующих веществ.

Скорость химической реакции пропорциональна произведению концентраций реагирующих веществ, взятых в степенях, равных их коэффициентам в уравнении реакции.

Этот закон называют также законом действующих масс.

Для реакции $А+В=D$ этот закон выражается так:

$υ_1=k_1·C_A·C_B$

Для реакции $2А+В=D$ этот закон выражается так:

$υ_2=k_2·C_A^2·C_B$

Здесь $С_А, С_В$ — концентрации веществ $А$ и $В$ (моль/л); $k_1$ и $k_2$ — коэффициенты пропорциональности, называемые константами скорости реакции.

Физический смысл константы скорости реакции нетрудно установить — она численно равна скорости реакции, в которой концентрации реагирующих веществ равны $1$ моль/л или их произведение равно единице. В таком случае ясно, что константа скорости реакции зависит только от температуры и не зависит от концентрации веществ.

Закон действующих масс не учитывает концентрации реагирующих веществ, находящихся в твердом состоянии, т.к. они реагируют на поверхности, и их концентрации обычно являются постоянными.

Например, для реакции горения угля

выражение скорости реакции должно быть записано так:

$υ=k·C_{O_2}$,

т. е. скорость реакции пропорциональна только концентрации кислорода.

Если же уравнение реакции описывает лишь суммарную химическую реакцию, проходящую в несколько стадий, то скорость такой реакции может сложным образом зависеть от концентраций исходных веществ. Эта зависимость определяется экспериментально или теоретически на основании предполагаемого механизма реакции.

Действие катализаторов

Можно увеличить скорость реакции, используя специальные вещества, которые изменяют механизм реакции и направляют ее по энергетически более выгодному пути с меньшей энергией активации. Их называют катализаторами (от лат. katalysis — разрушение).

Катализатор действует как опытный проводник, направляющий группу туристов не через высокий перевал в горах (его преодоление требует много сил и времени и не всем доступно), а по известным ему обходным тропам, по которым можно преодолеть гору значительно легче и быстрее. Правда, по обходному пути можно попасть не совсем туда, куда ведет главный перевал. Но иногда именно это и требуется! Именно так действуют катализаторы, которые называют селективными . Ясно, что нет необходимости сжигать аммиак и азот, зато оксид азота (II) находит применение в производстве азотной кислоты.

Катализаторы — это вещества, участвующие в химической реакции и изменяющие ее скорость или направление, но по окончании реакции остающиеся неизменными количественно и качественно.

Изменение скорости химической реакции или ее направления с помощью катализатора называют катализом . Катализаторы широко используют в различных отраслях промышленности и на транспорте (каталитические преобразователи, превращающие оксиды азота выхлопных газов автомобиля в безвредный азот).

Различают два вида катализа.

Гомогенный катализ , при котором и катализатор, и реагирующие вещества находятся в одном агрегатном состоянии (фазе).

Гетерогенный катализ , при котором катализатор и реагирующие вещества находятся в разных фазах. Например, разложение пероксида водорода в присутствии твердого катализатора оксида марганца (IV):

$2H_2O_2{→}↖{MnO_2(I)}2H_2O_{(ж)}+O_2(г)$

Сам катализатор не расходуется в результате реакции, но если на его поверхности адсорбируются другие вещества (их называют каталитическими ядами ), то поверхность становится неработоспособной, требуется регенерация катализатора. Поэтому перед проведением каталитической реакции тщательно очищают исходные вещества.

Например, при производстве серной кислоты контактным способом используют твердый катализатор — оксид ванадия (V) $V_2O_5$:

$2SO_2+O_2⇄2SO_3$

При производстве метанола используют твердый цинкохромовый катализатор ($8ZnO·Cr_2O_3×CrO_3$):

$CO_{(г)}+2H_{2(г)}⇄CH_3OH_{(г)}$

Очень эффективно работают биологические катализаторы — ферменты . По химической природе это белки. Благодаря им в живых организмах при невысокой температуре с большой скоростью протекают сложные химические реакции. Ферменты отличаются особой специфичностью, каждый из них ускоряет только свою реакцию, идущую в нужное время и в нужном месте с выходом, близким к $100%$. Создание аналогичных ферментам искусственных катализаторов — мечта химиков!

Вы, конечно, слышали и о других интересных веществах — ингибиторах (от лат. inhibere — задерживать). Они с высокой скоростью реагируют с активными частицами с образованием малоактивных соединений. В результате реакция резко замедляется и затем прекращается. Ингибиторы часто специально добавляют в разные вещества, чтобы предотвратить нежелательные процессы.

Например, с помощью ингибиторов стабилизируют растворы пероксида водорода, мономеры для предотвращения преждевременной полимеризации, соляную кислоту, чтобы была возможность ее транспортировки в стальной таре. Ингибиторы содержатся и в живых организмах, они подавляют различные вредные реакции окисления в клетках тканей, которые могут инициироваться, например, радиоактивным излучением.

Природа реагирующих веществ (их состав, строение)

Значение энергии активации является тем фактором, посредством которого сказывается влияние природы реагирующих веществ на скорость реакции.

Если энергия активации мала ($< 40$ кДж/моль), то это означает, что значительная часть столкновений между частицами реагирующих веществ приводит к их взаимодействию, и скорость такой реакции очень большая. Все реакции ионного обмена протекают практически мгновенно, ибо в этих реакциях участвуют разноименно заряженные ионы, и энергия активации в этих случаях ничтожно мала.

Если энергия активации велика ($> 120$ кДж/моль), то это означает, что лишь ничтожная часть столкновений между взаимодействующими частицами приводит к реакции. Скорость такой реакции поэтому очень мала. Например, протекание реакции синтеза аммиака при обычной температуре заметить практически невозможно.

Если энергии активации имеют промежуточные значения ($40-120$ кДж/моль), то скорости таких реакций будут средними. К таким реакциям можно отнести взаимодействие натрия с водой или этиловым спиртом, обесцвечивание бромной воды этиленом, взаимодействие цинка с соляной кислотой и др.

Поверхность соприкосновения реагирующих веществ

Скорость реакций, идущих на поверхности веществ, т.е. гетерогенных, зависит при прочих равных условиях от свойств этой поверхности. Известно, что растертый в порошок мел гораздо быстрее растворяется в соляной кислоте, чем равный по массе кусочек мела.

Увеличение скорости реакции объясняется, в первую очередь, увеличением поверхности соприкосновения исходных веществ, а также рядом других причин, например, разрушением структуры правильной кристаллической решетки. Это приводит к тому, что частицы на поверхности образующихся микрокристаллов значительно реакционноспособнее, чем те же частицы на гладкой поверхности.

В промышленности для проведения гетерогенных реакций используют кипящий слой, чтобы увеличить поверхность соприкосновения реагирующих веществ, подвод исходных веществ и отвод продуктов. Например, при производстве серной кислоты с помощью кипящего слоя проводят обжиг колчедана; в органической химии с применением кипящего слоя проводят каталитический крекинг нефтепродуктов и регенерацию (восстановление) вышедшего из строя (закоксованного) катализатора.