Совместные действия с рациональными дробями. "Рациональная дробь. Основное свойство рациональной дроби". Преобразование рациональных выражений

Алгебра 7 Б класс

Тема урока: "Рациональная дробь. Основное свойство рациональной дроби"

Дата проведения:

Цели урока:

1. Образовательная:

Ввести понятие рациональной дроби и его основного свойства;

Отработать навыки сокращения дробей и приведения их к общему знаменателю;

Закрепить эти понятия в ходе решений заданий.

2. Развивающая:

Развивать сообразительность, смекалку учащихся, развивать культуру их речи; развивать познавательную активность учащихся и логическое мышление;

3. Воспитательные:

Воспитывать целеустремленность, ответственность, организованность, формировать интерес к изучению математики.

План урока.

1. Организационный момент.

2. Проверка домашнего задания.

3. Актуализация знаний(посредством повторения предыдущего материала).

4. Объяснение темы.

5. Закрепление посредством решения заданий.

6. Домашнее задание.

7. Подведение итогов.

Ход урока

1. Организационный момент.

2. Проверка домашнего задания № 484.

При каких значениях х следующие дроби не имеют смысла:

1) ОДЗ: х≠2

2) ОДЗ: х≠-1

3) ОДЗ: х≠3

4) ОДЗ: х≠2

5) ОДЗ: х≠1

6) ОДЗ: х≠3

7) ОДЗ: х≠а

8) ОДЗ: х≠-b

9) ОДЗ: х≠1,-1

10)ОДЗ:х≠-1.2

3. Повторение предыдущего материала на закрепление

1. Чем отличается числовое выражение от буквенного?

2. Какие выражения мы называем целыми?

3. Какие выражения мы называем дробными?

4. Рациональные выражения это какие выражения?

5. Какие выражения имеют смысл при любых значениях?

6. Какие выражения при некоторых значениях переменных не имеют смысла?

7. Что называется допустимым значением переменных?

8. Какие дроби бывают?

Работа с дидактическим материалом. У доски ученик работает. Какие из этих выражений являются дробными, а какие целыми?

a 2 ; (x-y) 2 - 4xy; ; ; ;(c+3) 2 + ; 7x 2 -2xy; ; ; ; a(a-b);

Целые Дробные

a 2 , (x-y) 2 - 4xy, , ,

, (c+3) 2 + , , a(a-b),

Заполнить таблицу

Найти значение дроби, при х равным ниже указанно в таблице

4.Объяснение

Выражение вида называют рациональной дробью , где a, b - рациональные выражения, причем b обязательно содержит переменные.

Например: ,

Свойства рациональных дробей и операции с ними очень похожи на свойства числовых дробей и действия с ними. Напомним известное вам основное свойство обыкновенной дроби: если числитель и знаменатель дроби умножить на одно и то же натуральное число, то получится равная дробь, т. е. равенство верно при любых натуральных значениях a, b и с.

Это равенство справедливо не только при натуральных, но и при любых других значениях переменных а, b и с, при которых знаменатель не равен нулю, т. е. при b ≠ 0 и

с ≠ 0. Докажем это утверждение.

Пусть дробь = m. Тогда по определению частного имеем а = bm. Умножим обе части этого равенства на число с и получим ас = (bm) · с. На основании переместительного и сочетательного свойств умножения запишем ас = (bс) · m. Так как b ≠ 0 и с ≠ 0 (т. е. bс ≠ 0), то выразим из этого равенства величину Кроме этого равенства, есть равенство m = . Приравняем правые части этих выражений и получим требуемое равенство .

Равенство верно при всех значениях переменных, при которых его левая и правая части имеют смысл, т. е. при всех допустимых значениях переменных. Такие равенства также называют тождествами. Два выражения, принимающие равные значения при всех допустимых для них значениях переменных, называют тождественно равными. Замену одного такого выражения другим называют тождественным преобразованием выражения.

Было доказано, что равенство верно при всех допустимых значениях переменных. Поэтому по определению это равенство является тождеством. Такое тождество называют основным свойством дроби.

Тождество позволяет заменить дробь на тождественное ему выражение , т.е. на основании этой формулы мы можем сократить дробь на множитель с.

Пример: = =

Основное свойство дроби используют для ее приведения к заданному знаменателю.

Пример 1. Приведем дробь к знаменателю 27b 5 (т. е. запишем данную дробь в виде дроби со знаменателем 27b 5).

В заданном (новом) знаменателе 27b 5 выделим в качестве множителя старый знаменатель 3b 3 , т. е. запишем равенство 27b 5 = 3b 3 · 9b 2 . Поэтому, чтобы получить дробь с новым знаменателем 27b 5 , по основному свойству дроби умножим числитель и знаменатель данной дроби на множитель 9b 2 . Тогда получим: При этом множитель 9b 2 называют дополнительным множителем к числителю и знаменателю данной дроби .

Рассмотрим еще одно свойство дроби.

Если изменить знак числителя (или знаменателя) дроби, то изменится знак и самой дроби:

5. Решение упражнений на закрепление: №

6. Домашнее задание:

7. Подведение итогов.

- Что называется рациональной дробью?

- Что называется тождеством?

- Назовите основное свойство дроби.

- Что называется тождественным преобразованием выражения?

Определение. Сумма целых неотрицательных степеней неизвестного Х, взятых с некоторыми числовыми коэфйфициентами, называется многочленом.

Здесь: - действительные числа.

n - cтепень многочлена.

Операции над многочленами.

1). При сложении (вычитании) двух многочленов складываются (вычитаются) коэффициенты при одинаковых степенях неизвестнолго х.

2). Два многочлена равны, если они имеют одинаковую степень и равные коэффициенты при одинаковых степенях Х.

3). Степень многочлена, получаемого при перемножении двух многочленов, равна сумме степеней перемножаемых многочленов.

4). Линейные операции над многочленами обладают свойствами ассоциативности, коммутативности и дистрибутивности.

5) Деление многочлена на многочлен можно осуществить по правилу «деление уголком».

Определение. Число х=а называется корнем многочлена, если подстановка его в многочлен обращает его в нуль, т. е.

Теорема Безу. Остаток от деления многочлена
на двучлен (х-а) равен значению многочлена при х=а, т. е.

Доказательство.

Пусть , где

Полагая в равенстве х=а, получим

1). При делении многочлена на двучлен (х-а) остатком всегда будет число.

2). Если а – корень многочлена, то многочлен делится на двучлен (х-а) без остатка.

3) При делении многочлена степени n на двучлен (х-а) в частном получаем многочлен степени (n-1).

Основная теорема алгебры. Любой многочлен смтепени n (n >1) имеет хотябы один корень (приводим без доказательства).

Следствие. Всякий многочлен степени n имеет ровно n корней и над полем комплексных чисел разлагается в произведение n линейных множителей, т. е. Среди корней многочлена могут быть повторяющиеся числа (кратные корни). У многочленов с действительными коэффициентами комплексные корни могут появляться только сопряжёнными парами. Докажем последнее утверждение.

Пусть
- комплексный корень многочлена, тогда На основании общего свойства комплексных чисел можно утверждать следовательно
- тоже корень.

Каждой паре комплексных сопряжённых корней многочлена соответствует квадратный трёхчлен с действительными коэфйфициентами.

здесь p , q - действительные числа (показать на примере).

Вывод. Всякий многочлен представим в виде произведения линейных множителей и квадратных трёхчленов с действительными коэффициентами.

Рациональные дроби.

Рациональной дробью называется отношение двух многочленов.

Если
, то рациональная дробь называается правильной. В противном случае дробь – неправильная. Всякую неправильную дробь можно представить в виде суммы многочлена (частного) и правильной рациональной дроби путём деления многочлена, стоящего в числителе, на многочлен, стоящий в знаменателе.

- неправильная рациональная дробь.

Данную неправильную рациональную дробь теперь можно представить в следующем виде.

С учётом показанного, в дальнейшем будем рассматривать только правильные рациональные дроби.

Существуют так называемые простейшие рациональные дроби – это дроби, не поддающиеся никакому упрощению. Эти простейшие дроби имеют вид:

Правильную рациональную дробь более сложного вида всегда можно представить в виде суммы простейших рациональных дробей. Набор дробей определяется набором корней многочлена, стоящего в знаменателе правильной несократимой рациональной дроби. Правило разложения дроби на простейшие следующее.

Пусть рациональная дробь представлена в следующем виде.

Здесь в числителе простейших дробей стоят неизвестные коэффициенты, которые всегда могут быть определены методом неопределённых коэффициентов. Суть метода состоит в приравнивании коэффициентов при одинаковых степенях Х у многочлена, стоящего в числителе исходной дроби и многочлена, стоящего в числителе дроби, полученной после приведения простейших дробей к общему знаменателю.

Приравняем коэффициенты при одинаковых степенях Х.

Решая систему уравнений относительно неизвестных коэффициентов, получим.

Итак, данная дробь представима набором следующих простейших дробей.

Приведением к общему знаменателю убеждаемся в правильности решения задачи.

Прежде всего, чтобы научиться работать с рациональными дробями без ошибок, необходимо выучить формулы сокращённого умножения. И не просто выучить — их необходимо распознавать даже тогда, когда в роли слагаемых выступают синусы, логарифмы и корни.

Однако основным инструментом остаётся разложение числителя и знаменателя рациональной дроби на множители. Этого можно добиться тремя различными способами:

  1. Собственно, по формула сокращённого умножения: они позволяют свернуть многочлен в один или несколько множителей;
  2. С помощью разложения квадратного трёхчлена на множители через дискриминант. Этот же способ позволяет убедиться, что какой-либо трёхчлен на множители вообще не раскладывается;
  3. Метод группировки — самый сложный инструмент, но это единственный способ, который работает, если не сработали два предыдущих.

Как вы уже, наверное, догадались из названия этого видео, мы вновь поговорим о рациональных дробях. Буквально несколько минут назад у меня закончилось занятие с одним десятиклассником, и там мы разбирали именно эти выражения. Поэтому данный урок будет предназначен именно для старшеклассников.

Наверняка у многих сейчас возникнет вопрос: «Зачем ученикам 10-11 классов изучать такие простые вещи как рациональные дроби, ведь это проходится в 8 классе?». Но в том то и беда, что большинство людей эту тему именно «проходят». Они в 10-11 классе уже не помнят, как делается умножение, деление, вычитание и сложение рациональных дробей из 8-го класса, а ведь именно на этих простых знаниях строятся дальнейшие, более сложные конструкции, как решение логарифмических, тригонометрических уравнений и многих других сложных выражений, поэтому без рациональных дробей делать в старших классах практически нечего.

Формулы для решения задач

Давайте перейдем к делу. Прежде всего, нам потребуется два факта — два комплекта формул. Прежде всего, необходимо знать формулы сокращенного умножения:

  • ${{a}^{2}}-{{b}^{2}}=\left(a-b \right)\left(a+b \right)$ — разность квадратов;
  • ${{a}^{2}}\pm 2ab+{{b}^{2}}={{\left(a\pm b \right)}^{2}}$ — квадрат суммы или разности;
  • ${{a}^{3}}+{{b}^{3}}=\left(a+b \right)\left({{a}^{2}}-ab+{{b}^{2}} \right)$ — сумма кубов;
  • ${{a}^{3}}-{{b}^{3}}=\left(a-b \right)\left({{a}^{2}}+ab+{{b}^{2}} \right)$ — разность кубов.

В чистом виде они ни в каких примерах и в реальных серьезных выражениях не встречаются. Поэтому наша задача состоит в том, чтобы научиться видеть под буквами $a$ и $b$ гораздо более сложные конструкции, например, логарифмы, корни, синусы и т.д. Научиться видеть это можно лишь при помощи постоянной практики. Именно поэтому решать рациональные дроби совершенно необходимо.

Вторая, совершенно очевидная формула — это разложение квадратного трехчлена на множители:

${{x}_{1}}$; ${{x}_{2}}$ — корни.

С теоретической частью мы разобрались. Но как решать реальные рациональные дроби, которые рассматриваются в 8 классе? Сейчас мы и потренируемся.

Задача № 1

\[\frac{27{{a}^{3}}-64{{b}^{3}}}{{{b}^{3}}-4}:\frac{9{{a}^{2}}+12ab+16{{b}^{2}}}{{{b}^{2}}+4b+4}\]

Давайте попробуем применить вышеописанные формулы к решению рациональных дробей. Прежде всего, хочу объяснить, зачем вообще нужно разложение на множители. Дело в том, что при первом взгляде на первую часть задания хочется сократить куб с квадратом, но делать этого категорически нельзя, потому что они являются слагаемыми в числителе и в знаменателе, но ни в коем случае не множителями.

Вообще, что такое сокращение? Сокращение — это использование основного правила работы с такими выражениями. Основное свойство дроби заключается в том, что мы можем числитель и знаменатель можем умножить на одно и то же число, отличное от «нуля». В данном случае, когда мы сокращаем, то, наоборот, делим на одно и то же число, отличное от «нуля». Однако мы должны все слагаемые, стоящие в знаменателе, разделить на одно и то же число. Делать так нельзя. И сокращать числитель со знаменателем мы вправе лишь тогда, когда оба они разложены на множители. Давайте это и сделаем.

Теперь необходимо посмотреть, сколько слагаемых находится в том или ином элементе, в соответствии с этим узнать, какую формулу необходимо использовать.

Преобразуем каждое выражение в точный куб:

Перепишем числитель:

\[{{\left(3a \right)}^{3}}-{{\left(4b \right)}^{3}}=\left(3a-4b \right)\left({{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}} \right)\]

Давайте посмотрим на знаменатель. Разложим его по формуле разности квадратов:

\[{{b}^{2}}-4={{b}^{2}}-{{2}^{2}}=\left(b-2 \right)\left(b+2 \right)\]

Теперь посмотрим на вторую часть выражения:

Числитель:

Осталось разобраться со знаменателем:

\[{{b}^{2}}+2\cdot 2b+{{2}^{2}}={{\left(b+2 \right)}^{2}}\]

Давайте перепишем всю конструкцию с учетом вышеперечисленных фактов:

\[\frac{\left(3a-4b \right)\left({{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}} \right)}{\left(b-2 \right)\left(b+2 \right)}\cdot \frac{{{\left(b+2 \right)}^{2}}}{{{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}}}=\]

\[=\frac{\left(3a-4b \right)\left(b+2 \right)}{\left(b-2 \right)}\]

Нюансы умножения рациональных дробей

Ключевой вывод из этих построений следующий:

  • Далеко не каждый многочлен раскладывается на множители.
  • Даже если он и раскладывается, необходимо внимательно смотреть, по какой именно формуле сокращенного умножения.

Для этого, во-первых, нужно оценить, сколько всего слагаемых (если их два, то все, что мы можем сделать, то это разложить их либо по сумме разности квадратов, либо по сумме или разности кубов; а если их три, то это, однозначно, либо квадрат суммы, либо квадрат разности). Очень часто бывает так, что или числитель, или знаменатель вообще не требует разложения на множители, он может быть линейным, либо дискриминант его будет отрицательным.

Задача № 2

\[\frac{3-6x}{2{{x}^{2}}+4x+8}\cdot \frac{2x+1}{{{x}^{2}}+4-4x}\cdot \frac{8-{{x}^{3}}}{4{{x}^{2}}-1}\]

В целом, схема решения этой задачи ничем не отличается от предыдущей — просто действий будет больше, и они станут разнообразнее.

Начнем с первой дроби: посмотрим на ее числитель и сделаем возможные преобразования:

Теперь посмотрим на знаменатель:

Со второй дробью: в числителе вообще ничего нельзя сделать, потому что это линейное выражение, и вынести из него какой-либо множитель нельзя. Посмотрим на знаменатель:

\[{{x}^{2}}-4x+4={{x}^{2}}-2\cdot 2x+{{2}^{2}}={{\left(x-2 \right)}^{2}}\]

Идем к третьей дроби. Числитель:

Разберемся со знаменателем последней дроби:

Перепишем выражение с учетом вышеописанных фактов:

\[\frac{3\left(1-2x \right)}{2\left({{x}^{2}}+2x+4 \right)}\cdot \frac{2x+1}{{{\left(x-2 \right)}^{2}}}\cdot \frac{\left(2-x \right)\left({{2}^{2}}+2x+{{x}^{2}} \right)}{\left(2x-1 \right)\left(2x+1 \right)}=\]

\[=\frac{-3}{2\left(2-x \right)}=-\frac{3}{2\left(2-x \right)}=\frac{3}{2\left(x-2 \right)}\]

Нюансы решения

Как видите, далеко не все и не всегда упирается в формулы сокращенного умножения — иногда просто достаточно вынести за скобки константу или переменную. Однако бывает и обратная ситуация, когда слагаемых настолько много или они так построены, что формулы сокращенного умножения к ним вообще невозможно. В этом случае к нам на помощь приходит универсальный инструмент, а именно, метод группировки. Именно это мы сейчас и применим в следующей задаче.

Задача № 3

\[\frac{{{a}^{2}}+ab}{5a-{{a}^{2}}+{{b}^{2}}-5b}\cdot \frac{{{a}^{2}}-{{b}^{2}}+25-10a}{{{a}^{2}}-{{b}^{2}}}\]

Разберем первую часть:

\[{{a}^{2}}+ab=a\left(a+b \right)\]

\[=5\left(a-b \right)-\left(a-b \right)\left(a+b \right)=\left(a-b \right)\left(5-1\left(a+b \right) \right)=\]

\[=\left(a-b \right)\left(5-a-b \right)\]

Давайте перепишем исходное выражение:

\[\frac{a\left(a+b \right)}{\left(a-b \right)\left(5-a-b \right)}\cdot \frac{{{a}^{2}}-{{b}^{2}}+25-10a}{{{a}^{2}}-{{b}^{2}}}\]

Теперь разберемся со второй скобкой:

\[{{a}^{2}}-{{b}^{2}}+25-10a={{a}^{2}}-10a+25-{{b}^{2}}=\left({{a}^{2}}-2\cdot 5a+{{5}^{2}} \right)-{{b}^{2}}=\]

\[={{\left(a-5 \right)}^{2}}-{{b}^{2}}=\left(a-5-b \right)\left(a-5+b \right)\]

Так как два элемента не получилось сгруппировать, то мы сгруппировали три. Осталось разобраться лишь со знаменателем последней дроби:

\[{{a}^{2}}-{{b}^{2}}=\left(a-b \right)\left(a+b \right)\]

Теперь перепишем всю нашу конструкцию:

\[\frac{a\left(a+b \right)}{\left(a-b \right)\left(5-a-b \right)}\cdot \frac{\left(a-5-b \right)\left(a-5+b \right)}{\left(a-b \right)\left(a+b \right)}=\frac{a\left(b-a+5 \right)}{{{\left(a-b \right)}^{2}}}\]

Задача решена, и больше ничего упростить здесь нельзя.

Нюансы решения

С группировкой мы разобрались и получили еще один очень мощный инструмент, который расширяет возможности по разложению на множители. Но проблема в том, что в реальной жизни нам никто не будет давать вот такие рафинированные примеры, где есть несколько дробей, у которых нужно лишь разложить на множитель числитель и знаменатель, а потом по возможности их сократить. Реальные выражения будут гораздо сложнее.

Скорее всего, помимо умножения и деления там будут присутствовать вычитания и сложения, всевозможные скобки — вообщем, придется учитывать порядок действий. Но самое страшное, что при вычитании и сложении дробей с разными знаменателями их придется приводить к одному общему. Для этого каждый из них нужно будет раскладывать на множители, а потом преобразовывать эти дроби: приводить подобные и многое другое. Как это сделать правильно, быстро, и при этом получить однозначно правильный ответ? Именно об этом мы и поговорим сейчас на примере следующей конструкции.

Задача № 4

\[\left({{x}^{2}}+\frac{27}{x} \right)\cdot \left(\frac{1}{x+3}+\frac{1}{{{x}^{2}}-3x+9} \right)\]

Давайте выпишем первую дробь и попытаемся разобраться с ней отдельно:

\[{{x}^{2}}+\frac{27}{x}=\frac{{{x}^{2}}}{1}+\frac{27}{x}=\frac{{{x}^{3}}}{x}+\frac{27}{x}=\frac{{{x}^{3}}+27}{x}=\frac{{{x}^{3}}+{{3}^{3}}}{x}=\]

\[=\frac{\left(x+3 \right)\left({{x}^{2}}-3x+9 \right)}{x}\]

Переходим ко второй. Сразу посчитаем дискриминант знаменателя:

Он на множители не раскладывается, поэтому запишем следующее:

\[\frac{1}{x+3}+\frac{1}{{{x}^{2}}-3x+9}=\frac{{{x}^{2}}-3x+9+x+3}{\left(x+3 \right)\left({{x}^{2}}-3x+9 \right)}=\]

\[=\frac{{{x}^{2}}-2x+12}{\left(x+3 \right)\left({{x}^{2}}-3x+9 \right)}\]

Числитель выпишем отдельно:

\[{{x}^{2}}-2x+12=0\]

Следовательно, этот многочлен на множители не раскладывается.

Максимум, что мы могли сделать и разложить, мы уже сделали.

Итого переписываем нашу исходную конструкцию и получаем:

\[\frac{\left(x+3 \right)\left({{x}^{2}}-3x+9 \right)}{x}\cdot \frac{{{x}^{2}}-2x+12}{\left(x+3 \right)\left({{x}^{2}}-3x+9 \right)}=\frac{{{x}^{2}}-2x+12}{x}\]

Все, задача решена.

Если честно, это была не такая уж и сложная задача: там все легко раскладывалось на множители, быстро приводились подобные слагаемые, и все красиво сокращалось. Поэтому сейчас давайте попробуем решить задачку посерьезней.

Задача № 5

\[\left(\frac{x}{{{x}^{2}}+2x+4}+\frac{{{x}^{2}}+8}{{{x}^{3}}-8}-\frac{1}{x-2} \right)\cdot \left(\frac{{{x}^{2}}}{{{x}^{2}}-4}-\frac{2}{2-x} \right)\]

Сначала давайте разберемся с первой скобкой. С самого начала разложим на множители знаменатель второй дроби отдельно:

\[{{x}^{3}}-8={{x}^{3}}-{{2}^{3}}=\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)\]

\[\frac{x}{{{x}^{2}}+2x+4}+\frac{{{x}^{2}}+8}{{{x}^{3}}-8}-\frac{1}{{{x}^{2}}}=\]

\[=\frac{x}{{{x}^{2}}+2x+4}+\frac{{{x}^{2}}+8}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}-\frac{1}{x-2}=\]

\[=\frac{x\left(x-2 \right)+{{x}^{2}}+8-\left({{x}^{2}}+2x+4 \right)}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}=\]

\[=\frac{{{x}^{2}}-2x+{{x}^{2}}+8-{{x}^{2}}-2x-4}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}=\]

\[=\frac{{{x}^{2}}-4x+4}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}=\frac{{{\left(x-2 \right)}^{2}}}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}=\frac{x-2}{{{x}^{2}}+2x+4}\]

Теперь поработаем со второй дробью:

\[\frac{{{x}^{2}}}{{{x}^{2}}-4}-\frac{2}{2-x}=\frac{{{x}^{2}}}{\left(x-2 \right)\left(x+2 \right)}-\frac{2}{2-x}=\frac{{{x}^{2}}+2\left(x-2 \right)}{\left(x-2 \right)\left(x+2 \right)}=\]

\[=\frac{{{x}^{2}}+2x+4}{\left(x-2 \right)\left(x+2 \right)}\]

Возвращаемся к нашей исходной конструкции и записываем:

\[\frac{x-2}{{{x}^{2}}+2x+4}\cdot \frac{{{x}^{2}}+2x+4}{\left(x-2 \right)\left(x+2 \right)}=\frac{1}{x+2}\]

Ключевые моменты

Еще раз ключевые факты сегодняшнего видеоурока:

  1. Необходимо знать «назубок» формулы сокращенного умножения — и не просто знать, а уметь видеть в тех выражениях, которые будут вам встречаться в реальных задачах. Помочь нам в этом может замечательное правило: если слагаемых два, то это либо разность квадратов, либо разность или сумма кубов; если три — это может быть только квадрат суммы или разности.
  2. Если какая-либо конструкция не раскладывается при помощи формул сокращенного умножения, то нам на помощь приходит либо стандартная формула разложения трехчленов на множители, либо метод группировки.
  3. Если что-то не получается, внимательно посмотрите на исходное выражение — а требуются ли вообще какие-то преобразования с ним. Возможно, достаточно будет просто вынести множитель за скобку, а это очень часто бывает просто константа.
  4. В сложных выражениях, где требуется выполнить несколько действий подряд, не забывайте приводить к общему знаменателю, и лишь после этого, когда все дроби приведены к нему, обязательно приведите подобное в новом числителе, а потом новый числитель еще раз разложите на множители — возможно, что-то сократится.

Вот и все, что я хотел вам рассказать сегодня о рациональных дробях. Если что-то непонятно — на сайте еще куча видеоуроков, а также куча задач для самостоятельного решения. Поэтому оставайтесь с нами!

Начнём с некоторых определений. Многочленом n-й степени (или n-го порядка) будем именовать выражение вида $P_n(x)=\sum\limits_{i=0}^{n}a_{i}x^{n-i}=a_{0}x^{n}+a_{1}x^{n-1}+a_{2}x^{n-2}+\ldots+a_{n-1}x+a_n$. Например, выражение $4x^{14}+87x^2+4x-11$ есть многочлен, степень которого равна $14$. Его можно обозначить так: $P_{14}(x)=4x^{14}+87x^2+4x-11$.

Отношение двух многочленов $\frac{P_n(x)}{Q_m(x)}$ называется рациональной функцией или рациональной дробью . Если более точно, то это рациональная функция одной переменной (т.е. переменной $x$).

Рациональная дробь называется правильной , если $n < m$, т.е. если степень многочлена, стоящего в числителе, меньше степени многочлена, стоящего в знаменателе. В противном случае (если $n ≥ m$) дробь называется неправильной .

Пример №1

Указать, какие из приведённых ниже дробей являются рациональными. Если дробь является рациональной, то выяснить, правильная она или нет.

  1. $\frac{3x^2+5\sin x-4}{2x+5}$;
  2. $\frac{5x^2+3x-8}{11x^9+25x^2-4}$;
  3. $\frac{(2x^3+8x+4)(8x^4+5x^3+x+145)^9(5x^7+x^6+9x^5+3)}{(5x+4)(3x^2+9)^{15}(15x^{10}+9x-1)}$;
  4. $\frac{3}{(5x^6+4x+19)^4}$.

1) Данная дробь не является рациональной, поскольку содержит $\sin x$. Рациональная дробь этого не допускает.

2) Мы имеем отношение двух многочленов: $5x^2+3x-8$ и $11x^9+25x^2-4$. Следовательно, согласно определению, выражение $\frac{5x^2+3x-8}{11x^9+25x^2-4}$ есть рациональная дробь. Так как степень многочлена в числителе равна $2$, а степень многочлена в знаменателе равна $9$, то данная дробь является правильной (ибо $2 < 9$).

3) И в числителе, и в знаменателе данной дроби расположены многочлены (разложенные на множители). Нам совершенно неважно, в какой форме представлены многочлены числителя и знаменателя: разложены они на множители или нет. Так как мы имеем отношение двух многочленов, то согласно определению выражение $\frac{(2x^3+8x+4)(8x^4+5x^3+x+145)^9(5x^7+x^6+9x^5+3)}{(5x+4)(3x^2+9)^{15}(15x^{10}+9x-1)}$ есть рациональная дробь.

Дабы ответить на вопрос о том, является ли данная дробь правильной, следует определить степени многочленов в числителе и знаменателе. Начнём с числителя, т.е. с выражения $(2x^3+8x+4)(8x^4+5x^3+x+145)^9(5x^7+x^6+9x^5+3)$. Для определения степени этого многочлена можно, конечно, раскрыть скобки. Однако разумно поступить гораздо проще, ибо нас интересует лишь наибольшая степень переменной $x$. Выберем из каждой скобки переменную $x$ в наибольшей степени. Из скобки $(2x^3+8x+4)$ возьмём $x^3$, из скобки $(8x^4+5x^3+x+9)^9$ возьмём $(x^4)^9=x^{4\cdot9}=x^{36}$, а из скобки $(5x^7+x^6+9x^5+3)$ выберем $x^7$. Тогда после раскрытия скобок наибольшая степень переменной $x$ будет такой:

$$ x^3\cdot x^{36}\cdot x^7=x^{3+36+7}=x^{46}. $$

Степень многочлена, расположенного в числителе, равна $46$. Теперь обратимся к знаменателю, т.е. к выражению $(5x+4)(3x^2+9)^{15}(15x^{10}+9x-1)$. Степень этого многочлена определяется так же, как и для числителя, т.е.

$$ x\cdot (x^2)^{15}\cdot x^{10}=x^{1+30+10}=x^{41}. $$

В знаменателе расположен многочлен 41-й степени. Так как степень многочлена в числителе (т.е. 46) не меньше степени многочлена в знаменателе (т.е. 41), то рациональная дробь $\frac{(2x^3+8x+4)(8x^4+5x^3+x+145)^9(5x^7+x^6+9x^5+3)}{(5x+4)(3x^2+9)^{15}(15x^{10}+9x-1)}$ является неправильной.

4) В числителе дроби $\frac{3}{(5x^6+4x+19)^4}$ стоит число $3$, т.е. многочлен нулевой степени. Формально числитель можно записать так: $3x^0=3\cdot1=3$. В знаменателе имеем многочлен, степень которого равна $6\cdot 4=24$. Отношение двух многочленов есть рациональная дробь. Так как $0 < 24$, то данная дробь является правильной.

Ответ : 1) дробь не является рациональной; 2) рациональная дробь (правильная); 3) рациональная дробь (неправильная); 4) рациональная дробь (правильная).

Теперь перейдём к понятию элементарных дробей (их ещё именуют простейшими рациональными дробями). Существуют четыре типа элементарных рациональных дробей:

  1. $\frac{A}{x-a}$;
  2. $\frac{A}{(x-a)^n}$ ($n=2,3,4,\ldots$);
  3. $\frac{Mx+N}{x^2+px+q}$ ($p^2-4q < 0$);
  4. $\frac{Mx+N}{(x^2+px+q)^n}$ ($p^2-4q < 0$; $n=2,3,4,\ldots$).

Примечание (желательное для более полного понимания текста): показать\скрыть

Зачем нужно условие $p^2-4q < 0$ в дробях третьего и четвертого типов? Рассмотрим квадратное уравнение $x^2+px+q=0$. Дискриминант этого уравнения $D=p^2-4q$. По сути, условие $p^2-4q < 0$ означает, что $D < 0$. Если $D < 0$, то уравнение $x^2+px+q=0$ не имеет действительных корней. Т.е. выражение $x^2+px+q$ неразложимо на множители. Именно эта неразложимость нас и интересует.

Например, для выражения $x^2+5x+10$ получим: $p^2-4q=5^2-4\cdot 10=-15$. Так как $p^2-4q=-15 < 0$, то выражение $x^2+5x+10$ нельзя разложить на множители.

Кстати сказать, для этой проверки вовсе не обязательно, чтобы коэффициент перед $x^2$ равнялся 1. Например, для $5x^2+7x-3=0$ получим: $D=7^2-4\cdot 5 \cdot (-3)=109$. Так как $D > 0$, то выражение $5x^2+7x-3$ разложимо на множители.

Задача состоит в следующем: заданную правильную рациональную дробь представить в виде суммы элементарных рациональных дробей. Решению этой задачи и посвящён материал, изложенный на данной странице. Для начала нужно убедиться, что выполнено следующее условие: многочлен в знаменателе правильной рациональной дроби разложен на множители таким образом, что оное разложение содержит лишь скобки вида $(x-a)^n$ или $(x^2+px+q)^n$ ($p^2-4q < 0$).Грубо говоря, это требование означает необходимость максимального разложения многочлена в знаменателе, т.е. чтобы дальнейшее разложение было невозможно. Только если это условие выполнено, то можно применять такую схему:

  1. Каждой скобке вида $(x-a)$, расположенной в знаменателе, соответствует дробь $\frac{A}{x-a}$.
  2. Каждой скобке вида $(x-a)^n$ ($n=2,3,4,\ldots$), расположенной в знаменателе, соответствует сумма из $n$ дробей: $\frac{A_1}{x-a}+\frac{A_2}{(x-a)^2}+\frac{A_3}{(x-a)^3}+\ldots+\frac{A_n}{(x-a)^n}$.
  3. Каждой скобке вида $(x^2+px+q)$ ($p^2-4q < 0$), расположенной в знаменателе, соответствует дробь $\frac{Cx+D}{x^2+px+q}$.
  4. Каждой скобке вида $(x^2+px+q)^n$ ($p^2-4q < 0$; $n=2,3,4,\ldots$), расположенной в знаменателе, соответствует сумма из $n$ дробей: $\frac{C_1x+D_1}{x^2+px+q}+\frac{C_2x+D_2}{(x^2+px+q)^2}+\frac{C_3x+D_3}{(x^2+px+q)^3}+\ldots+\frac{C_nx+D_n}{(x^2+px+q)^n}$.

Если же дробь неправильная, то перед применением вышеизложенной схемы следует разбить её на сумму целой части (многочлен) и правильной рациональной дроби. Как именно это делается, разберём далее (см. пример №2 пункт 3). Пару слов насчёт буквенных обозначений в числителях (т.е. $A$, $A_1$, $C_2$ и тому подобные). Буквы можно использовать любые - на свой вкус. Важно лишь, чтобы эти буквы были различными во всех элементарных дробях. Чтобы найти значения этих параметров применяют метод неопределённых коэффициентов или метод подстановки частных значений (см. примеры №3, №4 и №5).

Пример №2

Разложить заданные рациональные дроби на элементарные (без нахождения параметров):

  1. $\frac{5x^4-10x^3+x^2-9}{(x-5)(x+2)^4 (x^2+3x+10)(x^2+11)^5}$;
  2. $\frac{x^2+10}{(x-2)^3(x^3-8)(3x+5)(3x^2-x-10)}$;
  3. $\frac{3x^5-5x^4+10x^3-16x^2-7x+22}{x^3-2x^2+4x-8}$.

1) Имеем рациональную дробь. В числителе этой дроби расположен многочлен 4-й степени, а в знаменателе многочлен, степень которого равна $17$ (как определить эту степень детально пояснено в пункте №3 примера №1). Так как степень многочлена в числителе меньше степени многочлена в знаменателе, то данная дробь является правильной. Обратимся к наменателю этой дроби. Начнём со скобок $(x-5)$ и $(x+2)^4$, которые полностью подпадают под вид $(x-a)^n$. Кроме того, имеются ещё и скобки $(x^2+3x+10)$ и $(x^2+11)^5$. Выражение $(x^2+3x+10)$ имеет вид $(x^2+px+q)^n$, где $p=3$; $q=10$, $n=1$. Так как $p^2-4q=9-40=-31 < 0$, то данную скобку больше нельзя разложить на множители. Обратимся ко второй скобке, т.е. $(x^2+11)^5$. Это тоже скобка вида $(x^2+px+q)^n$, но на сей раз $p=0$, $q=11$, $n=5$. Так как $p^2-4q=0-121=-121 < 0$, то данную скобку больше нельзя разложить на множители. Итак, мы имеем следующий вывод: многочлен в знаменателе разложен на множители таким образом, что оное разложение содержит лишь скобки вида $(x-a)^n$ или $(x^2+px+q)^n$ ($p^2-4q < 0$). Теперь можно переходить и к элементарным дробям. Мы будем применять правила , изложенные выше. Согласно правилу скобке $(x-5)$ будет соответствовать дробь $\frac{A}{x-5}$. Это можно записать так:

$$ \frac{5x^4-10x^3+x^2-9}{(x-5)(x+2)^4 (x^2+3x+10)(x^2+11)^5}=\frac{A}{x-5}+\ldots $$

Полученный результат можно записать так:

$$ 3x^5-5x^4+10x^3-16x^2-7x+22=(x^3-2x^2+4x-8)(3x^2+x)+4x^2+x+22. $$

Тогда дробь $\frac{3x^5-5x^4+10x^3-16x^2-7x+22}{x^3-2x^2+4x-8}$ представима в иной форме:

$$ \frac{3x^5-5x^4+10x^3-16x^2-7x+22}{x^3-2x^2+4x-8}=\frac{(x^3-2x^2+4x-8)(3x^2+x)+4x^2+x+22}{x^3-2x^2+4x-8}=\\ =\frac{(x^3-2x^2+4x-8)(3x^2+x)}{x^3-2x^2+4x-8}+\frac{4x^2+x+22}{x^3-2x^2+4x-8}=\\ =3x^2+x+\frac{4x^2+x+22}{x^3-2x^2+4x-8}. $$

Дробь $\frac{4x^2+x+22}{x^3-2x^2+4x-8}$ является правильной рациональной дробью, ибо степень многочлена в числителе (т.е. 2) меньше степени многочлена в знаменателе (т.е. 3). Теперь обратимся к знаменателю данной дроби. В знаменателе расположен многочлен, который нужно разложить на множители. Иногда для разложения на множители полезна схема Горнера , но в нашем случае проще обойтись стандартным "школьным" методом группировки слагаемых:

$$ x^3-2x^2+4x-8=x^2\cdot(x-2)+4\cdot(x-2)=(x-2)\cdot(x^2+4);\\ 3x^2+x+\frac{4x^2+x+22}{x^3-2x^2+4x-8}=3x^2+x+\frac{4x^2+x+22}{(x-2)\cdot(x^2+4)} $$

Применяя те же методы, что и в предыдущих пунктах, получим:

$$ \frac{4x^2+x+22}{(x-2)\cdot(x^2+4)}=\frac{A}{x-2}+\frac{Cx+D}{x^2+4} $$

Итак, окончательно имеем:

$$ \frac{3x^5-5x^4+10x^3-16x^2-7x+22}{x^3-2x^2+4x-8}=3x^2+x+\frac{A}{x-2}+\frac{Cx+D}{x^2+4} $$

Продолжение этой темы будет рассмотрено во второй части.