Преобразование многочлена кратные корни в простые. Определение корня многочлена. Варианты лабораторной работы

Если число с является корнем многочлена f (x), этот многочлен, как известно, делится на х-с. Может случиться, что f (x) делится и на какую-то степень многочлена х-с, т.е. на (х-с) k, k>1. В этом случае с называют кратным корнем. Сформулируем определение более четко.

Число с называется корнем кратности k (k-кратным корнем) многочлена f (x), если многочлен делится на (х-с) k, k>1 (k - натуральное число), но не делится на (х-с) k+1. Если k=1, то с называют простым корнем, а если k>1, - кратным корнем многочлена f (x).

В дальнейшем при определении кратности корней нам будет полезно следующее предложение.

Если многочлен f (x) представим в виде f (x) = (x-c) mg (x), m - натуральное число, то он делится на (х-с) m+1 тогда и только тогда, когда g (x) делится на х-с. В самом деле, если g (x) делится на х-с, т.е. g (x) = (x-c) s (x), то f (x) = (x-c) m+1s (x), а значит, f (x) делится на (х-с) m+1.

Обратно, если f (x) делится на (х-с) m+1, то f (x) = (x-c) m+1s (x). Тогда (x-c) mg (x) = (x-c) m+1s (x) и после сокращения на (х-с) m получим g (x) = (x-c) s (x). Отсюда следует, что g (x) делится на х-с.

А сейчас вернемся к понятию кратности корня. Выясним, например, является ли число 2 корнем многочлена f (x) =x5-5x4+3x3+22x2-44x+24, и если да, найдем его кратность. Чтобы ответить на первый вопрос, проверим с помощью схемы Горнера, делится ли f (x) на х-2. имеем:

Таблица 4

Получили, что g (x) делится на х-2 и g (x) = (x-2) (x3-x2-5x+6). Тогда f (x) = (x-2) 2 (x3-x2-5x+6).

Итак, f (x) делится на (х-2) 2, теперь нужно выяснить, делится ли f (x) на (x-2) 3.

Для этого проверим, делится ли h (x) =x3-x2-5x+6 на х-2:

Таблица 6

Находим, что остаток при делении s (x) на х-2 равен 3, т.е. s (x) не делится на х-2. Значит, f (x) не делится на (х-2) 4.

Таким образом, f (x) делится на (х-2) 3, но не делится на (х-2) 4. Следовательно, число 2 является корнем кратности 3 многочлена f (x).

Обычно проверку корня на кратность выполняют в одной таблице. Для данного примера эта таблица имеет следующий вид:

Таблица 8

Другими словами, по схеме Горнера деление многочлена f (x) на х-2, во второй строке мы получим коэффициенты многочлена g (x). Затем эту вторую строку считаем первой строкой новой системы Горнера и выполняем деление g (x) на х-2 и т.д. продолжаем вычисления до тех нор, пока не получим остаток, отличный от нуля. В этом случае кратность корня равна числу полученных нулевых остатков. В строке, содержащей последний ненулевой остаток, находится и коэффициенты частного при делении f (x) на (x-2) 3. Теперь, используя только что предложенную схему проверки корня на кратность, решим следующую задачу. При каких a и b многочлен f (x) =x4+2x3+ax2+ (a+b) x+2 имеет число - 2 корнем кратности 2?

Так как кратность корня - 2 должна быть равна 2, то, выполняя деление на х+2 по предложенной схеме, мы должны два раза получить остаток 0, а в третий раз - остаток, отличный от нуля. Имеем:

Таблица 9

Таким образом, число - 2 является корнем кратности 2 исходного многочлена тогда и только тогда, когда

Отсюда получаем: a=-7/2, b=-5/2.

Кратный корень

многочлена

f (x ) = a 0 x n + a 1 x n-1 +... + a n ,


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Кратный корень" в других словарях:

    Алгебраического уравнения f(х) = а0хn + a1xn 1 + ... + an = 0, такое число b, что f(х) делится без остатка на 2 ю или более высокую степень m двучлена (х b); число m кратность корня b. * * * КРАТНЫЙ КОРЕНЬ КРАТНЫЙ КОРЕНЬ алгебраического… … Энциклопедический словарь

    Алгебр. ур ния f(x) = а0хn + + а1хn 1 + ... + ап = 0, такое число b, что f(x) делится без остатка на 2 ю или более высокую степень т двучлена (х b); число т кратность корня b … Естествознание. Энциклопедический словарь

    Уравнения такое число b, что f(х) делится без остатка на 2 ю или более высокую степень m двучлена (х b); число m кратность корня b … Большой Энциклопедический словарь

    Утверждает, что Всякий отличный от константы многочлен (от одной переменной) с комплексными коэффициентами имеет по крайней мере один корень в поле комплексных чисел. Эквивалентная формулировка теоремы следующая: Поле комплексных чисел… … Википедия

    Правило, позволяющее находить непересекающиеся интервалы, содержащие каждый по одному действительному корню данного алгебраического многочлена с действительными коэффициентами. Дано в 1829 Ж. Ш. Ф. Штурмом. Для любого многочлена f(x) без… … Большая советская энциклопедия

    Раздел математики, в к ром изучаются функции при дискретном изменении аргумента, в отличие от дифференциального и интегрального исчислений, где аргумент изменяется непрерывно. Пусть функция y=f(x)задана в точках xk=x0+kh(h постоянная, к целое).… … Математическая энциклопедия

    Неособая полная алгебраическая кривая рода 1. Теория Э. к. является истоком большей части современной алгебраич. геометрии. Но исторически теория Э. к. возникла как часть анализа, как теория эллиптических интегралов и эллиптических функций.… … Математическая энциклопедия

    Совокупность приложений теории особенностей дифференцируемых (гладких) отображений X. Уитни (Н. Whitney) и теории бифуркаций А. Пуанкаре (Н. Poincare) и А. А. Андронова. Назв. введено Р. Томом (R. Thorn) в 1972. К. т. применяется к геом. и физ.… … Физическая энциклопедия

    Число корней алгеб раич. уравнения заключенных в интервале равно или на четное число меньше, чем где число перемен знака в ряду производных многочлена в точке а, т. е. в ряду а число перемен знака в этом ряду в точке 6. При этом каждый кратный … Математическая энциклопедия

    Алгебраическое уравнение 2 й степени. Общий вид К. у. В поле комплексных чисел К. у. имеет два решения, выражающиеся в радикалах через коэффициенты этого уравнения: При b2>4ас оба решения К. у. действительные и различные, при b2<4ас решения … Математическая энциклопедия

РЕФЕРАТ

Корни многочлена. Теорема Безу

Выполнили:

Студенты 1 курса группы ИМ-11

Очного отделения

Шабунин Дмитрий Олегович

Зорин Александр Сергеевич

Проверила:

Бобылева Оксана Владимировна

подпись___________________


Введение……………………………………………………………………………...3

1.Многочлены………………………………………………………………………..3

1.1.Определение многочлена………………………………………………………3

1.2.Определение корня многочлена……………………………………………….4

1.3.Схема Горнера………………………………………………………………….5

1.4.Нахождение корней по схеме Горнера. Виды корней……………………….7

2. Этьен Безу. Биография. Теорема Безу. Следствия из теоремы……………….13

2.1. Этьен Безу. Биогафия………………………………………………………...13

2.2. Теорема Безу………………………………………………………………….13

2.3 Следствия из теоремы Безу…………………………………………………..14

2.4. Примеры использования теоремы…………………………………………..14

Заключение………………………………………………………………………….16

Список используемых источников………………………………………………..17


ВВЕДЕНИЕ

Тема данного реферата: «Корни многочлена. Теорема Безу».

В нем мы хотим рассмотреть, что такое многочлен, что является корнем многочлена, а также рассказать про схему Горнера и теорему Безу.

В первой части мы разберем понятие многочлена, его корней и их виды и про схему Горнера. Во второй про теорему Безу.

Данная тема довольно актуальна, поскольку теорема Безу является одной из базовых теорем алгебры.

Многочлены

Понятие многочлена

Многочлен (полином) от одной переменной x – это выражение вида

где x – переменная, – коэффициенты из некоторого числового поля, n – целое неотрицательное число, а нулевое- свободный член. Отдельные слагаемые вида ……, k=0,1, …,n называются членами многочлена.

Также многочлен называют «полиномом», этот термин происходит от греческих слов «πολι» - много и «νομχ» - член.



2 члена называются подобными , если их степени равны. При этом подобные между собой члены можно преобразовать в один, т.е. привести подобные члены.

Степенью многочлена называют наибольшую среди степеней многочлена, при этом многочлен f(x)- не тождественный нуль. Обозначается эта степень deg(f).

Например:

Многочлен четвертой степени (старшая степень равна четырем);

- многочлен второй степени или квадратный (старшая степень равна двум).

При этом тождественный нуль степени не имеет.

Предполагается, что коэффициенты многочлена принадлежат определенному полю (полю действительных, рациональных, комплексных чисел). Так, если выполнять над многочленом операции сложения, умножения или вычитания при помощи сочетательного, переместительного и распределительных законов, мы получаем снова многочлен.

Из вышесказанного следует, что совокупность всех многочленов с коэффициентами из данного поля Р образует кольцо Р - кольцо многочленов над данным полем, это кольцо не имеет делителей нуля, т.е. произведение многочленов, не равных нулю, не может дать нуль.

Определение корня многочлена

Элемент кольца Р называется корнем многочлена f(x) Р , если f( )= 0. Другими словами, число является корнем многочлена f(x), если в выражение

мы подставим , тогда получим

Таким образом, при подстановке вместо число получается верное выражение. Это означает, что число является корнем равенства f(x)=0.

Поэтому корень многочлена f(x) и корень соответствующего уравнения f(x)=0 по сути одно и то же.

К примеру, найдём корень многочлена f(x)=3 -10+3

Данное выражение является квадратным поэтому для нахождения корня многочлена нам необходимо решить следующее уравнение

3 -10х+3=0.

Для этого необходимо рассмотреть алгоритм решения квадратных уравнений.

Определение 1. Если многочлен f(x) обращается в нуль при подстановке в него числа с вместо неизвестного, то с называется корнем многочлена f(x) (или уравнения f(x)=0).

Пример 1. f (x)=x 5 +2x 3 -3x.

Число 1 является корнем f(x), а число 2 не является корнем f(x), так как f(1)=1 5 +2∙1 3 -3∙1=0, а f(2)=2 5 +2∙2 3 -3∙2=42≠0.

Оказывается, корни многочлена связаны с его делителями.

Число с тогда и только тогда является корнем многочлена f(x), когда f(х) делится на х-с.

Определение 2. Если с - корень многочлена f(х), то f(х) делится на х-с. Тогда найдется натуральное число k, что f(х) делится на (х-с) k , но не делится на (х-с) k+1 . Такое число k называется кратностью корня с многочлена f(х), а сам корень с - k-кратным корнем этого многочлена. Если k=1, то корень с называют простым.

Для нахождения кратности k корня с многочлена f(х) применяют теорему:

Если число с является k-кратным корнем многочлена f(х), то при k>1 оно будет (k-1)-кратным корнем первой производной этого многочлена; если же k=1, то с не будет служить корнем для f "(х).

Следствие. k-кратный корень многочлена f(х) впервые не будет служить корнем для k-й производной.

Пример 2. Убедиться, что число 2 является корнем многочлена f(х)=х 4 -4х 3 +16х-16. Определить его кратность.

Решение. Число 2 является корнем f(х), так как 2 4 -4∙2 3 +16∙2-16=0.

f "(x)=4x 3 -12x 2 +16, f "(2)=4∙2 3 -12∙2 2 +16=0;

f ""(x)=12x 2 -24x, f ""(2)=12∙2 2 -24∙2=0;

f """(x)=24x-24, f """(2)=24∙2-24≠0.

Число 2 впервые не является корнем f"""(х), поэтому число 2 является трехкратным корнем многочлена f(х).

Пусть дан многочлен f(х) степени n≥1 со старшим коэффициентом 1: f(х)=х n +a 1 x n -1 +…+a n -1 x+a n и α 1 ,...,α n – его корни. Корни многочлена и его коэффициенты связаны формулами, которые называют формулами Виета:

a 1 = -(α 1 +...+α n),

a 2 =α 1 α 2 +...+α n-1 α n ,

a 3 = -(α 1 α 2 α 3 +...+α n-2 α n-1 α n),

...........................

a n =(-1) n α 1 α 2 ...α n .

Формулы Виета облегчают написание многочлена по заданным его корням.

Пример 3. Найти многочлен, имеющий простые корни 2; 3 и двукратный корень –1.

Решение. Найдем коэффициенты многочлена:

а 1 =– (2+3–1–1)=-3,

а 2 =2·3+2·(–1)+2·(–1)+3·(–1)+3·(–1)+(–1)·(–1)= –3,

а 3 =– (2·(–1)·(–1)+3·(–1)·(–1)+3·2·(–1)+3·2·(–1))= –7,

а 4 =3·2·(–1)·(–1)=6.

Искомый многочлен есть х 4 –3х 3 –3х 2 –7х+6.

Определение 3. Многочлен f(х)ÌР[x] степени n приводим над полем Р, если он может быть разложен в произведение двух множителей φ(х) и ψ(х) из Р[x], степени которых меньше n:



f(x)=φ(x)ψ(x). (1)

f(x)ÎP[x] называют неприводимым над полем Р, если в любом его разложении на множители из Р[x] один из множителей имеет степень 0, другой – степень n.

Имеют место следующие теоремы:

Всякий многочлен ненулевой степени f(х) из кольца Р[x] разлагается в произведение неприводимых множителей из Р[x] однозначно с точностью до множителей нулевой степени.

Отсюда легко следует, что для всякого многочлена f(х)ÎР[x] степени n, n≥1, существует следующее разложение на неприводимые множители:

где - неприводимые многочлены из P[x] со старшими коэффициентами, равными единице. Такое разложение для многочлена однозначно.

Неприводимые множители, входящие в такое разложение, не обязаны быть все различными. Если неприводимый многочлен встречается ровно k раз в разложении (2), то он называется k-кратным множителем многочлена f(х).Если множитель Р(х) входит в это разложение только один раз, то он называется простым множителем для f(х).

Если в разложении (2) одинаковые множители собрать вместе, то это разложение можно записать в следующем виде:

, (3)

где множители Р 1 (х),…,Р r (x) уже все различные. Показатели k 1 ,…,k r здесь равны кратностям соответствующих множителей. Разложение (3) можно записать в виде:

где F 1 (x) – произведение всех простых неприводимых множителей, - произведение всех двукратных неприводимых множителей и т.д. в разложении (3). Если в разложении (3) нет m-кратных множителей, то множитель считается равным единице.

Многочлены F 1 (x),…,F s (x) для многочлена f(x) над числовыми полями можно найти, пользуясь понятием производной, алгоритмом Евклида из формулированной ранее теоремы (о связи с производной) следующим образом:



Поэтому получаем

Таким образом, для многочлена f(x) мы можем найти множители .

Если для многочлена f(x) надо найти множители F 1 (x),…,F s (x) его разложения (4), то говорят, что надо отделить его кратные множители.

Пример 4. Отделить кратные множители f(x)=х 5 -х 4 -5х 3 +х 2 +8х+4.

Решение. Находим НОД f(x) и f "(x)=5x 4 -4x 3 -15x 2 +2x+8.

d 1 (x)=[ f(x), f "(x)]=x 3 -3x-2.

Теперь находим d 2 (x)=(d 1 (x), d 1 " (x)).

Выражаем v 1 (x), v 2 (x), v 3 (x).

(производим деление).

v 1 (x)=x 2 -x-2.

(производим деление).

Поэтому получаем F 3 (x)=v 3 (x)=x+1,

Таким образом, многочлен f(x) имеет разложение f(x)=(х-2) 2 (х+1) 3 . В разложении (3) многочлена f(x) простых множителей нет, двукратный множитель х-2 и трехкратный множитель х+1.

Замечание 1. Этот способ ничего не дает в том случае, если все неприводимые множители многочлена f(x) простые (получим тождество f(x)=F 1 (x)).

Замечание 2. Этот способ позволяет определить кратности всех корней произвольного многочлена.

ВАРИАНТЫ ЛАБОРАТОРНОЙ РАБОТЫ

Вариант 1

1. Убедиться, что многочлен 3х 4 -5х 3 +3х 2 +4х-2 имеет корень 1+i. Найти остальные корни многочлена.

2. Отделить кратные множители х 5 +5х 4 -5х 3 -45х 2 +108.

3. Найти многочлен наименьшей степени, корнями которого являются: 5, i, i+3.

Вариант 2

1. Чему равен показатель кратности корня х 0 =2 для многочлена f(x)=x 5 -7х 4 +12х 3 +16х 2 -64х+48? Найти остальные его корни.

2. Отделить кратные множители х 5 -6х 4 +16х 3 -24х 2 +20х-8.

3. Определить соотношение между коэффициентами уравнения x 3 +px+q=0, если его корни х 1 , х 2 , х 3 , удовлетворяют соотношению .

Вариант 3

1. Чему равен показатель кратности корня х 0 =4 для многочлена х 4 -7х 3 +9х 2 +8х+16? Найти остальные корни.

2. Отделить кратные множители х 6 -2х 5 -х 4 -2х 3 +5х 2 +4х+4.

3. Определить λ так, чтобы один из корней уравнения равнялся удвоенному другому: x 3 -7x+λ=0.

Вариант 4

1. Показать, что х=3 является корнем многочлена f(x)=х 4 -6х 3 +10х 2 -6х+9. Определить его кратность и найти остальные корни.

2. Отделить кратные множители многочлена х 5 +6х 4 +13х 3 +14х 2 +12х+8.

3. Сумма двух корней уравнения 2х 3 -х 2 -7х+λ=0 равна 1. Найти λ.

Вариант 5

1. Показать, что х 0 =-2 является корнем многочлена х 4 +х 3 -18х 2 -52х-40. Определить его кратность и найти остальные корни.

2. Отделить кратные множители многочлена f(x)=х 5 -5х 4 -5х 3 +45х 2 -108.

3. Найти многочлен наименьшей степени по данным корням 1, 2, 3, 1+i.

Вариант 6

1. Найти условие, при котором многочлен х 5 +ах 4 +b имеет двойной корень, отличный от нуля.

2. Отделить кратные множители многочлена х 6 +15х 4 -8х 3 +51х 2 -72х+27.

3. Многочлен а 0 х n +a 1 x n -1 +…+a n имеет корни х 1 , х 2 ,…, х n . Какие корни имеют многочлены: 1) a 0 x n -a 1 x n -1 +a 2 x n -2 +…+(-1) n a n ;

2) a n x n +a n-1 x n-1 +…+a 0 ?

Вариант 7

1. Показать, что х=-2 является корнем многочлена 4х 5 +24х 4 +47х 3 +26х 2 -12х-8. Найти кратность корня и найти остальные корни многочлена.

3. Найти сумму квадратов корней уравнения 2х 3 -2х 2 -4х-1.

Вариант 8

1. Доказать, что х=1 является корнем многочлена х 6 -х 5 -4х 4 +6х 3 +х 2 -5х+2. Определить его кратность. Найти остальные корни многочлена.

3. Один из корней многочлена в два раза больше другого. Найти корни многочлена f(х)=х 3 -7х 2 +14х+λ.


Вариант 9

1. Найти условие, при котором многочлен х 5 +10ах 3 +5bх+с имеет тройной корень, отличный от нуля.

2. Отделить кратные множители многочлена х 7 -3х 6 +5х 5 -7х 4 +7х 3 -5х 2 +3х-1.

3. Решить уравнение х 3 -6х 2 +qх+2=0, если известно, что его корни образуют арифметическую прогрессию.

Вариант 10

1. Показать, что х=3 является корнем многочлена f(x)=х 4 -12х 3 +53х 2 -102х+72. Определить кратность корня, найти другие корни многочлена.

2. Отделить кратные множители многочлена х 6 -4х 4 -16х 2 +16.

3. Найти многочлен с действительными коэффициентами наименьшей степени по данным корням 1, 2+i, 3.

Вариант 11

1. Показать, что х=2 является корнем многочлена х 5 -6х 4 +13х 3 -14х 2 +12х-8. Найти его кратность и остальные корни.

2. Отделить кратные множители многочлена х 4 +х 3 -3х 2 -5х-2.

3. Составить многочлен наименьшей степени, если известны его корни х 1 =2, x 2 =1-i, x 3 =3.

Вариант 12

1. Показать, что х=-1 является корнем многочлена х 4 +х 3 -3х 2 -5х-2. Найти его кратность и остальные корни многочлена.

2. Отделить кратные множители многочлена х 5 -3х 4 +4х 3 -4х 2 +3х-1.

3. Составить многочлен наименьшей степени, если известны его корни х 1 =i, x 2 =2+i, x 3 =x 4 =2.

Вариант 13

1. Чему равен показатель кратности корня х 0 =4 для многочлена х 4 -7х 3 +9х 2 +8х+16? Найти остальные корни многочлена.

2. Отделить кратные множители многочлена х 6 -2х 5 -х 4 -2х 3 +5х 2 +4х+4.

3. Определить λ так, чтобы один из корней уравнения х 3 -7х+λ=0 равнялся удвоенному другому.