Что показывал термометр цельсия при плавлении снега. В течении целых двух лет шведский астроном Андерс Цельсий проверял термометр созданный ранее французским зоологом и металлургом Рене Антуаном Реомюром. Эксперименты Цельсий пр. Абсолютная шкала температ


А знаете ли вы, что...

Шведский учёный А.Цельсий выполнял проверку температурной шкалы? «Я повторял опыты два года, при различной погоде, и всегда находил точно такую же точку на термометре. Я помещал термометр не только в тающий лед, но и в снег, когда он начинал таять. Я помещал также котёл с тающим снегом вместе с термометром в топящуюся печь и всегда находил, что термометр показывал одну и ту же точку, если только снег лежал плотно вокруг шарика термометра». Так А.Цельсий описывал результаты своих опытов в XVIII веке.

Существует очень легкоплавкое металлическое вещество – сплав Вуда? Если из него отлить чайную ложечку, то в стакане с горячим чаем она расплавится и стечет на дно стакана!

На вершине горы Эверест, самой высокой точке Земли, атмосферное давление в три раза меньше нормального? При таком давлении вода кипит при температуре всего 70 °С? В «кипятке» такой температуры даже чай как следует не заваришь.

Снимая с кухонной плиты горячую кастрюльку, нужно пользоваться только сухой тряпкой или варежкой? Если они будут влажными, вы рискуете получить ожог, так как вода проводит теплоту в 25 раз быстрее, чем воздух между волосками ткани.

Если бы уголь или дрова имели такую же хорошую теплопроводность, как и металлы, то поджечь их было бы просто невозможно? Тепло, подводимое к ним (например, от спички), очень быстро передавалось бы в толщу материала и не нагревало бы поджигаемую часть до температуры воспламенения.

По пути к Земле солнечные лучи проходят через космический вакуум огромное расстояние – 150 миллионов километров? И несмотря на это, на каждый квадратный метр земной поверхности падает поток энергии мощностью ≈ 1 кВт. Если бы эта энергия «падала» на чайник, то он закипел бы всего через 10 минут!

Если бы человек мог видеть тепловое излучение, то, попав в тёмную комнату, он увидел бы немало интересного: ярко сияющие трубы и батареи отопления, окружённые светлыми вьющимися струйками тёплого воздуха? Такие же струйки были бы и над музыкальным центром, телевизором.

В XIX веке замороженные продукты считались безнадёжно испорченными? И только трудности снабжения продовольствием, которые стали препятствием для развития больших городов, заставили преодолеть предрассудки. В конце XIX – начале XX века во многих странах были изданы законы, предписывающие строительство специальных сооружений – холодильников.

Тепловые насосы, позволяющие регулировать температуру и влажность воздуха, – кондиционеры – начали применяться уже в начале прошлого века? С 20-х годов XX века их стали устанавливать в многолюдных зданиях и помещениях: театрах, гостиницах, ресторанах.

АБСОЛЮТНАЯ ШКАЛА ТЕМПЕРАТУР.


1. Температура - это мера средней кинетической энергии молекул, характеризующая
степень нагретости тел.

2.Прибор для измерения температуры - термометр .

3. Принцип действия термометра:
При измерении температуры используется зависимость изменения какого-либо макроскопического параметра (объема, давления, электрического сопротивления и т.д.) вещества от температуры.
В жидкостных термометрах - это изменение объема жидкости.
При контакте двух сред происходит передача энергии от более нагретой среды менее нагретой.
В процессе измерения температура тела и термометра приходят в состояние теплового равновесия.

Термометры.
На практике часто используются жидкостные термометры: ртутные (в диапазоне от -35 С до +750 С) и спиртовые (от -80 С до +70 С).
В них используется свойство жидкости изменять свой объем при изменении температуры.
Однако, у каждой жидкости существуют свои особенности изменения объема (расширения) при различных температурах.
В результате сравнения, например, показаний ртутного и спиртового термометров, точное совпадение будет только лишь в двух точках (при температурах 0 С и 100 С).
Этих недостатков лишены
газовые термометры .
Первый газовый термометр был создан франц. физиком Ж. Шарлем.

При соприкосновении двух тел различной температуры происходит передача внутренней энергии от более нагретого тела менее нагретому, и температуры обоих тел выравниваются.
Наступает состояние теплового равновесия, при котором все макропараметры (объем, давление, температура) обоих тел остаются в дальнейшем неизменными при неизменных внешних условиях.
4. Тепловым равновесием называется такое состояние, при котором все макроскопические параметры остаются неизменными сколь угодно долго.


5.Состояние теплового равновесия системы тел характеризуется температурой: все тела системы, находящиеся друг с другом в тепловом равновесии, имеют одну и ту же температуру.

где k – постоянная Больцмана

Эта зависимость дает возможность ввести новую температурную шкалу – абсолютную шкалу температур, не зависящую от вещества, используемого для измерения температуры.

6.Абсолютная шкала температур - введена англ. физиком У. Кельвином
- нет отрицательных температур

Единица абсолютной температуры в СИ: [T] = 1K (Кельвин)
Нулевая температура абсолютной шкалы – это абсолютный нуль (0К = -273 С), самая низкая температура в природе. АБСОЛЮТНЫЙ НУЛЬ - предельно низкая температура, при которой прекращается тепловое движение молекул.



Связь абсолютной шкалы со шкалой Цельсия

В формулах абсолютная температура обозначается буквой «Т», а температура по шкале Цельсия буквой «t».

История изобретения термометра

Изобретателем термометра принято считать : в его собственных сочинениях нет описания этого прибора, но его ученики, Нелли и , засвидетельствовали, что уже в он сделал нечто вроде термобароскопа ( ). Галилей изучал в это время работы , у которого уже описано подобное приспособление, но не для измерения степеней тепла, а для поднятия воды при помощи нагревания. Термоскоп представлял собой небольшой стеклянный шарик с припаянной к нему стеклянной трубкой. Шарик слегка нагревали и конец трубки опускали в сосуд с водой. Через некоторое время воздух в шарике охлаждался, его давление уменьшалось и вода под действием атмосферного давления поднималась в трубке вверх на некоторую высоту. В дальнейшем при потеплении давление воздуха в шарике увеличивалось и уровень воды в трубке понижался при охлаждении же вода в ней поднималась. При помощи термоскопа можно было судить только об изменении степени нагретости тела: числовых значений температуры он не показывал, так как не имел шкалы. Кроме того, уровень воды в трубке зависел не только от температуры, но и от атмосферного давления. В 1657 г. термоскоп Галилея был усовершенствован флорентийскими учеными. Они снабдили прибор шкалой из бусин и откачали воздух из резервуара (шарика) и трубки. Это позволило не только качественно, но и количественно сравнивать температуры тел. Впоследствии термоскоп был изменен: его перевернули шариком вниз, а в трубку вместо воды налили спирт и удалили сосуд. Действие этого прибора основывалось на расширении тел, в качестве «постоянных» точек брали температуры наиболее жаркого летнего и наиболее холодного зимнего дня. Изобретение термометра также приписывают лорду , , Санкториусу, Скарпи, Корнелию Дреббелю ( ), Порте и Саломону де Каус, писавшим позднее и частью имевшим личные отношения с Галилеем. Все эти термометры были воздушные и состояли из сосуда с трубкой, содержащего воздух, отделённый от атмосферы столбиком воды, они изменяли свои показания и от изменения температуры, и от изменения атмосферного давления.

Термометры с жидкостью описаны в первый раз в г. «Saggi di naturale esperienze fatte nell’Accademia del Cimento», где о них говорится как о предметах, давно изготовляемых искусными ремесленниками, которых называют «Confia», разогревающими стекло на раздуваемом огне лампы и выделывающими из него удивительные и очень нежные изделия. Сначала эти термометры наполняли водой, и они лопались, когда она замерзала; употреблять для этого винный спирт начали в 1654 году по мысли великого герцога тосканского . Флорентийские термометры не только изображены в «Saggi», но сохранились в нескольких экземплярах до нашего времени в Галилеевском музее, во Флоренции; их приготовление описывается подробно.

Сначала мастер должен был сделать деления на трубке, соображаясь с её относительными размерами и размерами шарика: деления наносились расплавленной эмалью на разогретую на лампе трубку, каждое десятое обозначалось белой точкою, а другие чёрными. Обыкновенно делали 50 делений таким образом, чтобы при таянии снега спирт не опускался ниже 10, а на солнце не поднимался выше 40. Хорошие мастера делали такие термометры настолько удачно, что все они показывали одно и то же значение температуры при одинаковых условиях, однако такого не удавалось достигнуть, если трубку разделяли на 100 или 300 частей, чтобы получить большую точностью. Наполняли термометры посредством подогревания шарика и опускания конца трубки в спирт, заканчивали наполнение при помощи стеклянной воронки с тонко оттянутым концом, свободно входившим в довольно широкую трубку. После регулирования количества жидкости, отверстие трубки запечатывали сургучом, называемым «герметическим». Из этого ясно, что эти термометры были большими и могли служить для определения температуры воздуха, но были ещё неудобны для других, более разнообразных опытов, и градусы разных термометров были не сравнимы между собою.

В г. ( ) в усовершенствовал воздушный термометр, измеряя не расширение, а увеличение упругости воздуха, приведённого к одному и тому же объёму при разных температурах подливанием ртути в открытое колено; барометрическое давление и его изменения при этом принимались во внимание. Нулём такой шкалы должна была служить «та значительная степень холода», при которой воздух теряет всю свою упругость (то есть современный ), а второй постоянной точкой - температура кипения воды. Влияние атмосферного давления на температуру кипения ещё не было известно Амонтону, а воздух в его термометре не был освобождён от водяных газов; поэтому из его данных абсолютный нуль получается при −239,5° по шкале Цельсия. Другой воздушный термометр Амонтона, выполненный очень несовершенно, был независим от изменений атмосферного давления: он представлял сифонный барометр, открытое колено которого было продолжено кверху, снизу наполнено крепким раствором поташа, сверху нефтью и оканчивалось запаянным резервуаром с воздухом.

Современную форму термометру придал и описал свой способ приготовления в 1723 г. Первоначально он тоже наполнял свои трубки спиртом и лишь под конец перешёл к ртути. Нуль своей шкалы он поставил при температуре смеси снега с нашатырём или поваренной солью, при температуре «начала замерзания воды» он показывал 32°, а температура тела здорового человека во рту или под мышкой была эквивалентна 96°. Впоследствии он нашёл, что вода кипит при 212° и эта температура была всегда одна и та же при том же состоянии . Сохранившиеся экземпляры термометров Фаренгейта отличаются тщательностью исполнения.

Окончательно установил обе постоянные точки, тающего льда и кипящей воды, шведский астроном, геолог и метеоролог в 1742 г. Но первоначально он ставил 0° при точке кипения, а 100° при точке замерзания. В своей работе Цельсий « » рассказал о своих экспериментах, показывающих, что температура плавления льда (100°) не зависит от давления. Он также определил с удивительной точностью, как температура кипения воды варьировалась в зависимости от . Он предположил, что отметку 0 ( воды) можно откалибровать, зная на каком уровне относительно моря находится термометр.

Позже, уже после смерти Цельсия, его современники и соотечественники ботаник и астроном Мортен Штремер использовали эту шкалу в перевёрнутом виде (за 0° стали принимать температуру плавления льда, а за 100° - кипения воды). В таком виде оказалась очень удобной, получила широкое распространение и используется до нашего времени.

По одним сведениям, Цельсий сам перевернул свою шкалу по совету Штремера. По другим сведениям, шкалу перевернул Карл Линней в 1745 году. А по третьим - шкалу перевернул преемник Цельсия М.Штремер и в XVIII веке такой термометр был широко распространён под именем «шведский термометр», а в самой Швеции - под именем Штремера, но известнейший шведский химик Иоганн Якоб в своем труде «Руководства по химии» по ошибке назвал шкалу М. Штремера цельсиевой шкалой и с тех пор стоградусная шкала стала носить имя Андерса Цельсия.

Работы в 1736 г. хотя и повели к установлению 80° шкалы, но были скорее шагом назад против того, что сделал уже Фаренгейт: термометр Реомюра был громадный, неудобный в употреблении, а его способ разделения на градусы был неточным и неудобным.

После Фаренгейта и Реомюра дело изготовления термометров попало в руки ремесленников, так как термометры стали предметом торговли.

В 1848 г. английский физик (лорд Кельвин) доказал возможность создания абсолютной шкалы температур, нуль которой не зависит от свойств воды или вещества, заполняющего термометр. Точкой отсчета в « » послужило значение : −273,15° С. При этой температуре прекращается тепловое движение молекул. Следовательно, становится невозможным дальнейшее охлаждение тел.

Жидкостные термометры

Жидкостные термометры основаны на принципе изменения объёма жидкости, которая залита в термометр (обычно это или ), при изменении температуры окружающей среды.

В связи с запретом применения ртути во многих областях деятельности ведется поиск альтернативных наполнений для бытовых термометров. Например, такой заменой может стать сплав .

Об удалении разлившейся ртути из разбитого термометра см. статью

Механические термометры

Термометры этого типа действуют по тому же принципу, что и электронные, но в качестве датчика обычно используется спираль или .

Электрические термометры

Принцип работы электрических термометров основан на изменении контактную разность потенциалов, зависящую от температуры). Наиболее точными и стабильными во времени являются на основе платиновой проволоки или платинового напыления на керамику.

Оптические термометры

Оптические термометры позволяют регистрировать температуру благодаря изменению

Инфракрасные термометры

Инфракрасный термометр позволяет измерять температуру без непосредственного контакта с человеком. В некоторых странах уже давно имеется тенденция отказа от ртутных термометров в пользу инфракрасных не только в медицинских учреждениях, но и на бытовом уровне.

Технические термометры

Технические термометры используются на предприятиях в сельском хозяйстве, нефтехимической, химической, горно-металлургической промышленностях, в машиностроении, жилищно- коммунальном хозяйстве, транспорте, строительстве, медицине, словом во всех жизненных сферах.

Выделяют такие виды технических термометров:

    термометры технические жидкостные ТТЖ-М;

    термометры биметаллические ТБ, ТБТ, ТБИ;

    термометры сельскохозяйственные ТС-7-М1;

    термометры максимальные СП-83 М;

    термометры для спецкамер низкоградусные СП-100;

    термометры специальные вибростойкие СП-В;

    термометры ртутные электроконтактные ТПК;

    термометры лабораторные ТЛС;

    термометры для нефтепродуктов ТН;

    термометры для испытаний нефтепродуктов ТИН1, ТИН2, ТИН3, ТИН4.

– Де лос Рейес по крайней мере, – заметил он, – хочет сосредоточить все секретные службы в одних руках – разведку таможни, где он работал, и полицейского департамента Манилы, сделать их армейскими. Тогда таким, как вы, уважаемая Амалия, не надо будет о нас беспокоиться. Ну а пока что – представляете – страна без разведки.

Я молча наклонила голову.

– Но это не всё, – со зловещей серьезностью продолжил Айк. – У нас появилась дивизия. В нее, правда, поначалу войдет только один полк. А теперь угадайте, сколько в ней сегодня рядовых.

Я, конечно, угадала, показав большим и указательным пальцем: ноль.

– А вот тут уже в дело вступаю я, – с удовольствием признался Айк. – Это по моей части. Сделать армию из ничего. Офицеров ведь тоже нет. Которые должны знать про такие вещи, как газовая маска, чтение карты, рекогносцировка, стрельба и штык. И учить солдат.

– А ваш генерал? Который настоящий?

– Генерал? Мощной тенью он стоит за своим другом Мануэлем Кесоном, борясь с волнами здешней политики. Генерал, дорогая Амалия, пишет для президента доклад. Надо закончить к апрелю. Не будет доклада – не будет денег, так что давайте относиться к этому всерьез. То есть пишет-то Орд, но генерал сделает из текста то, что надо. Это он умеет как никто. Я даже знаю одну секретную фразу оттуда. Сказать?

– Конечно.

– "Безопасность Филиппин будет безопасностью западной цивилизации".

Мы скорбно помолчали.

– Хорошо, Айк, так где же вы оставили десять фунтов живого веса? Только у авиаторов?

Нет, Айк, оказывается, пока страна отдыхала, успел по ней неплохо попутешествовать. Начавшийся год должен стать первым опытом призыва рекрутов, но ведь для таковых нужны военные лагеря. А самое интересное, что в лагерях нужны хоть какие-то – за неимением офицеров – инструкторы. Для новобранцев, которые, как выяснилось, говорят на восьми разных диалектах. И неграмотных среди них двадцать процентов, причем это еще оптимистическая оценка.

Всего, перечислял Айк, надо сто бараков. А еще есть земля, на которой предстоит бараки строить, – ее просто так не получишь. Кровати. Ремни. Форма.

– Возникла идея, дорогая Амалия, максимизировать – хорошее слово – использование местных материалов. Знаете ли вы, что такое гуинит? Нет? Гуинита не знаете? Кошмар. А ведь это материал, который тут будет использоваться вместо стали для касок. Вообще-то это кокосовое волокно. Шляпа такая будет, с полями, как бы из папье-маше. Абака вместо кожи для ремней, это вроде как веревка. Да, и конечно, обувь от "Анг тибай", мы уже об этом говорили. Что еще? Ага, кокосовые пуговицы. И только что пожалованный в генералы господин Сантос заявляет местной прессе, что в итоге мы имеем концепцию уникальной формы и снаряжения, которые – это цитата – будут отличать филиппинского солдата от воинов всех армий мира.

Но была и хорошая новость. На побережье обнаружились забытые и почти как новые восьмидюймовки из прошлого века. На подставках, уточнил Айк.

И тут вдобавок выяснилось – Айк думал, что я об этом уже знала, – что целый месяц лично генерал Дуглас Макартур вел настоящую войну с Вашингтоном, которую, в общем-то, проиграл и серьезно утратил престиж в местных политических кругах. Дело было в винтовках – из чего-то же надо стрелять армии в кокосовых шлемах, а для начала – учиться стрелять.

– Раз уж у нас день секретов, напомню вам, что в американской армии, с ее вечным нейтралитетом, сто тридцать две тысячи солдат. Двенадцать танков, и так далее. Меньше, чем у вашей Португалии. А при Рузвельте военный бюджет упал с трех с половиной до двух с половиной сотен миллионов. Конгресс пытается его еще урезать. И кто нам тут даст оружие, если у самой армии США его нет? Я говорю про нормальную, современную винтовку. Про "Гаранд". Но у нас она с Великой войны не производилась! "Спрингфилды" – тоже, самим не хватает. Зато, вспомнил вдруг наш генерал, с той же войны осталось невероятное количество "Энфилдов" одна тысяча девятьсот третьего года! Ваши, между прочим. Британские. По лицензии. От "Ремингтона".

Далее же, как я поняла, история развивалась так. Генерал запросил для будущей филиппинской армии сначала девяносто тысяч винтовок в год, а потом предложил нарастить цифру до четырехсот тысяч. По символической цене в восемь песо штука (за бесполезно валяющуюся на складах рухлядь).

– И тут началось! – развел руками Айк. – Военное министерство заявило, что дать столько оружия филиппинцам – значит создать ситуацию, когда мы, Америка, не сможем в случае чего "вмешаться против" нового Содружества. Но в итоге одобрили, для начала, сто тысяч "Энфилдов". И вот приходит бумага – а там стоит окончательная цена. Восемнадцать песо. И где их взять? На генерала теперь смотрят, как…

Айк откинулся на плетеную спинку кресла и небрежным голосом заметил:

– А на фоне этих больших неприятностей кого волнуют мелкие? Типа того, что это очень большая винтовка для филиппинского солдата. Ну, и там – слабый экстрактор, пружинка ломается, патрон остается в магазине, приходится доставать его руками. Если успеваешь. Зато их сколько угодно.

– Айк, а скажите мне – откуда вообще пошла идея, что японцы заглядываются на здешний архипелаг? Мой кучер в этом убежден, но ведь у всяких идей есть исходная точка, правда?

Айк с удовлетворением ставит пустой пивной бокал и вздыхает.

– Это совсем секретно, Амалия. Не говорите японцам, если их выявите и обезвредите. Но история такая. Когда мы с вами были совсем юны, году этак в девятом или десятом, какой-то мой соотечественник-идиот выдвинул гениальную идею: если японцев на их островах семьдесят миллионов, а здесь – пустующие джунгли с комарами и обезьянами, то японцы обязательно рано или поздно захотят взять эти острова себе. Он озаглавил эту идею "концепцией демографического давления". И куча яйцеголовых ученых, особенно из сумасшедшей Ассоциации по международным делам, на полном серьезе обсуждали и единогласно громили эту безумную мысль, пока она не запала в голову каждому третьесортному журналисту, которому как раз в данный момент нечего сказать. И…

Айк очевидно задумался насчет второго пива, но – как подсказал мне мой дар дедукции – вспомнил про Мэйми и передумал.

– И все это было смешно, пока здешние огненные националисты во главе все с тем же господином Кесоном не решили всерьез взяться за независимость. А президентом тогда был еще Хувер…

"Ху-увер", – прозвучал у меня в голове ленивый бас Магды.

– И что бы вы думали, Амалия, Хувер, будучи человеком простым, особо не утруждал себя сложными аргументами. Он спокойно заветировал тот, первый акт о независимости, потому что иначе, без Америки, местные жители не смогут защитить себя от чего? От "демографического давления" соседних азиатских народов. Все, кто хоть что-то понимал в восточных делах, поморщились – но что вы хотите, это же Хувер. Вот так.

Я мрачно оглянулась на оживлявшуюся после дневного оцепенения залу.

– Айк, как вы знаете, у меня была некоторая возможность ознакомиться с этим самым сверхсекретным планом "Орандж"…

– Куда же от вас скроешься.

– И там, конечно, нет никаких японцев.

– А только воображаемый противник. Если серьезно, то таковым могли бы быть и китайцы, вот только на них напали японцы, отхватили Маньчжурию и непонятно что будет дальше…

– А если противник…

– Зверообразные и несчетные полчища такового…

– Выбивает вас с Батаана, то обороняющиеся перемещаются на остров Коррехидор, который виден отсюда, и в его высеченных в скале еще испанцами туннелях сидят и ждут, когда из Перл-Харбора подойдут линкоры.

– Да, в общем, так. Не считая того, что при испанцах артиллерия была другой, она тогда не могла добить с берега до Коррехидора. А сейчас может. Но о чем вы говорите, Амалия. У нас же есть план. Создания полумиллионной армии.

– Не оставляйте усилий, Айк.

– Вам телеграмма, госпожа де Соза, международная.

Вот оно, и как же это я чувствую – вижу – слова через сероватую бумагу, скрывающую текст от посторонних глаз?

Телеграмма из Лондона, без подписи. Конечно, без подписи. Но это оно, чего я ждала: история закончена, жди, мы скоро приедем.

Почему из Лондона? Хотя для отвода глаз все пригодится. "Мы"? У них – то есть Элистера и… конечно, Эшендена… была какая-то общая история?

– Мы хотели с вами посоветоваться, – траурным голосом сказал мне портье, возвышаясь надо мной на целую голову. – Ведь из постояльцев отеля вы единственная подданная империи. Как насчет музыки?

Смотрю на него в недоумении. Я должна сочинять музыку?

И тут Джим, вечный Джим, прошел мимо меня на пару с другим белым и шитым золотом мальчиком, в ногу, с трудом таща куда-то портрет в золотой раме. И – со сползающей с этой рамы черной лентой.

Мощный… да ладно уж, просто толстый и грозный старик с бородкой клинышком, с саблей на боку и множеством внушительных орденов. Джордж. Джордж Пятый. У меня умер король?

Ну да, это же мой король. Я была еще девочкой – а он уже стоял где-то там, на недосягаемых вершинах, иногда выезжал в зеленые парки Лондона в экипаже, запряженном лошадьми. Потом, в последние годы, болел и выздоравливал, болел и выздоравливал. Но он был всегда.

3. Найти вес тела P = ρgV

4. Определить давление, оказываемое телом на горизонтальную поверхность P = , где F=P

Экспериментальная работа № 12

Тема: «Исследование зависимости показаний термометра от внешних условий».

Цель: исследуйте зависимость показаний термометра в зависимости от внешних условий: падают ли на термометр солнечные лучи или он находится в тени, на какой подложке лежит термометр, какого цвета экран закрывает термометр от солнечных лучей.

Задачи:

Воспитательные: воспитание аккуратности, умения работать в коллективе ;

Оборудование: настольная лампа, термометр, листы белой и черной бумаги.

Какова температура воздуха в комнате и на улице интересует людей каждый день. Термометр для измерения температуры воздуха есть практически в каждом доме, но далеко не всякий человек умеет правильно им пользоваться. Во-первых, многие не понимают самой задачи измерения температуры воздуха. Это непонимание особенно обнаруживается в жаркие летние дни. Когда метеорологи сообщают, что температура воздуха в тени достигала 32°С, то многие люди "уточняют" примерно так: "А на солнце столбик термометра уходил за отметку 50°С!" Имеют ли смысл такие уточнения? Для ответа на этот вопрос выполните следующее экспериментальное исследование и сделайте свои выводы.

Ход работы:

Опыт 1. Измерьте температуру воздуха "на солнце" и "в тени". В качестве "Солнца" используйте настольную лампу.

Первый раз расположите термометр на расстоянии 15-20 см от лампы на столе, второй раз, не изменяя расположения лампы относительно термометра, создайте "тень" листом бумаги, расположив его вблизи лампы. Запишите показания термометров.

Опыт 2. Выполните измерения температуры "на солнце" при условиях использования сначала темной, затем светлой подложки под термометром. Для этого первый раз положите термометр на лист белой бумаги, второй раз на лист черной бумаги. Запишите показания термометров.

Опыт 3. Выполните измерения «в тени», закрыв свет от лампы листом белой бумаги, положенным прямо на термометр. Запишите показания термометра. Повторите опыт, заменив белую бумагу черной бумагой.

Обдумайте результаты выполненных опытов и сделайте выводы, где и как нужно укрепить за окном термометр для измерения температуры воздуха на улице?

Серия опытов при правильном выполнении дает следующие результаты.

Опыт 1 показывает, что показания термометра “на солнце” заметно выше его показаний “в тени”. Этот факт должен получить следующее объяснение. При отсутствии солнечного освещения температуры воздуха и стола одинаковы. В результате теплообмена со столом и воздухом термометр приходит в тепловое равновесие с ними и показывает температуру воздуха.

Когда "солнце" не закрыто листом бумаги, под действием поглощаемого излучения “солнца” температура стола повышается, а прозрачный воздух этим излучением почти не нагревается. Термометр с одной стороны осуществляет теплообмен с поверхностью стола, а с другой стороны - с воздухом. В результате его температура оказывается выше температуры воздуха, но ниже температуры поверхности стола. Каков же тогда смысл показаний термометра “на солнце”?

Упорный любитель измерений температуры воздуха “на солнце” может на это возразить, что его не интересует температура воздуха “в тени”, когда сам он находится “на солнце”. Пусть это будет не температура воздуха, просто показания термометра “на солнце”, но именно они его и интересуют. В этом случае ему пригодятся результаты опыта 2.

Опыт 2 показывает, что на белой хорошо отражающей свет бумаге, показания термометра значительно меньше, чем на черной, хорошо поглощающей световое излучение и сильнее нагревающейся. Следовательно, на вопрос о показаниях термометра “на солнце” нет однозначного ответа. Результат будет сильно зависеть от цвета подложки под термометром, цвета и структуры поверхности баллона термометра, наличия или отсутствия ветра.

Температура воздуха на улице при измерениях вдали от нагретых солнечным излучением предметов и при исключении прямого воздействия излучения на термометр одинакова “на солнце“ и “в тени”, это просто температура воздуха. Но измерять ее следует действительно только “в тени”.

Но создание "тени" для термометра в солнечный день тоже не простая задача. В этом убеждают результаты опыта 3. Они показывают, что при близком расположении экрана от термометра нагревание экрана солнечным излучением будет приводить к существенным ошибкам при измерении температуры воздуха в солнечный день. Завышение температуры будет особенно большим при темной окраске экрана, так как такой экран поглощает почти всю энергию падающего на него солнечного излучения, и значительно меньшей при белой окраске экрана, так как такой экран отражает почти всю энергию падающего на него солнечного излучения.

После выполнения такого экспериментального исследования нужно обсудить практически важный вопрос: как же на практике нужно измерять температуру воздуха на улице? Ответ на этот вопрос может быть примерно таким. Если в квартире есть окно, выходящее на север, то именно за этим окном и нужно укрепить уличный термометр. Если же такого окна в квартире нет, термометр должен быть помещен возможно дальше от нагреваемых солнцем стен, напротив слабо нагреваемых оконных стекол. Баллон термометра должен быть защищен от нагревания солнечным излучением. Результаты опыта 3 показывают, что при попытке защиты термометра от солнечного излучения экран сам нагревается и нагревает термометр. Так как белый экран нагревается меньше, защитный экран должен быть светлым, располагать его следует в достаточном удалении от термометра.

Аналогичное можно быть исследовать зависимость показаний комнатного термометра от места его расположения. Результатом выполнения домашнего задания должно быть установление того факта, что показания комнатного термометра зависят от места его расположения в комнате. Если нас интересует температура воздуха в комнате, то нужно исключить влияние на него нагретых тел и солнечного излучения. На термометр не должен падать прямой солнечный свет, нельзя располагать термометр вблизи нагревательных и осветительных приборов. Не следует вешать термометр на внешнюю стену комнаты, которая летом имеет повышенную, а зимой пониженную температуру относительно температуры воздуха в комнате.

Экспериментальная работа № 13

Тема: «Определение процентного содержания снега в воде».

Цель: Определить процентное содержание снега в воде.

Задачи:

Образовательные: формирование умения сочетать знания и практических навыков;

Развивающие: развитие логическое мышление, познавательного интереса.

Оборудование: калориметр, термометр, мензурка, сосуд с комнатной водой, смесь снега с водой, калориметрическое тело.

Первый вариант

Ход работы:

1.В калориметр со смесью наливают столько воды, чтобы весь снег растаял. Температура получившейся воды была равна t=0.

2.Запишем уравнение теплового баланса для этого случая:

m1 =сm3(t2-t1), где с - удельная теплоемкость воды, - удельная теплота плавления льда, m1 – масса снега, m2-масса воды в снеге, m3-масса влитой воды, t-температура влитой воды.

Отсюда =

Искомое процентное отношение =;

3.Величину m1 + m2 можно определить, перелив всю воду из калориметра в измерительный цилиндр и измерив полную массу воды m. Так как m= m1 + m2 + m3, то

m1 + m2 = m - m3. Следовательно,

=

Второй вариант

Оборудование: калориметр, термометр, весы и разновес, стакан с теплой водой, комок мокрого снега, калориметрическое тело.

Ход работы:

1.Взвесим пустой калориметр, а затем калориметр с комком мокрого снега. По разности определим массу комка мокрого снега (m).

В комке содержится *х граммов воды и *(100 - х) граммов снега, где х-процентное содержание воды в комке.

Температура мокрого снега 0.

2.Теперь добавляем в калориметр с комком мокрого снега столько теплой воды (mв), чтобы весь снег растаял, предварительно замерив температуру теплой воды (to).

3.Взвешиваем калориметр с водой и растаявшим снегом и по разности весов определим массу долитой теплой воды(mв).

4.Замеряем термометром конечную температуру (toсм.).

5.Запишем уравнение теплового баланса:

cmв t = *(100 - х) + с(m+ mв) toсм.,

Где с - удельная теплоемкость воды-4200Дж/кг, - удельная теплота плавления снега

3,3 *105 Дж/кг.

6.Из полученного уравнения выражаем

X=100 -

Экспериментальная работа № 14

Тема: «Определение теплоты плавления льда».

Цель: определить теплоту плавления льда.

Задачи:

Образовательные: формирование умения сочетать знания и практических навыков;

Воспитательные: воспитание аккуратности, умения работать в коллективе;

Развивающие: развитие логическое мышление, познавательного интереса.

Оборудование: тер­мометр, вода, лед, мерный ци­линдр.

Ход работы:

1.В пустой сосуд положите кусок льда и налейте в него из измерительного цилиндра столько воды, чтобы весь лед растаял.

2.В этом случае уравнение теп­лового баланса запишется прос­то:

Ст1 (t1 - t2) = т2

где т2 - масса льда, тх - мас­са налитой воды, tx - началь­ная температура воды, t2 - конечная температура воды, рав­ная О °С, К - удельная тепло­та плавления льда. Из приве­денного уравнения находим:

3.Массу льда можно определить, слив полученную воду в изме­рительный цилиндр и измерив общую массу воды и льда:

М = + т2 = ρаодь, Vобщ.

Так как т2 = М - m1, то

Экспериментальная работа № 15

Цель : используя предложенное оборудование и таблицу зависимости давления насыщенного пара от температуры, определить абсолютную и относительную влажность воздуха в комнате.

Задачи:

Образовательные: формирование умения сочетать знания и практических навыков;

Воспитательные: воспитание аккуратности, умения работать в коллективе;

Развивающие: развитие логическое мышление, познавательного интереса.

Оборудование : стакан, термометр, лед, вода.

Ход работы:

1.Абсолютную влажность воздуха проще всего определить по точке росы. Для измерения точки росы нужно сначала измерить температуру t1воздуха. Затем взять обычный стеклянный стакан, налить в него немного воды при комнатной температуре и поместить в воду термометр.

2.В другом сосуде нужно приготовить смесь воды со льдом и из этого сосуда добавлять понемногу холодную воду в стакан с водой и термометром до тех пор, пока на стенках стакана не появится роса. Смотреть нужно на стенку стакана напротив уровня воды в стакане. При достижении точки росы стенка стакана ниже уровня воды становится матовой из-за множества мелких капелек росы, сконденсировавшихся на стекле. В этот момент нужно снять показания t2 термометра.

3.По значению температуры t2 - точке росы - можно определить по таблице плотность ρ насыщенного пара при температуре t2. Это будет абсолютная влажность атмосферного воздуха. Затем можно найти по таблице значение плотности r0 насыщенного пара при температуре t1. По найденным значениям плотности r насыщенного пара при температуре t2 и плотности ρ0 насыщенного пара при комнатной температуре t1 определяется относительная влажность воздуха j.

Погрешности средств измерений

Средства измерения

Предел измерения

Цена деления

Инструментальная погрешность

Линейка ученическая

Линейка чертёжная

Линейка инструментальная

Линейка демонстрационная

Лента измерительная

Мензурка

Весы учебные

Комплект гирь Г-4-211.10

Гири лабораторные

Штангенциркуль школьный

Микрометр

Динамометр учебный

Секундомер электронный KARSER

±0,01 с (0,2 с с учётом субъективной погрешности).

Барометр-анероид

780 мм. рт. ст.

1 мм. рт. ст.

±3 мм. рт. ст.

Термометр лабораторный

Манометр открытый демонстрационный

Плотность жидкостей, металлов и сплавов, твёрдых веществ и материалов.

ρ, кг/м3

Меня зовут Влада, я учусь в 4 классе.

На уроках природоведения и окружающего мира мы знакомимся с природой, наблюдаем за происходящими явлениями.

В этом году была очень долгая осень, и нас удивило то, что долгое время на улице не замерзали лужи. Так же мы заметили, что иногда вместе с водой в лужах мог находиться сырой снег или лед. А были дни, когда эти лужи полностью промерзали, и воды в них не было, но через некоторое время они опять полностью успевали растаять.

И тогда мы решили исследовать явления плавления и отвердевания веществ.

В ходе исследования мы решали следующие задачи:

1. Знакомство с процессами плавления и отвердевания различных веществ.

2. Выяснение условий, при которых вещества плавятся.

3. Выяснение условий, при которых вещества отвердевают.

Вещества в природе могут находиться в разных состояниях: жидком, твердом и газообразном. Некоторые вещества мы можем пронаблюдать во всех состояниях, например, воду. А для того чтобы пронаблюдать различные состояния других веществ необходимо создать определенные условия: охлаждать их или нагревать.

Если вещество в твердом состоянии нагревать, то его можно превратить в жидкость. Этот процесс называют плавлением.

Если вещество в жидком состоянии охлаждать, то его можно превратить в твердое тело. Этот процесс называют отвердеванием.

Вещества в твердом состоянии делятся на кристаллы и аморфные тела.

У кристаллов плавление идет при определенной температуре. Пока кристалл плавится, температура его не меняется.

Отвердевание кристаллов идет при той же температуре, что и плавление. Температура при их отвердевании не меняется.

При плавлении и отвердевании аморфных тел температура меняется.

1.Исследование процесса отвердевания воды.

Цель: Исследовать процесс отвердевания воды. Выяснить условия отвердевания воды.

Оборудование: стакан с водой, термометр, секундомер.

Ход исследования.

Наблюдение отвердевания воды проводим во дворе школы.

Термометр опускаем в сосуд с водой и наблюдаем за изменениями температуры воды. По секундомеру следим за временем остывания.

Результаты наблюдений заносим в таблицу:

Температура воды, 0 С

Температура воды, 0 С

Строим график зависимости температуры от времени.

Вывод по исследованию:

Отвердевание воды идет при неизменной температуре 0 0 С. Температура в процессе отвердевания не меняется.

2.Исследование процессов плавления снега (льда).

Цель: Исследовать процесс плавления снега (льда). Выяснить условия плавления снега.

Оборудование: стакан со снегом, термометр, секундомер.

Ход исследования.

Наблюдение плавления снега проводим в кабинете физики школы.

Термометр опускаем в сосуд со снегом и наблюдаем за изменениями температуры. По секундомеру следим за временем плавления.

Температура, 0 С

Температура, 0 С

Вывод по исследованию:

Лед – кристаллическое вещество.

Плавление снега идет при неизменной температуре 0 0 С. Температура в процессе плавления не меняется.

3.Исследование процесса плавления парафина.

Цель: Исследовать процесс плавления парафина. Выяснить условия плавления парафина.

Ход исследования.

Наблюдение плавления парафина проводим в кабинете физики школы.

Термометр находится в пробирке с парафином. Помещаем пробирку в горячую воду и наблюдаем за изменениями температуры. По секундомеру следим за временем плавления.

Результаты наблюдений заносим в таблицу:

Температура, 0 С

Вывод по исследованию:

Парафин – аморфное тело. При плавлении парафина температура плавно увеличивается.

4.Исследование процесса отвердевания парафина.

Цель: Исследовать процесс отвердевания парафина. Выяснить условия отвердевания парафина.

Оборудование: пробирка с парафином, термометр, секундомер, сосуд с горячей водой.

Ход исследования.

Наблюдение отвердевания парафина проводим в кабинете физики школы.

Термометр находится в пробирке с парафином. Пробирка в горячую воду и наблюдаем за изменениями температуры. По секундомеру следим за временем плавления.

Результаты наблюдений заносим в таблицу:

Температура, 0 С

Вывод по исследованию:

Парафин – аморфное тело. При отвердевании парафина температура плавно уменьшается.

В ходе исследования мы установили, что процессы плавления и отвердевания кристаллов и аморфных тел протекают по-разному.

Кристаллы имеют определенную температуру плавления и отвердевания. Мы установили, что для воды температура плавления и отвердевания равна 0 0 С. Пока идет процесс плавления или отвердевания температура воды не менялась. Но для того, чтобы вода отвердевала необходимо, чтобы температура воздуха была меньше 0 0 С. Для того чтобы лед плавился необходимо, чтобы температура воздуха была больше 0 0 С.

Аморфные тела не имеют определенной температуры плавления и отвердевания. При нагревании аморфных веществ они постепенно плавятся, при этом их температура растет. При охлаждении они отвердевают, при этом их температура уменьшается.