Интересные факты об одноклеточных и многоклеточных организмах. Интересные факты о простых вещах. (13 фото). Бактерии тоже вымирают, и делают это довольно часто

Будущее Вселенной - вопрос, рассматриваемый в рамках физической космологии. Различными научными теориями предсказано множество возможных вариантов будущего, среди которых есть мнения как об уничтожении, так и о бесконечной жизни Вселенной.

После того как теория о создании Вселенной посредством Большого взрыва и её последующем быстром расширении была принята большинством учёных, будущее Вселенной стало вопросом космологии, рассматриваемым с разных точек зрения в зависимости от физических свойств Вселенной: её массы и энергии, средней плотности и скорости расширения.

Вселенная и в наши дни продолжает свою эволюцию, так как эволюционируют её части. Время этой эволюции для каждого типа объектов разнится более, чем на порядок. И когда жизнь объектов одного типа заканчивается, то у других всё только начинается. Это позволяет разбить эволюцию Вселенной на эпохи. Однако конечный вид эволюционной цепи зависит от скорости и ускорения расширения: при равномерной или почти равномерной скорости расширения будут пройдены все этапы эволюции и будут исчерпаны все запасы энергии. Этот вариант развития называется тепловой смертью.

Если скорость будет всё нарастать, то, начиная с определённого момента, сила, расширяющая Вселенную, сначала превысит гравитационные силы, удерживающие галактики в скоплениях. За ними распадутся галактики и звёздные скопления. И, наконец, последними распадутся наиболее тесно связанные звёздные системы. Спустя некоторое время, электромагнитные силы не смогут удерживать от распада планеты и более мелкие объекты. Мир вновь будет существовать в виде отдельных атомов. На следующем этапе распадутся и отдельные атомы. Что последует за этим, точно сказать невозможно: на этом этапе перестает работать современная физика.

Вышеописанный сценарий - это сценарий Большого разрыва.

Существует и противоположный сценарий - Большое сжатие. Если расширение Вселенной замедляется, то в будущем оно прекратится и начнётся сжатие. Эволюция и облик Вселенной будут определяться космологическими эпохами до того момента, пока её радиус не станет в пять раз меньше современного. Тогда все скопления во Вселенной образуют единое мегаскопление, однако галактики не потеряют свою индивидуальность: в них всё также будет происходить рождение звёзд, будут вспыхивать сверхновые и, возможно, будет развиваться биологическая жизнь. Всему этому придёт конец, когда Вселенная ужмётся ещё в 20 раз и станет в 100 раз меньше, чем сейчас; в тот момент Вселенная будет представлять собой одну огромную галактику.

Температура реликтового фона достигнет 274 К и на планетах земного типа начнёт таять лёд. Дальнейшее сжатие приведёт к тому, что излучение реликтового фона затмит даже центральное светило планетной системы, выжигая на планетах последние ростки жизни. А вскоре после этого испарятся или будут разорваны на куски сами звёзды и планеты. Состояние Вселенной будет похоже на то, что было в первые моменты её зарождения. Дальнейшие события будут напоминать те, что происходили в начале, но промотанные в обратном порядке: атомы распадаются на атомные ядра и электроны, начинает доминировать излучение, потом начинают распадаться атомные ядра на протоны и нейтроны, затем распадаются и сами протоны и нейтроны на отдельные кварки, происходит великое объединение. В этот момент, как и в момент Большого взрыва, перестают работать известные нам законы физики и дальнейшую судьбу Вселенной предсказать невозможно.

Космологические эпохи
Введем понятие космологической декады (η) как десятичный показатель степени возраста Вселенной в годах:

Эпоха звёзд (6 Это время уже без каких-либо источников энергии. Сохранились только остаточные продукты всех процессов, происходящих в прошлых декадах: фотоны с огромной длиной волны, нейтрино, электроны и позитроны. Температура стремительно приближается к абсолютному нулю. Время от времени позитроны и электроны образуют неустойчивые атомы позитрония, долгосрочная судьба их - полная аннигиляция.

Есть два взгляда на то, как возник материальный мир. Религии приписывают Богу руководящую роль в мироустройстве. В частности, Библия говорит о нескольких днях, за которые Бог создал сначала свет, потом воду, потом твердь, следом живые существа - вплоть до человека. Сейчас Церкви утверждают, что «шесть дней» - термин метафорический, где день не равен суткам, а длится намного дольше. Другой, кардинально противоположный взгляд на происхождение видимого, материального мира - научный. Эволюция Вселенной, согласно исследованиям ученых, началась с Большого Взрыва (его еще обозначают термином Big Bang), который произошел 10-15 миллиардов лет тому назад.

Что было до того, как возникло всё существующее? Современная астрономия полагает, что это была сжавшаяся до минимальных размеров сфера, внутри которой под действием высочайших температур и давления двигались свободные Все материальное, которое сейчас заполняет собой безбрежный космос, было сжато в пределах стремящейся к нулю по величине точке, с которой и началось происхождение и эволюция Вселенной. До сих пор неясно, что послужило причиной Большого Взрыва. Однако сам этот взрыв привел к расширению Вселенной, и этот процесс продолжается и сейчас. Что это значит? Что одно и то же количество материальных частиц со временем занимает все больший объем.

Будет ли расширяться материальный мир вечно, или когда-нибудь его разрастание в объеме замедлится, прекратится вовсе, наподобие того, как мы наблюдаем при взрыве гранаты? Возможно, вслед за этим эволюция Вселенной прекратится, и заменится этапом «сворачивания», сужения к первоначальной точке. Мы пока не готовы ответить на этот вопрос с определенностью. Но картина мира, созданная учеными, уже может описать последовательные фазы в разрастании и преображении материи. Первая эра - адронная - длилась всего одну миллионную часть секунды, но за это время произошел процесс аннигиляции антибарионов и барионов, образовались протоны и нейроны.

Второй и третий этапы эволюции Вселенной - лептонный и фотонный - также длились всего несколько секунд. В конце второй эры образовалось нейтринное море, а эпоха фотонов завершилась отделением вещества от антивещества (что произошло вследствие аннигиляции позитронов и электронов). Вселенная все расширялась, что привело к понижению плотности энергии частиц и фотонов. Фотонная стадия сменилась звездной, которая продолжается и сейчас. Однако формирование звезд, галактик и групп галактик происходило (да и происходит) неравномерно.

Прошли миллионы лет после Большого Взрыва, пока простейшие частицы превратились в атомы - преимущественно водорода и гелия (эти атомы являются основной составляющей Вселенной), атомы соединились в молекулы, которые вошли в соединения и образовали кристаллы, вещества, минеральные породы. На протяжении звездной эры, которой на данном этапе заканчивается эволюция Вселенной, были сформированы галактики, планеты, зародилась жизнь на нашей Земле. Можно ли сказать, что «эпический фейерверк» закончился, и мы стоим на остывающих углях среди рассеивающегося дыма?

Ученые пришли к выводу, что эволюция Вселенной продолжается. Завихрения гигантского скопления водорода сплющивают вещество, преображают эти скопления в водовороты. Так рождаются сферические, эллиптические и сплющенные галактики (в зависимости от скорости вращения колоссального - в сто тысяч световых лет - круговорота). К последнему типу галактик принадлежит и наша - Млечный Путь. Внутри галактик под давлением сгустков водорода формируются звезды. Они также проходят длительные стадии эволюции: от раскаленных добела сверхновых до «красных гигантов», «белых карликов» и Те же процессы происходят и с нашим Солнцем, в то время, как Космос продолжает расширяться.

Из теории Фридмана следует, что возможны различные сценарии эволюции Вселенной: неограниченное расширение, чередование сжатий и расширений и даже тривиальное стационарное состояние. Какой из этих сценариев реализуется - зависит от соотношения между критической и фактической плотностью вещества во Вселенной на каждом этапе эволюции. Для того, чтобы оценить значения этих плотностей, рассмотрим сначала, как астрофизики представляют себе структуру Вселенной.

В настоящее время считается, что материя во Вселенной существует в трех формах: обычное вещество, реликтовое излучение и так называемая «темная» материя. Обычное вещество сосредоточено в основном в звездах, которых только в нашей Галактике насчитывается около ста миллиардов. Размер нашей Галактики составляет 15 килопарсек (1 парсек = 30,8  10 12 км). Предполагается, что во Вселенной существует до миллиарда различных галактик, среднее расстояние между которыми имеет порядок одного мегапарсека. Эти галактики распределены крайне неравномерно, образуя скопления (кластеры). Однако, если рассматривать Вселенную в очень большом масштабе, например, «разбивая» ее на «ячейки» с линейным размером, превышающим 300 мегапарсек, то неравномерность структуры Вселенной уже не будет наблюдаться. Таким образом, в очень больших масштабах Вселенная является однородной и изотропной. Вот для такого равномерного распределения вещества можно рассчитать плотность  в, которая составляет величину  310 -31 г / см 3 .

Эквивалентная реликтовому излучению плотность р  510 -34 г / см 3 , что много меньше  в и, следовательно, может не приниматься в расчет при подсчете общей плотности материи во Вселенной.

Наблюдая за поведением галактик, ученые предположили, что помимо светящегося, «видимого» вещества самих галактик в пространстве вокруг них существуют, по-видимому, значительные массы вещества, наблюдать которые непосредственно не удается. Эти «скрытые» массы проявляют себя только тяготением, которое сказывается на движении галактик в группах и скоплениях. По этим признакам оценивают и связанную с этой «темной» материей плотность  т, которая, по расчетам, должна быть примерно в ~ 30 раз больше, чем  в. Как будет видно из дальнейшего, именно «темная» материя является, в конечном счете, «ответственной» за тот или иной «сценарий» эволюции Вселенной 1 .

Чтобы убедиться в этом, оценим критическую плотность вещества, начиная с которой «пульсирующий» сценарий эволюции сменяется «монотонным». Такую оценку, хотя и достаточно грубую, можно произвести на основании классической механики, без привлечения общей теории относительности. Из современной астрофизики нам потребуется только закон Хаббла.

Вычислим энергию некоторой галактики, имеющей массу m, которая находится на расстоянии L от «наблюдателя» (рис.10.2). Энергия Е этой галактики складывается из кинетической энергии и потенциальной энергии
, которая связана с гравитационным взаимодействием галактикиm с веществом массы M , находящимся внутри шара радиуса L (можно показать, что вещество, находящееся вне шара, не вносит вклада в потенциальную энергию). Выразив массу M через плотность ,
, и учитывая закон Хаббла, запишем выражение для энергии галактики:

Рис. 10.2 К расчету критической плотности вещества Вселенной

Из этого выражения видно, что в зависимости от значения плотности  энергия Е может быть либо положительной (Е  0), либо отрицательной (Е  0). В первом случае рассматриваемая галактика обладает достаточной кинетической энергией, чтобы преодолеть гравитационное притяжение массы М и удалиться на бесконечность. Это соответствует неограниченному монотонному расширению Вселенной (модель «открытой» Вселенной).

Во втором случае (Е < 0) расширение Вселенной в какой-то момент прекратится и сменится сжатием (модель «замкнутой» Вселенной). Критическое значение плотности соответствует условию Е = 0, поэтому получаем

Подставив в это выражение известные значения Н = 15 ((км/с)/10 6 световых лет) и G = 6,6710 -11 м 3 /кг с 2 , получаем значение критической плотности  к  10 -29 г / см 3 . Таким образом, если бы Вселенная состояла только из обычного “видимого” вещества с плотностью  в  310 -31 г / см 3 , то ее будущее было бы связано с неограниченным расширением. Однако, как было сказано выше, наличие «темной» материи с плотностью  т   в может привести к пульсирующей эволюции Вселенной, когда период расширения сменяется периодом сжатия (коллапсом) (рис.10.3). Правда, в последнее время ученые все больше приходят к мысли, что плотность всей материи во Вселенной, включая и «темную» энергию, в точности равна критической. Почему это так? На этот вопрос ответа пока нет.

Рис. 10.3. Расширение и сжатие Вселенной

10.5 Иерархичность структуры Вселенной

Фундаментальные константы играют важную роль в построении масштабов нашего мира. Они позволяют дать некую иерархическую картину структуры Вселенной. Это можно пояснить графически представлениями изменения размеров тел и расстояний, а также их масс (рис. 10.4 и 10.5). Действительно, наиболее естественными и наглядными квалификационными признаками являются размер объекта и его масса. Выделяют

Микромир с характерными размерами меньше, чем 10 -8 м (частицы, ядра, атомы, молекулы),

Макромир (макромолекулы, кристаллы жидкости, газы, живые организмы, человек, объекты техники, т.е. макротела)

Мегамир (планеты, звезды, галактики).

Понятно, что границы микро- и макромира подвижны, и не существует отдельного микромира и отдельного макромира. Естественно, что макрообъекты и мегаобъекты, построены из микрообъектов и в основе макро- и мегаявлений лежат микроявления. Это наглядно видно на примере построения Вселенной из взаимодействующих элементарных частиц в рамках космомикрофизики. На самом деле мы должны понимать, что речь идет лишь о различных уровнях рассмотрения вещества. Микро-, макро- и мегаразмеры объектов соотносятся друг с другом как макро/микро ~ мега/макро. В классической физике отсутствовал объективный критерий отличия макро- от микрообъекта. Это отличие ввел М. Планк: если для рассматриваемого объекта минимальным воздействием (квант действия) на него можно пренебречь, то это макрообъекты, если нельзя - это микрообъект.

Кварки «являются» составной частью протонов и нейтронов, затем из них образуются ядра атомов. Атомы объединяются в молекулы. Если двигаться дальше по шкале размеров тел, то далее следуют обычные макротела, планеты и их системы, звездные скопления галактик и метагалактик, т.е. можно представить переход от микро-, макро- и мега- как в размерах, так и моделях физических процессов. Фундаментальные мировые константы определяют масштабы иерархической структуры материи нашего мира. Очевидно, что сравнительно небольшое их изменение и должно приводить к формированию качественно иного мира, в котором стало бы невозможным образование ныне существующих микро-, макро- и мегаструктур и в целом высокоорганизованных форм живой материи. Имеющая место «подгонка» мировых констант, т.е. определенные их значения и взаимоотношения между ними, по существу, и обеспечивает структурную устойчивость нашей Вселенной. Поэтому проблема, казалось бы, абстрактных мировых констант имеет глобальное мировоззренческое значение.

Антропный принцип требует также, чтобы средняя плотность вещества Вселенной ρ ср была бы близка к критической ρ кр, так как при ρ ср << ρ кр следует, что время существования нашего мира было бы настолько мало, что за это время жизнь не могла бы возникнуть.

Однако современная наука не дает однозначного ответа, какое из этих отношений между ρ кр и ρ ср справедливо, поскольку часть вещества находится в «невидимом» состоянии. Оценка же дает близкие значения ρ кр ≈ 10 -29 г/см 3 , ρ ср ≈ 10 -30 г/см 3 , откуда следует, что уже в рамках ньютоновской механики следует возможность нестационарной или, как мы уже знаем, пульсирующей Вселенной. Из таких вариантов эволюции Вселенной можно сделать следующие выводы: из термодинамических соображений следует, что Вселенную в целом можно рассматривать как открытую систему, в которой происходят необратимые и неравновесные процессы. Во всяком случае, ρ ср и ρ кр близки по своим значениям, и, следовательно, антропный принцип выполняется. Заметим также, что радиус R не должен быть больше критического R кр = 2Gm/c 2 , поскольку в нашем миропонимании и признании ОТО скорость разбегания Галактик не должна превышать скорость света (ν < с ). Показано, что при ρ кр ≈ ρ ср пространство может считаться псевдоевклидовым и число пространственных измерений опять же сводится к трем. Это вообще не удивительно, так как модель развита в рамках теории Ньютона. Заметим еще один интересный результат, полученный в 20-х годах П. Эренфестом (1880-1933): при четном числе пространственных координат не должно существовать замкнутых орбит планет и невозможна передача информации путем волн, что может служить дополнительным свидетельством в пользу трехмерности пространства и правильности антропного принципа.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Сценарии будущего Вселенной

Бумдущее Вселемнной -- вопрос, рассматриваемый в рамках физической космологии. Различными научными теориями предсказано множество возможных вариантов будущего, среди которых есть мнения как об уничтожении, так и о бесконечной жизни Вселенной.

После того как теория о создании Вселенной посредством Большого взрыва и её последующем быстром расширении была принята большинством учёных, будущее Вселенной стало вопросом космологии, рассматриваемым с разных точек зрения в зависимости от физических свойств Вселенной: её массы и энергии, средней плотности и скорости расширения.

Сценарии дальнейшей эволюции

вселенная разрыв сжатие эволюция

Вселенная и в наши дни продолжает свою эволюцию, так как эволюционируют её части. Время этой эволюции для каждого типа объектов разнится более, чем на порядок. И когда жизнь объектов одного типа заканчивается, то у других всё только начинается. Это позволяет разбить эволюцию Вселенной на эпохи. Однако конечный вид эволюционной цепи зависит от скорости и ускорения расширения: при равномерной или почти равномерной скорости расширения будут пройдены все этапы эволюции и будут исчерпаны все запасы энергии. Этот вариант развития называется тепловой смертью.

Если скорость будет всё нарастать, то, начиная с определённого момента, сила, расширяющая Вселенную, сначала превысит гравитационные силы, удерживающие галактики в скоплениях. За ними распадутся галактики и звёздные скопления. И, наконец, последними распадутся наиболее тесно связанные звёздные системы. Спустя некоторое время, электромагнитные силы не смогут удерживать от распада планеты и более мелкие объекты. Мир вновь будет существовать в виде отдельных атомов. На следующем этапе распадутся и отдельные атомы. Что последует за этим, точно сказать невозможно: на этом этапе перестаёт работать современная физика.

Вышеописанный сценарий -- это сценарий Большого разрыва.

Существует и противоположный сценарий -- Большое сжатие. Если расширение Вселенной замедляется, то в будущем оно прекратится и начнётся сжатие. Эволюция и облик Вселенной будут определяться космологическими эпохами до того момента, пока её радиус не станет в пять раз меньше современного. Тогда все скопления во Вселенной образуют единое мегаскопление, однако галактики не потеряют свою индивидуальность: в них всё также будет происходить рождение звёзд, будут вспыхивать сверхновые и, возможно, будет развиваться биологическая жизнь. Всему этому придёт конец, когда Вселенная ужмётся ещё в 20 раз и станет в 100 раз меньше, чем сейчас; в тот момент Вселенная будет представлять собой одну огромную галактику.

Температура реликтового фона достигнет 274 К и на планетах земного типа начнёт таять лёд. Дальнейшее сжатие приведёт к тому, что излучение реликтового фона затмит даже центральное светило планетной системы, выжигая на планетах последние ростки жизни. А вскоре после этого испарятся или будут разорваны на куски сами звёзды и планеты. Состояние Вселенной будет похоже на то, что было в первые моменты её зарождения. Дальнейшие события будут напоминать те, что происходили в начале, но промотанные в обратном порядке: атомы распадаются на атомные ядра и электроны, начинает доминировать излучение, потом начинают распадаться атомные ядра на протоны и нейтроны, затем распадаются и сами протоны и нейтроны на отдельные кварки, происходит великое объединение. В этот момент, как и в момент Большого взрыва, перестают работать известные нам законы физики и дальнейшую судьбу Вселенной предсказать невозможно.

Космологические эпохи

Эпоха звёзд (6<з<14)

Нынешняя эпоха, эпоха активного рождения звёзд, закончится ровно в тот момент, когда галактики исчерпают все запасы межзвёздного газа; в это же время закончат свой путь и маломассивные звёзды -- красные карлики, -- полностью исчерпав свои источники горения.

Гораздо раньше потухнет Солнце. Но сначала оно превратится в красного гиганта, поглотив Меркурий и, вероятно, Венеру. Земля же, если не разделит их судьбу, раскалится настолько, что может быть похожа на нынешнюю планету COROT-7b и представлять собой сгусток лавы на дневной стороне.

Эпоха распада (15<з<39)

Если в предыдущей стадии основные объекты Вселенной -- звёзды, подобные нашему Солнцу, то в эпоху распада -- белые и коричневые карлики, и совсем немного нейтронных звёзд и чёрных дыр. Обычных звёзд нет вообще, они все дошли до конечного этапа своей эволюции: белые карлики, нейтронные звёзды, чёрные дыры.

Если в прошлой стадии горение водорода было самым распространённым процессом, то в эту эпоху его место в коричневых карликах, да и идет оно гораздо медленнее. Ныне главенствуют процессы аннигиляции тёмной материи и распад протонов.

Галактики также сильно отличаются от нынешних: все звёзды уже неоднократно сталкивались друг с другом. Да и размер галактик значительно больше: все галактики, входящие в состав локального скопления, слились в одну.

Эпоха чёрных дыр (40<з<100)

На этом этапе фактически всё вещество представляет собой море элементарных частиц. И лишь в некоторых уголках Вселенной продолжают жить нейтронные звёзды. На первый план выходят чёрные дыры.

За предыдущие декады они аккрецировали на себя вещество. В эту эпоху они только излучают. Основных механизмов тут два: столкновение двух чёрных дыр и последующее слияние высвобождает значительную гравитационную энергию, образуются гравитационные волны. Вторым механизмом является излучение Грибова-Хокинга: благодаря своей квантовой природе, некоторым фотонам удаётся пробираться за горизонт событий. Вместе с фотоном чёрная дыра теряет и массу, а потеря массы ведет к ещё большему потоку фотонов. В какой-то момент гравитация больше не может удерживать фотоны света под горизонтом событий, и чёрная дыра взрывается, выкидывая последние остатки фотонов.

Однако возможен и другой сценарий. Чёрные дыры могут образовывать свои скопления и сверхскопления, и точно также они будут сливаться. В итоге образуется гигантская чёрная дыра, которая будет жить фактически вечно. Возможно, под действием гравитации она разогреется до Планковской температуры и достигнет Планковской плотности и станет причиной очередного Большого взрыва, дав начало новой Вселенной.

Эпоха вечной тьмы (з>101)

Это время уже без каких-либо источников энергии. Сохранились только остаточные продукты всех процессов, происходящих в прошлых декадах: фотоны с огромной длиной волны, нейтрино, электроны, позитроны и кварки. Температура стремительно приближается к абсолютному нулю. Время от времени позитроны и электроны образуют неустойчивые атомы позитрония, долгосрочная судьба их -- полная аннигиляция.

Размещено на Allbest.ru

...

Подобные документы

    Происхождение Вселенной - гипотезы и модели; космологические теории Большого взрыва и горячей Вселенной. Образование Солнечной системы. Биологическая, экологическая, социально-экономическая и культурно-историческая эволюции; возникновение жизни на Земле.

    контрольная работа , добавлен 24.09.2011

    Сущность понятия "Вселенная". Изучение истории развития крупномасштабной структуры Вселенной. Модель расширяющейся Вселенной. Теория большого взрыва (модель горячей Вселенной). Причина расширения в рамках ОТО. Теория эволюции крупномасштабных структур.

    контрольная работа , добавлен 20.03.2011

    История эволюции вселенной и первые мгновения ее жизни. Теория "Большого взрыва", анализ попыток создания математической модели Вселенной. Что такое звезды, галактики и млечный путь. Строение солнечной системы, характеристика ее планет и их спутников.

    реферат , добавлен 09.11.2010

    История развития представлений о Вселенной. Космологические модели происхождения Вселенной. Гелиоцентрическая система Николая Коперника. Рождение современной космологии. Модели Большого взрыва и "горячей Вселенной". Принцип неопределенности Гейзенберга.

    реферат , добавлен 23.12.2014

    Главное звено в эволюции Вселенной - жизнь, разум. Самоорганизация пространства-времени в процессе эволюции Вселенной. Случайность в научной картине Вселенной. Философско-мирровоззренческие проблемы космологической эволюции.

    реферат , добавлен 24.04.2007

    Модель Большого Взрыва как модель эволюционной истории Вселенной, согласно которой она возникла в бесконечно плотном состоянии и с тех пор расширяется, ее преимущества и недостатки. Расширяющаяся Вселенная, теории рождения и гибели, их сторонники.

    курсовая работа , добавлен 27.11.2010

    Характеристика наиболее известных моделей Вселенной: модель де-Ситтера, Леметра, Милна, Фридмана, Эйнштейна-де Ситтера. Космологическая модель Канта. Теория Большого взрыва. Календарь Вселенной: основные эры в развитии Вселенной и их характеристика.

    презентация , добавлен 17.11.2011

    Предположение об однородности и изотропии свойств Вселенной на протяжении всех этапов ее эволюции. Вопрос о происхождении химических элементов. Большие проблемы Большого взрыва. Попытки решения проблемы сингулярности. Квантовая физика и реальность.

    реферат , добавлен 11.01.2013

    Изучение пироцентрической, геоцентрической и гелиоцентрической моделей Вселенной. Современные исследования космологических моделей. Нобелевская премия за открытие ускоренного расширения Вселенной. Измерения гравитационного поля в скоплениях галактик.

    курсовая работа , добавлен 03.06.2014

    Происхождение и эволюция Вселенной, ее дальнейшие перспективы. Креативная роль физического вакуума. Парадоксы стационарной Вселенной. Основные положения теории относительности Эйнштейна. Этапы эволюции горячей Вселенной, неоднозначность данного сценария.